

TPSM84203, TPSM84205, TPSM84212

SLUSCV7-JULY 2017

TPSM84203, TPSM84205, TPSM84212 1.5-A, 28-V Input, TO-220 Power Module

1 Features

- Complete Integrated Power Solution
- 3-Pin TO-220 Footprint
- Efficiencies up to 95%
- Fixed Output Voltage Options:
 3.3 V, 5 V, and 12 V
- 400-kHz Switching Frequency
- Advanced Eco-mode[™] Pulse Skip
- · Pre-bias Output Start-up
- Over-Current Protection
- Output Over-Voltage Protection
- Thermal Shutdown
- Operating Junction Range: –40°C to +125°C
- Operating Ambient Range: -40°C to +85°C
- Create a Custom Design Using the TPSM84203 With the WEBENCH® Power Designer

2 Applications

- 12-V, 24-V Distributed Power-Bus Supply
- Industrial White Goods
- Consumer
 - Audio
 - STB, DTV
 - Printer

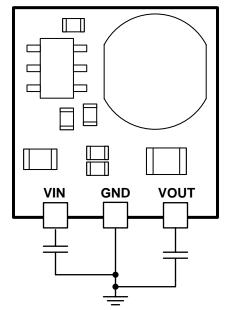
3 Description

The TPSM842xx power module is an easy-to-use integrated power solution that combines a 1.5-A DC/DC converter with power MOSFETs, an inductor, and passives into a 3-pin, through-hole package. This total power solution requires adding only input and output capacitors and eliminates the loop compensation and magnetics part selection from the design process.

The standard TO-220 pin-out allows a much improved replacement of linear regulators packaged in this industry standard footprint. The TPSM842xx devices provide much higher efficiency without the need of a heatsink.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPSM84203		
TPSM84205	EAB 10 mm x 11	10 mm x 11 mm
TPSM84212		


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Device Comparison

PART NUMBER	OUTPUT VOLTAGE
TPSM84203	3.3 V
TPSM84205	5.0 V
TPSM84212	12.0 V

Figure 1. Simplified Application

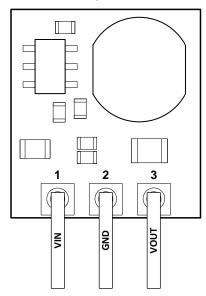
TPSM842xx

Copyright © 2017, Texas Instruments Incorporated

Table of Contents

1	Features 1	7.3 Feature Description11
2	Applications 1	7.4 Device Functional Modes13
3	Description 1	8 Application and Implementation 14
4	Revision History	8.1 Application Information14
5	Pin Configuration and Functions3	8.2 Typical Application14
6	Specifications4	9 Power Supply Recommendations 16
•	6.1 Absolute Maximum Ratings	10 Layout 16
	6.2 Recommended Operating Conditions	10.1 Layout Guidelines
	6.3 ESD Ratings	10.2 Layout Example
	6.4 Thermal Information	11 Device and Documentation Support 17
	6.5 Electrical Characteristics	11.1 Device Support
	6.6 Switching Characteristics	11.2 Related Links 17
	6.7 Typical Characteristics (V _{OUT} = 3.3 V)	11.3 Receiving Notification of Documentation Updates 17
	6.8 Typical Characteristics (V _{OUT} = 5V)8	11.4 Community Resources17
	6.9 Typical Characteristics (V _{OUT} = 12V)9	11.5 Trademarks17
7	Detailed Description 10	11.6 Electrostatic Discharge Caution
-	7.1 Overview	11.7 Glossary18
	7.2 Functional Block Diagram	12 Mechanical, Packaging, and Orderable Information

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
July 2017	*	Initial release.

www.ti.com SLUSCV7 - JULY 2017

5 Pin Configuration and Functions

Pin Functions

PIN NAME NO.		1/0	DESCRIPTION
		I/O	DESCRIPTION
GND 2			Ground. This is the return current path for the power stage of the device. Connect this pin to the bypass capacitors associated with VIN and VOUT.
VIN	1	I	Input Voltage. This pin supplies voltage to the control circuitry and power switches of the converter. Connect external bypass capacitors between this pin and GND.
VOUT	OUT 3 O		Output Voltage. This pin is connected to the internal output inductor. Connect this pin to the output load and connect external bypass capacitors between this pin and GND.

