

# 16 Mbit (1M x 16) Static RAM

### **Features**

■ Very high speed: 55 ns

■ Wide voltage range: 1.65 V to 2.25 V

■ Ultra low standby power

Typical standby current: 1.5 μA
 Maximum standby current: 12 μA

■ Ultra low active power

□ Typical active current: 2.2 mA at f = 1 MHz

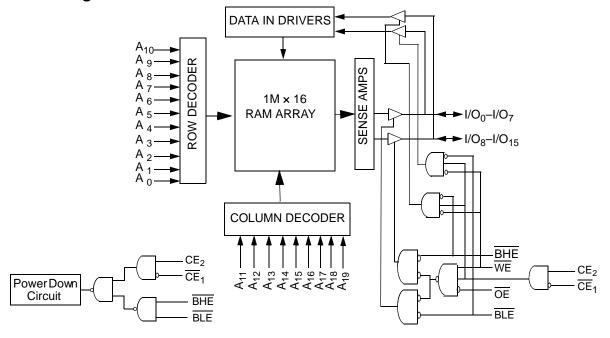
■ Easy memory expansion with  $\overline{CE}_1$ ,  $CE_2$ , and  $\overline{OE}$  features

■ Automatic power down when deselected

■ CMOS for optimum speed and power

 Offered in Pb-free 48-ball very fine ball grid array (VFBGA) packages

### **Functional Description**


The CY62167EV18 is a high performance CMOS static RAM organized as 1M words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an

automatic power down feature that reduces power consumption by 99 percent when addresses are not toggling. Place the device into stand by mode when deselected (CE $_1$  HIGH or CE $_2$  LOW or both BHE and BLE are HIGH). The input and output pins (I/O $_0$  through I/O $_1$ s) are placed in a high impedance state when: the device is deselected (CE $_1$ HIGH or CE $_2$  LOW); outputs are disabled (OE HIGH); both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH); and a write operation is in progress (CE $_1$  LOW, CE $_2$  HIGH and WE LOW).

To write to the device, take Chip Enables ( $\overline{\text{CE}}_1$  LOW and  $\text{CE}_2$  HIGH) and Write Enable ( $\overline{\text{WE}}$ ) input LOW. If Byte Low Enable ( $\overline{\text{BLE}}$ ) is LOW, then data from I/O pins (I/O $_0$  through I/O $_7$ ) is written into the location specified on the address pins ( $A_0$  through  $A_{19}$ ). If Byte High Enable ( $\overline{\text{BHE}}$ ) is LOW, then data from I/O pins (I/O $_8$  through I/O $_1$ 5) is written into the location specified on the address pins ( $A_0$  through  $A_{19}$ ).

To read from the device, take Chip Enables  $(\overline{\text{CE}}_1\text{LOW} \text{ and CE}_2\text{HIGH})$  and Output Enable  $(\overline{\text{OE}})$  LOW while forcing the Write Enable  $(\overline{\text{WE}})$  HIGH. If Byte Low Enable  $(\overline{\text{BLE}})$  is LOW, then data from the memory location specified by the address pins appears on I/O $_0$  to I/O $_7$ . If Byte High Enable  $(\overline{\text{BHE}})$  is LOW, then data from memory appears on I/O $_8$  to I/O $_{15}$ . See the Truth Table on page 10 for a complete description of read and write modes.

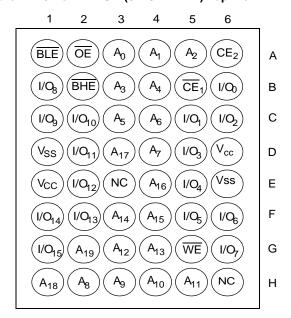
### **Logic Block Diagram**







### Contents


| Pin Configuration              | 3 |
|--------------------------------|---|
| Product Portfolio              |   |
| Maximum Ratings                | 4 |
| Operating Range                |   |
| Electrical Characteristics     |   |
| Capacitance                    | 4 |
| Thermal Resistance             | 5 |
| Data Retention Characteristics |   |
| Switching Characteristics      |   |
| Switching Waveforms            |   |
| Truth Table                    |   |

| Ordering Information                    | 11 |
|-----------------------------------------|----|
| Ordering Code Definition                | 11 |
| Package Diagrams                        | 12 |
| Acronyms                                | 14 |
| Document Conventions                    | 14 |
| Units of Measure                        | 14 |
| Document History Page                   | 15 |
| Sales, Solutions, and Legal Information | 16 |
| Worldwide Sales and Design Support      | 16 |
| Products                                | 16 |
| PSoC Solutions                          | 16 |



