

TPS732-Q1

SGLS303F-MAY 2005-REVISED APRIL 2016

TPS732-Q1 Cap-Free NMOS 250-mA Low-Dropout Regulator With Reverse-Current Protection

Features

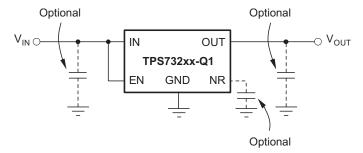
- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results
 - Device Temperature Grade 0: –40°C to 150°C Ambient Operating Temperature Range
 - Device HBM Classification Level 2
 - Device CDM Classification Level C4B
 - Device MM Classification Level M2
- Stable With No Output Capacitor or Any Value or Type of Capacitor
- Input Voltage Range: 1.7 V to 5.5 V
- Ultra-Low Dropout Voltage: 40-mV Typical at 250 mA
- Excellent Load Transient Response—With or Without Optional Output Capacitor
- New NMOS Topology Provides Low Reverse Leakage Current
- Low Noise: 30-µV_{RMS} Typical (10 kHz to 100 kHz)
- 0.5% Initial Accuracy
- 1% Overall Accuracy (Line, Load, and Temperature)
- Less Than 1-µA Maximum I_Q in Shutdown Mode
- Thermal Shutdown and Specified Minimum and Maximum Current Limit Protection
- Available in Multiple Output Voltage Versions
 - Fixed Outputs of 1.2 V, 1.5 V, 1.6 V, 1.8 V, 2.5 V, 3 V, 3.3 V, and 5 V
 - Adjustable Outputs From 1.2 V to 5.5 V
 - Custom Outputs Available

2 Applications

- Portable and Battery-Powered Equipment
- Post-Regulation for Switching Supplies
- Noise-Sensitive Circuitry Such as VCOs
- Point of Load Regulation for DSPs, FPGAs, ASICs, and Microprocessors

3 Description

The TPS732-Q1 family of low-dropout (LDO) voltage regulators uses a new topology: an NMOS pass element in a voltage-follower configuration. This topology is stable using output capacitors with low ESR, and even allows operation without a capacitor. The topology also provides high reverse blockage (low reverse current) and ground pin current that is nearly constant over all values of output current.


The TPS732-Q1 family of devices uses an advanced BiCMOS process to yield high precision while delivering low dropout voltages and low ground pin current. Current consumption, when not enabled, is under 1 µA and ideal for portable applications. The extremely low output noise (30 µV_{RMS} with 0.1-µF C_{NR}) is ideal for powering VCOs. These devices are protected by thermal shutdown and foldback current limit.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS73201-Q1	SOT-23 (5)	2.90 mm × 1.60 mm
1P3/3201-Q1	VSON (8)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application Circuit for Fixed Voltage Versions

Copyright © 2016, Texas Instruments Incorporated

Table c	of Cor	ntents
---------	--------	--------

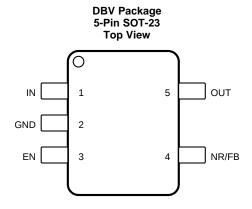
1	Features 1		7.4 Device Functional Modes	13
2	Applications 1	8	Application and Implementation	14
3	Description 1		8.1 Application Information	14
4	Revision History2		8.2 Typical Application	14
5	Pin Configuration and Functions	9	Power Supply Recommendations	17
6	Specifications4	10	Layout	17
•	6.1 Absolute Maximum Ratings 4		10.1 Layout Guidelines	17
	6.2 ESD Ratings		10.2 Layout Example	18
	6.3 Recommended Operating Conditions4		10.3 Power Dissipation	18
	6.4 Thermal Information		10.4 Package Mounting	18
	6.5 Electrical Characteristics	11	Device and Documentation Support	19
	6.6 Switching Characteristics		11.1 Documentation Support	19
	6.7 Typical Characteristics		11.2 Community Resources	19
7	Detailed Description 11		11.3 Trademarks	19
•	7.1 Overview		11.4 Electrostatic Discharge Caution	19
	7.2 Functional Block Diagram		11.5 Glossary	19
	7.3 Feature Description	12	Mechanical, Packaging, and Orderable Information	19