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	MAX	UNIT
Input Voltage		-0.3	30	V
	TPSM84203	-0.3	3.9	V
Output Voltage	TPSM84205	-0.3	30	V
	TPSM84212	-0.3	13.0	V
Mechanical Shock	Mil-STD-883D, Method 2002.3, 1msec, 1/2 sine, mounted		1500	G
Mechanical Vibration	Mil-STD-883D, Method 2007.2, 20-2000Hz		10	G
Operating IC Junction Te	emperature range, T _J ⁽²⁾	-40	125	°C
Operating Ambient Temp	perature range, T _A (2)	-40	85	°C
Storage temperature, T _{st}	ig	-60	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

	PARAMET	ER	MIN	MAX	UNIT
		TPSM84203	4.5	28	V
V _{IN}	Input voltage	TPSM84205	7	28	V
		TPSM84212	14.5	28	V
I _{OUT}	Output current		0	1.5	Α
T _A	Operating ambient temperature range ⁽¹⁾		-40	85	°C
TJ	Operating junction temperature range ⁽¹⁾		-40	125	°C

⁽¹⁾ The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.

6.3 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Submit Documentation Feedback

⁽²⁾ The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SLUSCV7-JULY 2017 www.ti.com

6.4 Thermal Information

		TPSM842xx	
	THERMAL METRIC ⁽¹⁾	EAB	UNIT
		3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	56	°C/W
ΨЈТ	Junction-to-top characterization parameter (3)	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter (4)	1.7	°C/W

- For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics paper.
- The junction-to-ambient thermal resistance, $R_{\theta JA}$, applies to devices soldered directly to a 50 mm × 50 mm double-sided PCB with 2 oz. copper and natural convection cooling. Additional airflow reduces $R_{\theta JA}$.
- The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature, T_J , of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). $T_J = \psi_{JT} \times Pdis + T_T$, where Pdis is the power dissipated in the device and T_T is the temperature of the top of the controller IC.
- The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature, T_J , of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). $T_J = \psi_{JB} \times Pdis + T_B$; where Pdis is the power dissipated in the device and T_B is the temperature of the module board 1 mm from the controller IC.

6.5 Electrical Characteristics

Over -40°C to +85°C free-air temperature range, V_{IN} = 24 V, I_{OUT} = I_{OUT} max, F_{SW} = 400 kHz, C_{IN} = 0.1 μ F, 50V ceramic; 10 μ F, 50V ceramic; 100 μ F, 35V electrolytic, and C_{OUT} = 2 x 47 μ F, 16V 1210 ceramic (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
INPUT VO	LTAGE (VIN)						
			TPSM84203	4.5 ⁽¹⁾		28	V
V _{IN}	Input voltage range	Over V _{OUT} range	TPSM84205	7 ⁽¹⁾		28	V
			TPSM84212	14.5 ⁽¹⁾		28	V
		V _{IN} increasing	•		4.1	4.4	V
V_{IN_UVLO}	V _{IN} under voltage lock out	V _{IN} decreasing		3.3	3.6		V
OUTPUT	VOLTAGE (VOUT)			1			
			TPSM84203		3.3		V
	Output voltage	Over I _{OUT} range	TPSM84205		5.0		V
		TPSM84212			12.0		V
V_{OUT}	Set-point voltage tolerance	T _A = 25°C, I _{OUT} = 0 A		-3%		+3%	
	Temperature variation (2)	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}, \text{ I}_{\text{OUT}} = 0 \text{ A}$			0.4%		
	Line regulation	Over V _{IN} range, I _{OUT} = 1 A			0.4%		
	Load regulation	Over I _{OUT} range			0.5%		
	Output voltage ripple	20 MHz bandwidth, peak-to	-peak, I _{OUT} > 500 mA		15		mV
OUTPUT (CURRENT						
	Output current	See SOA graph for derating	over temperature.	0		1.5	Α
I _{OUT}	Overcurrent threshold				3.1		Α
PERFORM	MANCE						
		V _{IN} = 5 V, I _{OUT} = 1 A	V _{OUT} = 3.3 V		92%		
		V _{IN} = 12 V, I _{OUT} = 1 A	V _{OUT} = 3.3 V		91%		
_	Efficiency ⁽³⁾	V _{IN} = 12 V, I _{OUT} = 1 A	V _{OUT} = 5.0 V		92%		
η	Emciency		V _{OUT} = 3.3 V		87%		
		$V_{IN} = 24 \text{ V}, I_{OUT} = 1 \text{ A}$	V _{OUT} = 5.0 V		90%		
			V _{OUT} = 12.0 V		94%		
	Transient response (2)	1 A/µs load step, 25% to 75% IOUT(max),	V _{OUT} over/undershoot		4%		V _{OUT}
	•	COUT= 94 µF	Recovery time		100		μs