### **Pin Configuration**

Figure 1. 48-Ball VFBGA (6  $\times$  8  $\times$  1 mm) Top View [1, 2]



### **Product Portfolio**

|                              |                                   |                           |               |                                |                           |                      | Power Di                  | ssipation                      |                           |     |
|------------------------------|-----------------------------------|---------------------------|---------------|--------------------------------|---------------------------|----------------------|---------------------------|--------------------------------|---------------------------|-----|
| Product                      | Product V <sub>CC</sub> Range (V) |                           | Speed<br>(ns) | Operating I <sub>CC</sub> (mA) |                           |                      |                           | Standby I <sub>SB2</sub> (μΑ)  |                           |     |
|                              |                                   |                           |               | f = 1                          | MHz                       | f = f <sub>max</sub> |                           | Stalluby I <sub>SB2</sub> (μA) |                           |     |
|                              | Min                               | <b>Typ</b> <sup>[3]</sup> | Max           |                                | <b>Typ</b> <sup>[3]</sup> | Max                  | <b>Typ</b> <sup>[3]</sup> | Max                            | <b>Typ</b> <sup>[3]</sup> | Max |
| CY62167EV18LL                | 1.65                              | 1.8                       | 2.25          | 55                             | 2.2                       | 4.0                  | 25                        | 30                             | 1.5                       | 12  |
| CY62167EV30LL <sup>[4]</sup> |                                   |                           |               |                                |                           |                      |                           |                                |                           |     |

- 1. NC pins are not connected on the die.
- 2. Ball H6 for the VFBGA package can be used to upgrade to a 32 M density.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C.
   This part can be operated in the V<sub>CC</sub> range of 1.65 V-2.25 V at 55ns speed. It can also be operated in the V<sub>CC</sub> range of 2.2 V-3.6 V at 45ns speed.



### **Maximum Ratings**

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage temperature ......-65 °C to + 150 °C Ambient temperature with power applied ...... -55 °C to + 125 °C Supply voltage to ground potential ...... -0.2 V to 2.45 V (V<sub>CC</sub> (max) + 0.2 V) DC voltage applied to outputs in High Z state  $^{[5,\;6]}$  ...... -0.2 V to 2.45 V (V  $_{CC}$  (max) + 0.2 V)

| DC input voltage $^{[5,\ 6]}$ –0.2 V to 2.45 V     | $(V_{CC}(max) + 0.2 V)$ |
|----------------------------------------------------|-------------------------|
| Output current into outputs (LOW)                  | 20 mA                   |
| Static discharge voltage(MIL-STD-883, Method 3015) | >2001 V                 |
| Latch up current                                   | >200 mA                 |

### **Operating Range**

| Device        | Range      | Ambient<br>Temperature | <b>V</b> cc <sup>[7]</sup> |
|---------------|------------|------------------------|----------------------------|
| CY62167EV18LL | Industrial | −40 °C to<br>+85 °C    | 1.65 V to<br>2.25 V        |