4 Revision History

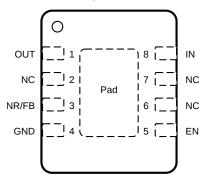
Changes from Revision E (August 2013) to Revision F

Page

Added Device Information table, Table of Contents, Specifications section, ESD Ratings table, Recommended
Operating Conditions table, Detailed Description section, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section


Changes from Revision D (March 2009) to Revision E

Page


Deleted TPS73215-Q1, TPS73216-Q1, TPS73218-Q1, TPS73230-Q1, TPS73233-Q1, and TPS73250-Q1 from the data sheet

5 Pin Configuration and Functions

DRB Package 8-Pin VSON With Exposed Thermal Pad Top View

NC: No internal connection

Pin Functions

PIN				
NAME	N	0.	TYPE	DESCRIPTION
NAME	SOT-23 VSON			
EN	3	5	I	Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See <i>Shutdown</i> for more details. EN can be connected to IN if not used.
FB ⁽¹⁾	4 3		I	Input to the control loop error amplifier, and is used to set the output voltage of the device.
GND	D 2 4		_	Ground
IN	1	8	I	Unregulated input supply
NR ⁽²⁾	4	3	_	Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap. This allows output noise to be reduced to low levels.
OUT	5	1	0	Output of the regulator. There are no output capacitor requirements for stability.
Pad	ĺ	Pad	_	Ground
NC	_	2, 6, 7	_	No internal connection

⁽¹⁾ Adjustable voltage versions only.

Copyright © 2005–2016, Texas Instruments Incorporated

⁽²⁾ Fixed voltage versions only.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	N.	MIN	MAX	UNIT
V_{IN}	_	-0.3	6	V
V _{EN}	_	-0.3	6	V
V _{OUT}	_	-0.3	5.5	V
Peak output current	Ir	Internally limited		
Output short-circuit duration		Indefinite		
Junction temperature, T _J	-	-55	150	°C
Storage temperature	-	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	
V _(ESD)	V _(ESD) Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V
		Machine model (MM)	±200	

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{IN}	Input voltage ⁽¹⁾	1.7	5.5	V
I _{OUT}	Output current	0	250	mA
T_{J}	Operating junction temperature	-40	125	°C

⁽¹⁾ Minimum $V_{IN} = V_{OUT} + V_{DO}$ or 1.7 V, whichever is greater.

6.4 Thermal Information

		TPS732-Q1				
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DRB (VSON)	UNIT		
		5 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	180	47.8	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	64	83	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	35		°C/W		
ΨЈТ	Junction-to-top characterization parameter	_	2.1	°C/W		
ΨЈВ	Junction-to-board characterization parameter	_	17.8	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	12.1	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Over operating temperature range (T $_J$ = -40°C to 125°C), V_{IN} = $V_{OUT(nom)}$ + 0.5 $V^{(1)}$, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μ F, unless otherwise noted. Typical values are at T_J = 25°C