The minimum input voltage is the lowest guaranteed voltage that will produce the nominal output voltage. See the Drop-Out Voltage section for information on drop-out voltage.

Specified by design. Not production tested.

See the efficiency graphs in the Typical Characteristics section for efficiency over the entire load range.

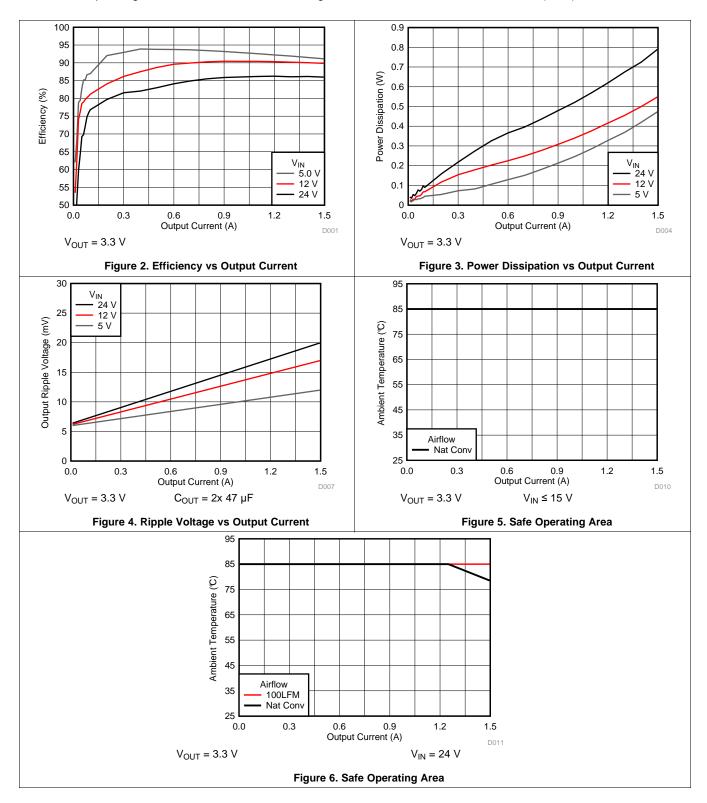
Electrical Characteristics (continued)

Over -40°C to +85°C free-air temperature range, V_{IN} = 24 V, I_{OUT} = I_{OUT} max, F_{SW} = 400 kHz, C_{IN} = 0.1 μ F, 50V ceramic; 10 μ F, 50V ceramic; 100 μ F, 35V electrolytic, and C_{OUT} = 2 x 47 μ F, 16V 1210 ceramic (unless otherwise noted)