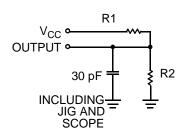
### **Electrical Characteristics**

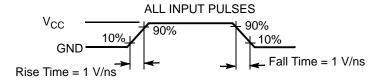
Over the Operating Range

| Doromotor                       | Decerintien                                | Test (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     | Unit                      |     |                         |    |
|---------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-------------------------|----|
| Parameter                       | Description                                | lest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min                                                                                                                                 | <b>Typ</b> <sup>[8]</sup> | Max | Unit                    |    |
| V <sub>OH</sub>                 | Output HIGH voltage                        | $I_{OH} = -0.1 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     | 1.4                       | _   | _                       | V  |
| V <sub>OL</sub>                 | Output LOW voltage                         | I <sub>OL</sub> = 0.1 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | -                         | _   | 0.2                     | V  |
| V <sub>IH</sub>                 | Input HIGH voltage                         | $V_{CC} = 1.65 \text{ V to } 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 V                                                                                                                                 | 1.4                       | _   | V <sub>CC</sub> + 0.2 V | V  |
| V <sub>IL</sub>                 | Input LOW voltage                          | $V_{CC} = 1.65 \text{ V to } 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 V                                                                                                                                 | -0.2                      | -   | 0.4                     | V  |
| I <sub>IX</sub>                 | Input leakage current                      | $GND \leq V_I \leq V_CC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | -1                        | _   | +1                      | μΑ |
| I <sub>OZ</sub>                 | Output leakage current                     | $GND \le V_O \le V_{CC}$ , Output Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                           | -   | +1                      | μΑ |
| I <sub>CC</sub>                 | V <sub>CC</sub> operating supply           | $f = f_{max} = 1/t_{RC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = V_{CC}(max)$                                                                                                              | -                         | 25  | 30                      | mA |
|                                 | current                                    | f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I <sub>OUT</sub> = 0 mA<br>CMOS levels                                                                                              | -                         | 2.2 | 4.0                     | mA |
| I <sub>SB1</sub> <sup>[9]</sup> | Automatic power down current – CMOS inputs | $eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous$ |                                                                                                                                     | -                         | 1.5 | 12                      | μА |
| I <sub>SB2</sub> <sup>[9]</sup> | Automatic power down current – CMOS inputs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or $CE_2 \le 0.2 \text{ V}$ ,<br>$V_{\text{IN}} \le 0.2 \text{ V}$ , or (BHE and V, $f = 0$ , $V_{\text{CC}} = V_{\text{CC}}$ (max) | -                         | 1.5 | 12                      | μА |

### Capacitance

| Parameter <sup>[10]</sup> | Description Test Conditions |                                                | Max | Unit |
|---------------------------|-----------------------------|------------------------------------------------|-----|------|
| C <sub>IN</sub>           | Input capacitance           | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$ | 10  | pF   |
| C <sub>OUT</sub>          | Output capacitance          | $V_{CC} = V_{CC(typ)}$                         | 10  | pF   |


- N<sub>IL</sub>(min) = -2.0 V for pulse durations less than 20 ns.
   V<sub>IH</sub>(max) = V<sub>CC</sub> + 0.75 V for pulse durations less than 20 ns.
   Full Device AC operation is based on a 100 μs ramp time from 0 to V<sub>CC</sub>(min) and 200 μs wait time after V<sub>CC</sub> stabilization.
   Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C.
   Chip enables (CE<sub>1</sub> and CE<sub>2</sub>), and byte enables the many after these parameters.
- 10. Tested initially and after any design or process changes that may affect these parameters.




### **Thermal Resistance**

| Parameter <sup>[11]</sup> | Description                           | Description Test Conditions                                            |    | Unit |
|---------------------------|---------------------------------------|------------------------------------------------------------------------|----|------|
| $\Theta_{\sf JA}$         |                                       | Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board | 55 | °C/W |
| Θ <sup>JC</sup>           | Thermal resistance (Junction to case) |                                                                        | 16 | °C/W |

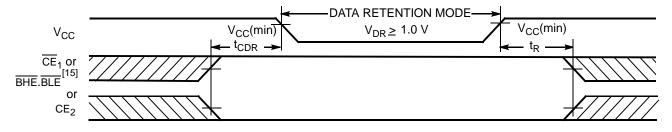
Figure 2. AC Test Loads and Waveforms





Equivalent to: THÉVENIN EQUIVALENT




| Parameters      | 1.8 V | Unit |
|-----------------|-------|------|
| R1              | 13500 | Ω    |
| R2              | 10800 | Ω    |
| R <sub>TH</sub> | 6000  | Ω    |
| V <del>-</del>  | 0.80  | V    |

### **Data Retention Characteristics**

Over the Operating Range

| Parameter                         | Description                          | Conditions                                                                                                                                                                                                                            | Min | <b>Typ</b> <sup>[12]</sup> | Max | Unit |
|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|-----|------|
| $V_{DR}$                          | V <sub>CC</sub> for data retention   |                                                                                                                                                                                                                                       | 1.0 | _                          | _   | V    |
| I <sub>CCDR</sub> <sup>[13]</sup> | Data retention current               | $V_{CC} = 1.0 \text{ V}, \overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V or } (\overline{BHE})$ and $\overline{BLE}) \ge V_{CC} - 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$ | _   | -                          | 10  | μА   |
| t <sub>CDR</sub> <sup>[11]</sup>  | Chip deselect to data retention time |                                                                                                                                                                                                                                       | 0   | -                          | _   | ns   |
| t <sub>R</sub> <sup>[14]</sup>    | Operation recovery time              |                                                                                                                                                                                                                                       | 55  | _                          | _   | ns   |

Figure 3. Data Retention Waveform



- 11. Tested initially and after any design or process changes that may affect these parameters.