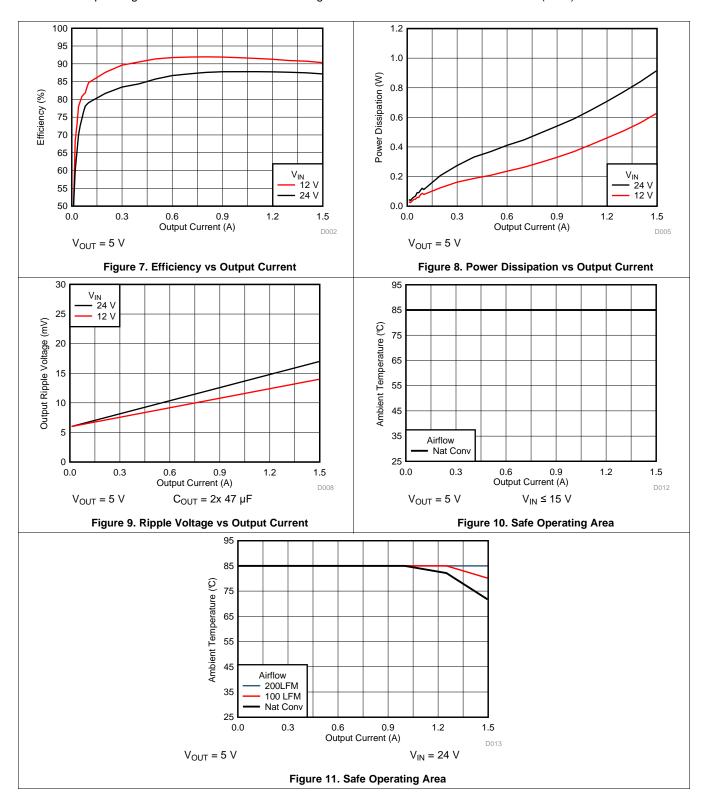
	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
SOFT S	TART	·					
T _{SS}	Internal soft start time (2)				5		ms
THERM	AL SHUTDOWN						
	Rising threshold ⁽²⁾				165		°C
	Hysteresis (2)				10		°C
CAPACI	ITANCE						
0	Followed Sound Company	Ceramic type		10			μF
C _{IN}	External input capacitance	Non-ceramic type		0	100		μF
			TPSM84203	0.4		470	
		Ceramic type	TPSM84205	94	470	470	μF
C _{OUT}	External output capacitance		TPSM84212	47		470	μF
		Total output capacitand	ce	0		500 ⁽⁴⁾	μF
		Equivalent series resistance (ESR)				35	mΩ

⁽⁴⁾ The maximum output capacitance of 500 μ F includes the combination of both ceramic and non-ceramic capacitors.

6.6 Switching Characteristics

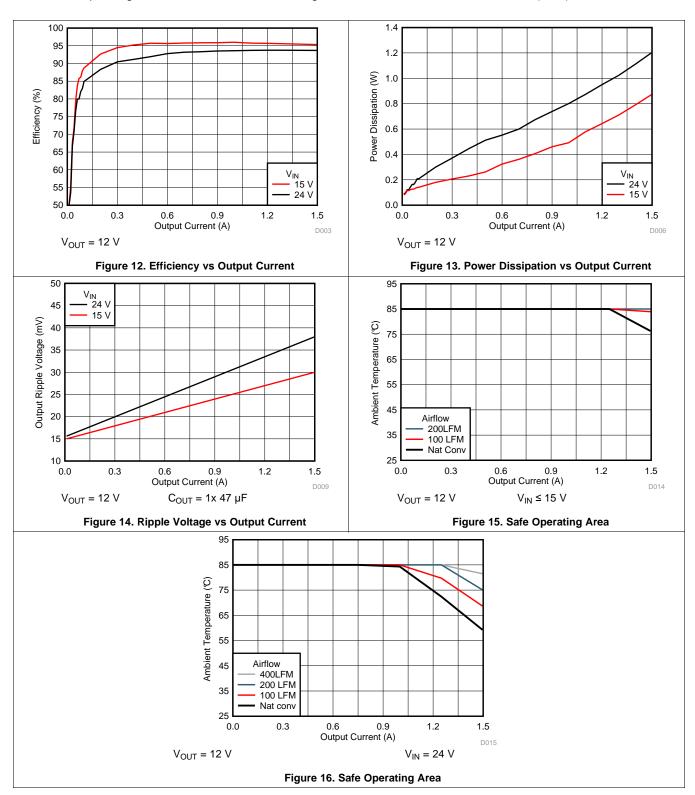

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
F _{SW}	Switching frequency		290	400	510	kHz


6.7 Typical Characteristics (V_{OUT} = 3.3 V)

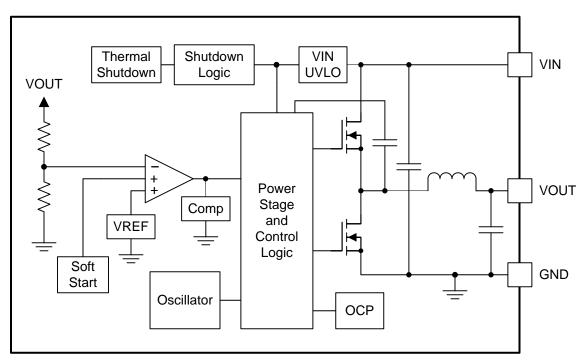
Typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device. Safe operating area curves were measured using a Texas Instruments evaluation module (EVM).