  12. Typical values <u>are</u> included for reference only an<u>d are</u> not <u>guar</u>anteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C.

  13. Chip enables (CE<sub>1</sub> and CE<sub>2</sub>), and byte enables (BHE and BLE) must be tied to CMOS levels to meet the I<sub>SB1</sub> /I<sub>SB2</sub> / I<sub>CCDR</sub> spec. Other inputs can be left floating.

  14. <u>Full device</u> operation requires <u>linear</u> V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC</sub>(min) ≥ 100 μs or stable at V<sub>CC</sub>(min) ≥ 100 μs.

  15. BHE. BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.



### **Switching Characteristics**

| Parameter <sup>[16, 17]</sup> | Don't don                                                                  | 55       | ns  | 11.24 |  |
|-------------------------------|----------------------------------------------------------------------------|----------|-----|-------|--|
| Parameter                     | Description                                                                | Min      | Max | Unit  |  |
| Read Cycle                    |                                                                            | <u> </u> | •   | •     |  |
| t <sub>RC</sub>               | Read cycle time                                                            | 55       | _   | ns    |  |
| t <sub>AA</sub>               | Address to data valid                                                      | -        | 55  | ns    |  |
| t <sub>OHA</sub>              | Data hold from address change                                              | 10       | _   | ns    |  |
| t <sub>ACE</sub>              | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to data valid                 | -        | 55  | ns    |  |
| t <sub>DOE</sub>              | OE LOW to data valid                                                       | -        | 25  | ns    |  |
| t <sub>LZOE</sub>             | OE LOW to Low Z <sup>[18]</sup>                                            | 5        | _   | ns    |  |
| t <sub>HZOE</sub>             | OE HIGH to High Z <sup>[18, 19]</sup>                                      | -        | 18  | ns    |  |
| t <sub>LZCE</sub>             | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Low Z <sup>[18]</sup>      | 10       | _   | ns    |  |
| t <sub>HZCE</sub>             | CE <sub>1</sub> HIGH and CE <sub>2</sub> LOW to High Z <sup>[18, 19]</sup> | -        | 18  | ns    |  |
| t <sub>PU</sub>               | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to power-up                   | 0        | _   | ns    |  |
| t <sub>PD</sub>               | CE <sub>1</sub> HIGH and CE <sub>2</sub> LOW to Power-down                 | -        | 55  | ns    |  |
| t <sub>DBE</sub>              | BLE/BHE LOW to data valid                                                  | -        | 55  | ns    |  |
| t <sub>LZBE</sub>             | BLE/BHE LOW to Low Z <sup>[18]</sup>                                       | 10       | _   | ns    |  |
| t <sub>HZBE</sub>             | BLE/BHE HIGH to High Z <sup>[18, 19]</sup>                                 | -        | 18  | ns    |  |
| Write Cycle <sup>[20]</sup>   |                                                                            |          | •   | •     |  |
| t <sub>WC</sub>               | Write cycle time                                                           | 55       | _   | ns    |  |
| t <sub>SCE</sub>              | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to write end                  | 40       | _   | ns    |  |
| t <sub>AW</sub>               | Address setup to write end                                                 | 40       | _   | ns    |  |
| t <sub>HA</sub>               | Address hold from write end                                                | 0        | _   | ns    |  |
| t <sub>SA</sub>               | Address setup to write start                                               | 0        | _   | ns    |  |
| t <sub>PWE</sub>              | WE pulse Width                                                             | 40       | _   | ns    |  |
| t <sub>BW</sub>               | BLE/BHE LOW to write end                                                   | 40       | -   | ns    |  |
| t <sub>SD</sub>               | Data setup to write end                                                    | 25       | _   | ns    |  |
| t <sub>HD</sub>               | Data hold from write end                                                   | 0        | _   | ns    |  |
| t <sub>HZWE</sub>             | WE LOW to High Z <sup>[18, 19]</sup>                                       | -        | 20  | ns    |  |
| t <sub>LZWE</sub>             | WE HIGH to Low Z <sup>[18]</sup>                                           | 10       | _   | ns    |  |

<sup>16.</sup> Test conditions for all parameters other than tri-state parameters are based on signal transition time of 1 V/ns, timing reference levels of V<sub>CC(typ)</sub>/2, input pulse levels of 0 to V<sub>CC(typ)</sub>, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> as shown in AC Test Loads and Waveforms on page 5.