6.8 Typical Characteristics (V_{OUT} = 5V)


Typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device. Safe operating area curves were measured using a Texas Instruments evaluation module (EVM).

6.9 Typical Characteristics (V_{OUT} = 12V)

Typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the device. Safe operating area curves were measured using a Texas Instruments evaluation module (EVM).


TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview

The TPSM84203, TPSM84205, and TPSM84212 devices are 28 V input, 1.5 A, synchronous step down converters with PWM, MOSFETs, inductor, and control circuitry integrated into a TO-220 footprint package. The device integration enables small designs, while improving efficiency over a traditional linear regulator design. The TPSM842xx family provides fixed output voltages of 3.3 V, 5.0 V and 12.0 V. The fixed 400 kHz (typ) switching frequency allows small size and low output voltage ripple. Under light load conditions, these devices are designed to operate in high-efficiency pulse-skipping mode. These devices provide accurate voltage regulation for a variety of loads by using a precision internal voltage reference. These devices have been designed to safely start up into a pre-biased output voltage. Thermal shutdown and current limit features protect the device during an overload condition. The 3-pin, TO-220 footprint package offers improved performance over traditional linear regulators packaged in the standard footprint.

7.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

SLUSCV7-JULY 2017 www.ti.com

7.3 Feature Description

7.3.1 Input Capacitors

The TPSM842xx devices require a minimum input capacitance of 10 µF of ceramic type. High-quality ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 μF of non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of input capacitors must be greater than the maximum input voltage.

Table 1. Recommended Input Capacitors (1)

			CAPACITOR CHARACTERISTICS				
VENDOR	SERIES	PART NUMBER	WORKING VOLTAGE (V)	CAPACITANCE ⁽²⁾ (μF)	ESR ⁽³⁾ (mΩ)		
Murata	X7R	GRM32ER71H475KA88L	50	4.7	2		
TDK	X5R	C3225X5R1H106K250AB	50	10	3		
Murata	X7R	GRM32ER71H106KA12	50	10	2		
TDK	X7R	C3225X7R1H106M250AB	50	10	3		
Panasonic	ZA	EEHZA1H101P	50	100	28		

Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.

7.3.2 Output Capacitors

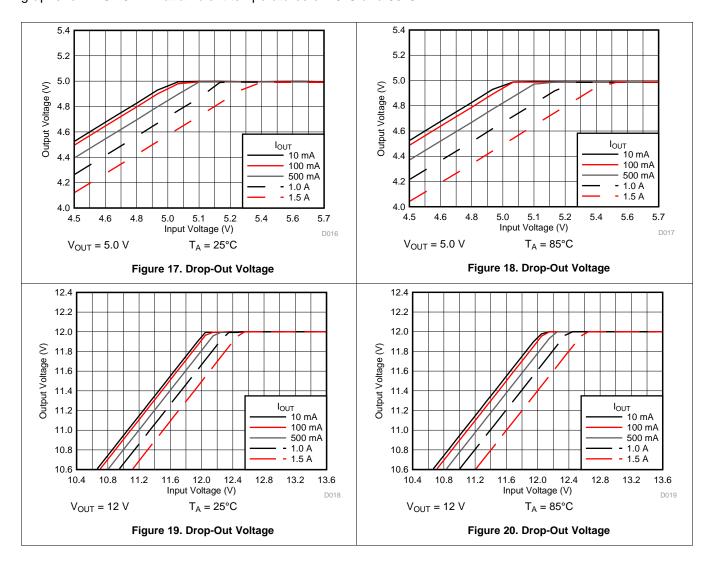
The TPSM84203 and TPSM84205 devices require a minimum output capacitance of 94 μF (2x 47 μF) of ceramic type. The TPSM84212 device requires a minimum output capacitance of 47 μF of ceramic type. High-quality X5R or X7R ceramic capacitors with sufficient voltage rating are recommended. Additional output capacitance is recommended for applications with transient load requirements. The voltage rating of output capacitors must be greater than the maximum output voltage.