17. AC timing parameters are subject to byte enable signals (BHE or BLE) not switching when chip is disabled. See application note AN13842 for further clarification.

18. At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZOE</sub>, t<sub>HZBE</sub> is less than t<sub>LZOE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZOE</sub>, and t<sub>HZWE</sub> for any given device

<sup>49.</sup> t<sub>HZOE</sub>, t<sub>HZDE</sub>, t<sub>HZDE</sub>, and t<sub>HZWE</sub> transitions are measured when the <u>output enters</u> a <u>high impedance state</u>.

20. The internal memory write time is defined by the overlap of WE, CE<sub>1</sub> = V<sub>IL</sub>, BHE and/or BLE = V<sub>IL</sub>, and CE<sub>2</sub> = V<sub>IH</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.



## **Switching Waveforms**

Figure 4. Read Cycle No. 1 (Address Transition Controlled). [21, 22]

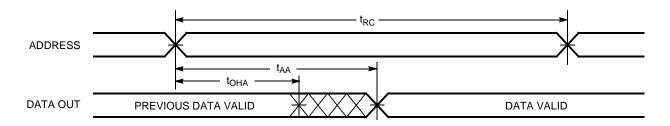
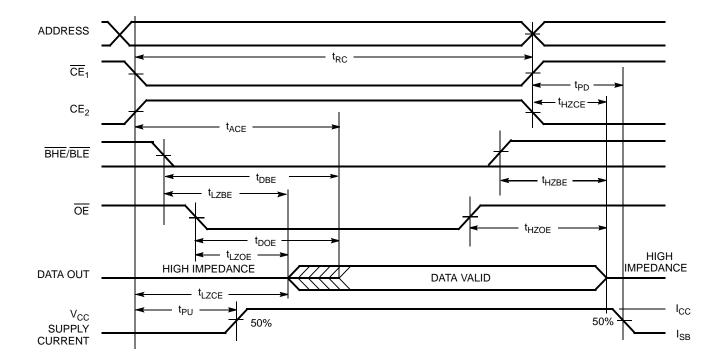
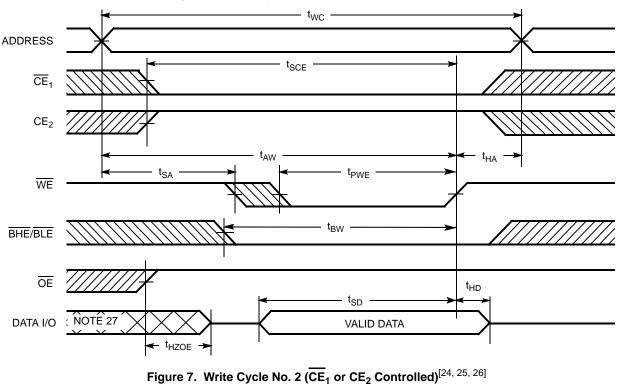
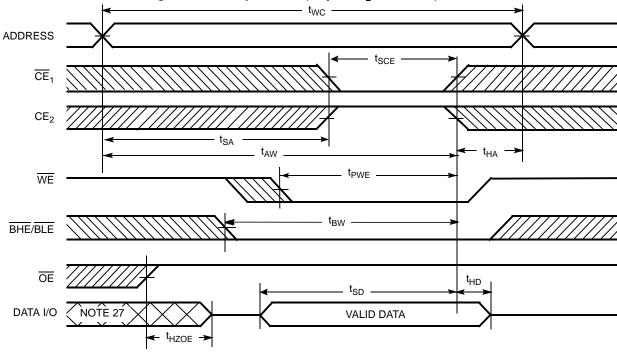




Figure 5. Read Cycle No. 2 (OE Controlled)<sup>[22, 23]</sup>





- 21. The device is continuously selected.  $\overline{OE}$ ,  $\overline{CE}_1 = V_{IL}$ ,  $\overline{BHE}$ ,  $\overline{BLE}$  or both =  $V_{IL}$ , and  $CE_2 = V_{IH}$ . 22. WE is HIGH for read cycle.
- 23. Address valid before or similar to  $\overline{CE}_1$ ,  $\overline{BHE}$ ,  $\overline{BLE}$  transition LOW and  $CE_2$  transition HIGH.



### Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (WE Controlled)[24, 25, 26]





<sup>24.</sup> The internal memory write time is defined by the overlap of WE, CE<sub>1</sub> = V<sub>IL</sub>, BHE and/or BLE = V<sub>IL</sub>, and CE<sub>2</sub> = V<sub>IH</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write 25. Data I/O is high impedance if OE = V<sub>IH</sub>.

26. If CE<sub>1</sub> goes HIGH and CE<sub>2</sub> goes LOW simultaneously with WE = V<sub>IH</sub>, the output remains in a high impedance state.

<sup>27.</sup> During this period the I/Os are in output state. Do not apply input signals.



## Switching Waveforms (continued)

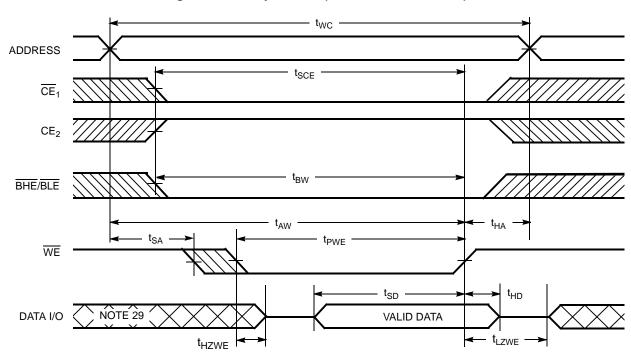
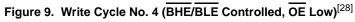
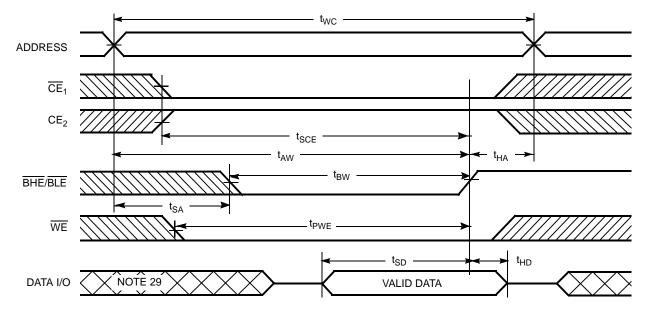





Figure 8. Write Cycle No. 3 (WE controlled, OE LOW)[28]



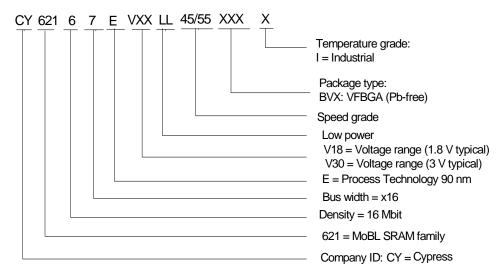


<sup>28.</sup> If  $\overline{CE}_1$  goes HIGH and  $\overline{CE}_2$  goes LOW simultaneously with  $\overline{WE} = V_{IH}$ , the output remains in a high impedance state. 29. During this period the I/Os are in output state. Do not apply input signals.



### **Truth Table**

| CE <sub>1</sub>   | CE <sub>2</sub>   | WE | OE | BHE | BLE | Inputs/Outputs                                                                                   | Mode                | Power                      |
|-------------------|-------------------|----|----|-----|-----|--------------------------------------------------------------------------------------------------|---------------------|----------------------------|
| Н                 | X[30]             | Χ  | Χ  | Х   | Χ   | High Z                                                                                           | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| X <sup>[30]</sup> | L                 | Χ  | Χ  | Х   | Χ   | High Z                                                                                           | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| X <sup>[30]</sup> | X <sup>[30]</sup> | Χ  | Χ  | Н   | Ι   | High Z                                                                                           | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| L                 | Н                 | Ι  | ┙  | L   | ┙   | Data Out (I/O <sub>0</sub> -I/O <sub>15</sub> )                                                  | Read                | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Н  | L  | Н   | L   | Data Out (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>High Z (I/O <sub>8</sub> –I/O <sub>15</sub> ) | Read                | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Н  | L  | L   | Н   | High Z (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>Data Out (I/O <sub>8</sub> –I/O <sub>15</sub> ) | Read                | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Ι  | Ι  | L   | Ι   | High Z                                                                                           | Output disabled     | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Ι  | Ι  | Н   | Ш   | High Z                                                                                           | Output disabled     | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Ι  | Ι  | L   | Ш   | High Z                                                                                           | Output disabled     | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Ш  | Χ  | L   | Ш   | Data In (I/O <sub>0</sub> -I/O <sub>15</sub> )                                                   | Write               | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Ĺ  | Х  | Н   | L   | Data In (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>High Z (I/O <sub>8</sub> –I/O <sub>15</sub> )  | Write               | Active (I <sub>CC</sub> )  |
| L                 | Н                 | L  | Х  | L   | Н   | High Z (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>Data In (I/O <sub>8</sub> –I/O <sub>15</sub> )  | Write               | Active (I <sub>CC</sub> )  |


Note
30. The 'X' (Don't care) state for the Chip enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

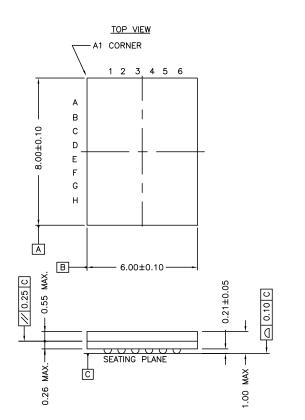


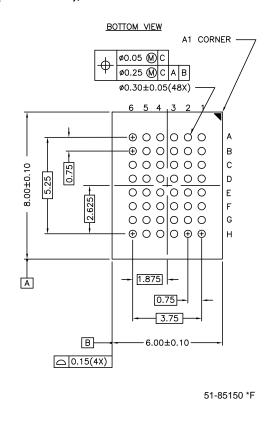
## **Ordering Information**

| Speed (ns) | Ordering Code            | ing Code Package Type Package Type |                                        | Operating Range |
|------------|--------------------------|------------------------------------|----------------------------------------|-----------------|
| 55         | CY62167EV18LL-55BVI      | 51-85150                           | 48-ball VFBGA (6 x 8 x 1 mm)           | Industrial      |
|            | CY62167EV18LL-55BVXI     |                                    | 48-ball VFBGA (6 x 8 x 1 mm) (Pb-free) |                 |
|            | CY62167EV30LL-45BVI [31] | 51-85150                           | 48-ball VFBGA (6 × 8 × 1 mm)           |                 |

### **Ordering Code Definition**



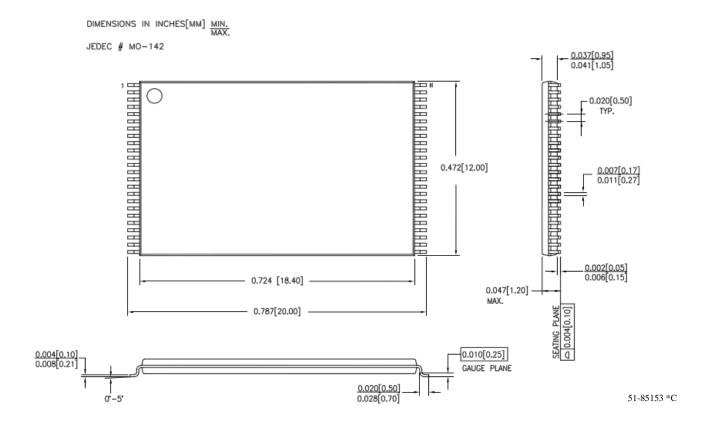

### Note


<sup>31.</sup> This part can be operated in the  $V_{CC}$  range of 1.65 V to 2.25 V at 55 ns speed. It can also be operated in the  $V_{CC}$  range of 2.2 V-3.6 V at 45ns speed.



## **Package Diagrams**

Figure 10. 48-Ball VFBGA (6 × 8 × 1 mm), 51-85150






Document #: 38-05447 Rev. \*L



Figure 11. 48-Pin TSOP I (12 mm x 18.4 mm x 1.0 mm), 51-85183





# **Acronyms**

| Acronym | Description                             |  |
|---------|-----------------------------------------|--|
| BHE     | byte high enable                        |  |
| BLE     | byte low enable                         |  |
| CE      | chip enable                             |  |
| CMOS    | complementary metal oxide semiconductor |  |
| I/O     | input/output                            |  |
| ŌĒ      | output enable                           |  |
| SRAM    | static random access memory             |  |
| TSOP    | thin small outline package              |  |
| VFBGA   | very fine ball grid array               |  |
| WE      | write enable                            |  |

## **Document Conventions**

### **Units of Measure**

| Symbol | Unit of Measure |  |
|--------|-----------------|--|
| °C     | degrees Celsius |  |
| μΑ     | microamperes    |  |
| mA     | milliamperes    |  |
| MHz    | megahertz       |  |
| ns     | nanoseconds     |  |
| pF     | picofarads      |  |
| V      | volts           |  |
| Ω      | ohms            |  |
| W      | watts           |  |