Table 2. Recommended Output Capacitors (1)

			CAPA	CAPACITOR CHARACTERISTICS				
VENDOR	SERIES	PART NUMBER	WORKING VOLTAGE (V)	CAPACITANCE ⁽²⁾ (μF)	ESR ⁽³⁾ (mΩ)			
TDK	X5R	C3225X5R0J476K	6.3	47	2			
Murata	X5R	GRM32ER61C476K	16	47	3			
TDK	X5R	C3225X5R0J107M	6.3	100	2			
Murata	X5R	GRM32ER60J107M	6.3	100	2			
Murata	X5R	GRM32ER61A107M	10	100	2			
Kemet	X5R	C1210C107M4PAC7800	16	100	2			
Panasonic	POSCAP	6TPE100MI	6.3	100	18			
Panasonic	POSCAP	6TPF220M9L	6.3	220	9			
Panasonic	POSCAP	6TPE220ML	6.3	220	12			
Panasonic	POSCAP	6TPF330M9L	6.3	330	9			
Panasonic	POSCAP	16TQC47MYFD	16	47	55			

Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.

Standard capacitance values


Maximum ESR @ 100kHz, 25°C.

Standard capacitance values.

Maximum ESR @ 100kHz, 25°C.

7.3.3 Drop-Out Voltage

The drop-out voltage of a voltage regulator is the difference between the input voltage and the output voltage that is required to maintain regulation. Figure 17 and Figure 18 show typical drop-out voltage graphs for TPSM84205 at ambient temperatures of 25°C and 85°C. Figure 19 and Figure 20 show typical drop-out voltage graphs for TPSM84212 at ambient temperatures of 25°C and 85°C.

www.ti.com SLUSCV7 – JULY 2017

7.3.4 Internal Soft-Start

The device starts up under control of the internal soft-start function. The internal soft start time is set to 5 ms typically.

7.3.5 Safe Startup into Pre-Biased Outputs

The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output. During monotonic pre-biased startup, both high-side and low-side MOSFETs are not allowed to be turned on until the internal soft-start voltage is higher than the internal feedback voltage.

7.3.6 Over-Current Protection

The device is protected from overcurrent conditions by cycle-by-cycle current limiting. If an output overload condition occurs for more than 1.28 ms, the device shuts down and restarts after approximately 40 ms. The hiccup mode helps to reduce the device power dissipation under severe overcurrent conditions.

7.3.7 Output Over-Voltage Protection

An output over voltage protection circuit is incorporated to minimize output voltage overshoot when recovering from output fault conditions or strong unload transients. When the output voltage goes above 108% \times V_{OUT}, the high-side MOSFET is forced off. When the output voltage falls below 104% \times V_{OUT}, the high-side MOSFET is enabled again.

7.3.8 Thermal Shutdown

The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds 165°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 155°C typically.

7.4 Device Functional Modes

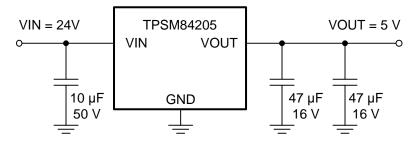
7.4.1 Normal Operation

The TPSM842xx devices operate in Normal operation mode when the input voltage is above the minimum input voltage. In Normal operation mode, the device operates in continuous conduction mode (CCM) which occurs when inductor peak current is above 840 mA typically. In CCM, the TPSM842xx devices operate at a fixed frequency of 400 kHz (typ). In addition, to reduce EMI, the devices introduce frequency spread spectrum. The jittering frequency range is ±6% of the switching frequency with a 780 Hz modulation rate.

7.4.2 Eco-mode™ Operation

The TPSM842xx devices operate in Eco-mode operation in light load conditions. Eco-mode is a high-efficiency, pulse-skipping mode under light load conditions. Pulse skipping initiates when the switch current falls to 840 mA typically. During pulse skipping, the low-side FET turns off when the switch current falls to 0 A. The device takes on the characteristics of discontinuous conduction mode (DCM) operation and the apparent switching frequency decreases. As the output current decreases, the perceived time between switching pulses increases.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPSM842xx devices are step down DC-DC power modules. They convert a higher DC voltage to a lower DC voltage of 3.3 V, 5 V, or 12 V with a maximum output current of 1.5 A. The following design procedure can be used to select components for the TPSM842xx devices. Alternately, the WEBENCH® software may be used to generate complete designs. When generating a design, the WEBENCH software utilizes an iterative design procedure and accesses comprehensive databases of components. Please visit www.ti.com/WEBENCH for more details.

8.2 Typical Application

Copyright © 2017, Texas Instruments Incorporated

Figure 21. Typical Application

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 3 and follow the design procedures below.

Table 3. Design Parameters

DESIGN PARAMETER	VALUE
Input Voltage V _{IN}	24-V typical
Output Voltage V _{OUT}	5.0 V
Output Current Rating	1.5 A
Key care-abouts	TO-220 footprint, high efficiency

8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPSM84203 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

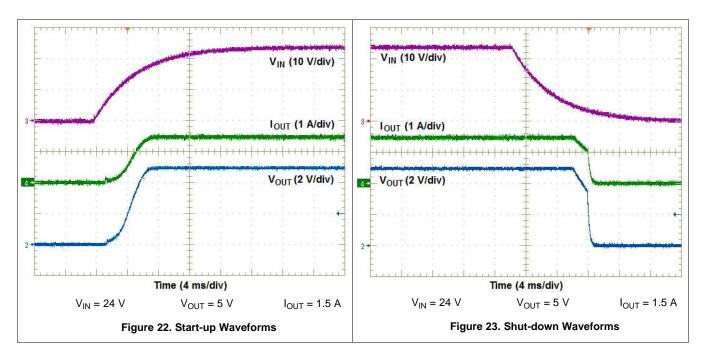
In most cases, these actions are available:

Run electrical simulations to see important waveforms and circuit performance

4 Submit Documentation Feedback

Run thermal simulations to understand board thermal performance

- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues


Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Input and Output Capacitors

The TPSM842xx devices require both input and output capacitance for proper operation. The minimum required input capacitance for all of the TPSM842xx devices is 10 μ F of ceramic capacitance placed directly at the device pins. The minimum required output capacitance for the TPSM84203 and TPSM84205 is 2x 47 μ F of ceramic type. The TPSM84212 requires only one 47 μ F ceramic output capacitor. Additional capacitance can be added to improve ripple or transient response.

For this application, the minimum required input capacitance of 10 μ F, ceramic was added and 2x 47 μ F ceramic capacitance was added to the output.

8.2.3 Application Curves

9 Power Supply Recommendations

The TPSM842xx devices are designed to operate from an input voltage supply between 4.5 V and 28 V. This supply must be well regulated. Proper bypassing of input supply is critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in the Layout section.

10 Layout

10.1 Layout Guidelines

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. Figure 24 shows a typical PCB layout. Some considerations for an optimized layout are:

- Use large copper areas for power planes (VIN, VOUT, and GND) to minimize conduction loss and thermal stress.
- Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.
- Locate additional output capacitors between the ceramic capacitor and the load.
- Use multiple vias to connect the power planes to internal layers.

10.2 Layout Example

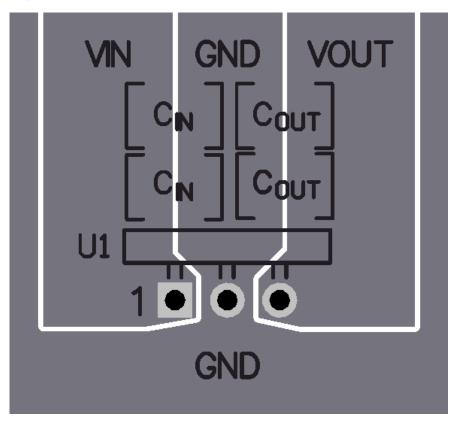


Figure 24.

SLUSCV7-JULY 2017 www.ti.com

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPSM84203 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

TECHNICAL TOOLS & SUPPORT & PARTS PRODUCT FOLDER **SAMPLE & BUY DOCUMENTS SOFTWARE** COMMUNITY Click here Click here Click here TPSM84203 Click here Click here TPSM84205 Click here Click here Click here Click here Click here TPSM84212 Click here Click here Click here Click here Click here

Table 4. Related Links

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

Eco-mode, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

STRUMENTS

PACKAGE OPTION ADDENDUM

20-Jul-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPSM84203EAB	PREVIEW	SIP MODULE	EAB	3	80	TBD	Call TI	Call TI	-40 to 125		
TPSM84205EAB	PREVIEW	SIP MODULE	EAB	3	80	TBD	Call TI	Call TI	-40 to 125		
TPSM84212EAB	PREVIEW	SIP MODULE	EAB	3	80	TBD	Call TI	Call TI	-40 to 125		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.