# **Document History Page**

| Rev. | ECN No. | Orig. of<br>Change | Submission date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------|---------|--------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| **   | 202600  | AJU                | 01/23/2004      | New Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| *A   | 463674  | NXR                | See ECN         | Converted from Advance Information to Preliminary Changed $V_{CC(max)}$ from 2.20 V to 2.25 V Removed 'L' bin and 35 ns speed bin from product offering Changed ball E3 from DNU to NC Removed redundant foot note on DNU Changed the $I_{SB2(typ)}$ value from 1.3 $\mu$ A to 1.5 $\mu$ A Changed the $I_{CC(max)}$ value from 40 mA to 25 mA Changed the AC Test Load Capacitance value from 50 pF to 30 pF Corrected typo in Data Retention Characteristics (tr.) from 100 $\mu$ s to tr. n Changed the $I_{CCDR}$ Value from 8 $\mu$ A to 5 $\mu$ A Changed $I_{CDR}$ Value from 8 $I_{CWE}$ from 6 ns to 10 ns Changed $I_{CDE}$ from 3 ns to 5 ns Changed $I_{CCE}$ , $I_{LZEE}$ , $I_{LZBE}$ , and $I_{LZWE}$ from 15 ns to 18 ns Changed $I_{CCE}$ , $I_{CE}$ , $I_{LZEE}$ , and $I_{CE}$ from 40 ns to 35 ns Changed $I_{CE}$ from 30 ns to 35 ns Changed $I_{CE}$ from 20 ns to 25 ns Updated 48 ball FBGA Package Information Updated the Ordering Information table |  |
| *B   | 469182  | NSI                | See ECN         | Minor Change: Moved to external web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| *C   | 619122  | NXR                | See ECN         | Replaced 45 ns speed bin with 55 ns speed bin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| *D   | 1130323 | VKN                | See ECN         | Converted from preliminary to final Added footnote# 8 related $I_{SB2}$ and $I_{CCDR}$ Changed $I_{SB1}$ and $I_{SB2}$ spec from 10 $\mu A$ to 12 $\mu A$ Changed $I_{CCDR}$ spec from 8 $\mu A$ to 10 $\mu A$ Added footnote# 13 related AC timing parameters Changed $t_{WC}$ spec from 45 ns to 55 ns Changed $t_{SCE}$ , $t_{AW}$ , $t_{PWE}$ , $t_{BW}$ spec from 35 ns to 40 ns Changed $t_{HZWE}$ spec from 18 ns to 20 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| *E   | 1388287 | VKN                | See ECN         | Added 48-Ball VFBGA (6 x 7 x 1mm) package<br>Added footnote# 1 related to FBGA package<br>Updated Ordering Information table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| *F   | 1664843 | VKN/AESA           | See ECN         | Added CY62167EV30LL-45BVI part in the Ordering Information table Added footnote# 5 related to CY62167EV30LL-45BVI part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| *G   | 2675375 | VKN/PYRS           | 03/17/2009      | Added CY62167EV18LL-55BVI part in the Ordering Information table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| *H   | 2904565 | AJU                | 04/05/2010      | Removed inactive part from the ordering information table. Updated package diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| *    | 2934396 | VKN                | 06/03/10        | Added footnote #24 related to chip enable Updated template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| *J   | 3006301 | RAME               | 08/12/2010      | Included BHE and BLE in I <sub>SB1</sub> , I <sub>SB2</sub> , and I <sub>CCDR</sub> test conditions to reflect By power down feature.  Removed 48-Ball VFBGA (6 x 7 x 1 mm) package related information.  Added Acronyms and Ordering code definition.  Format updates to match template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| *K   | 3113908 | PRAS               | 12/17/2010      | Updated Figure 1 and Package Diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| *L   | 3295175 | RAME               | 06/29/2011      | Updated Package Diagrams. Added Document Conventions. Removed reference to AN1064 SRAM system guidelines. Added I <sub>SB1</sub> to footnotes 9 and 13. Modified Ordering Code Definition. Updated Table of Contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |



### Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products PSoC Solutions

Automotive cypress.com/go/automotive
Clocks & Buffers cypress.com/go/clocks
Interface cypress.com/go/interface
Lighting & Power Control cypress.com/go/plc

Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2004-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05447 Rev. \*L

Revised June 29, 2011