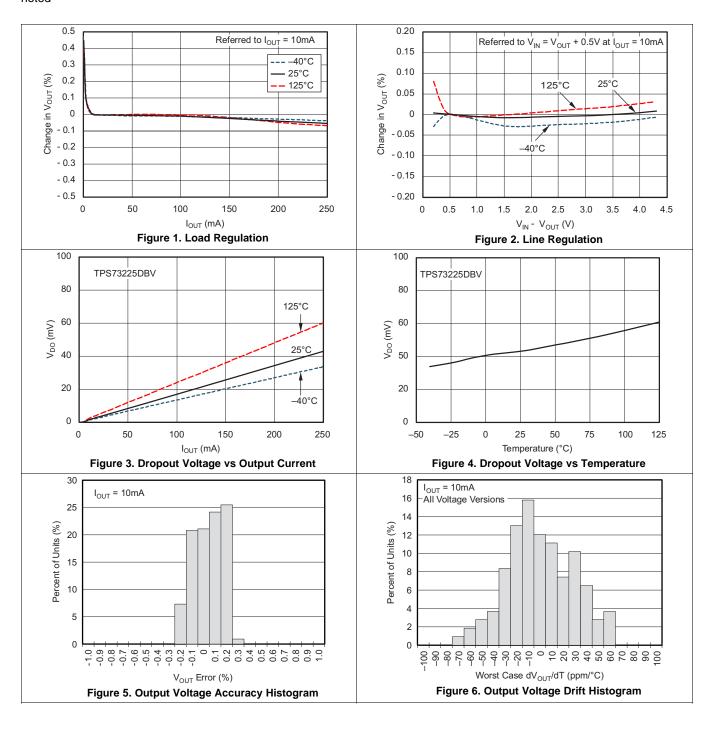
	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{FB}	Internal reference	e (TPS73201-Q1)	T _J = 25°C	1.198	1.2	1.21	V	
	Output voltage ra	ange (TPS73201-Q1) ⁽²⁾		V_{FB}		5.5 – V _{DO}	V	
V _{OUT}		Nominal	T _J = 25°C	-0.5%		0.5%		
*001	Accuracy ⁽¹⁾	V_{IN} , I_{OUT} , and T_{J}	$(V_{OUT} + 0.5 \text{ V}) \le V_{IN} \le 5.5 \text{ V},$ 10 mA $\le I_{OUT} \le 250 \text{ mA}$	-1%	±0.5%	1%		
$\Delta V_{OUT}\%/\Delta V_{IN}$	Line regulation (1))	$(V_{OUT(nom)} + 0.5 V) \le V_{IN} \le 5.5 V$		0.06		%/V	
A)/ 0//AI			1 mA ≤ I _{OUT} ≤ 250 mA		0.002		0// 1	
$\Delta V_{OUT} \% / \Delta I_{OUT}$	Load regulation		10 mA ≤ I _{OUT} ≤ 250 mA		0.0008		%/mA	
V _{DO}	Dropout voltage (V _{IN} = V _{OUT} (non	n) – 0.1 V)	I _{OUT} = 250 mA		40	150	mV	
Z _O (DO)	Output impedance	ce in dropout	$1.7 \text{ V} \leq \text{V}_{\text{IN}} \leq (\text{V}_{\text{OUT}} + \text{V}_{\text{DO}})$		0.25		Ω	
I _{CL}	Output current lir	mit	$V_{OUT} = 0.9 \times V_{OUT(nom)}$	250	425	600	mA	
I _{SC}	Short-circuit curr	ent	V _{OUT} = 0 V		300		mA	
I_{REV}	Reverse leakage	current ⁽³⁾ (-I _{IN})	$V_{EN} \le 0.5 \text{ V}, 0 \text{ V} \le V_{IN} \le V_{OUT}$		0.1	10	μΑ	
1	Craund nin aurra	.nt	$I_{OUT} = 10 \text{ mA } (I_{Q})$		400	550	uА	
I _{GND}	Ground pin curre	:rit	I _{OUT} = 250 mA		650	950		
I _{SHDN}	Shutdown curren	it (I _{GND})	$V_{EN} \le 0.5 \text{ V}, V_{OUT} \le V_{IN} \le 5.5$		0.02	1	μΑ	
PSRR	Power-supply rej	ection ratio	f = 100 Hz, I _{OUT} = 250 mA		58	58		
PSKK	(ripple rejection)		f = 10 kHz, I _{OUT} = 250 mA		37		dB	
\/	Output noise volt	age	$C_{OUT} = 10 \mu F$, No C_{NR}	:	27 × V _{OUT}		.,	
V_N	BW = 10 Hz - 10	00 kHz	C _{OUT} = 10 μF, C _{NR} = 0.01 μF	8.5 × V _{OUT}			μV_{RMS}	
V _{EN} (HI)	Enable high (enabled)			1.7		V_{IN}	V	
V _{EN} (LO)	Enable low (shutdown)			0		0.5	V	
I _{EN} (HI)	Enable pin curre	nt (enabled)	V _{EN} = 5.5 V		0.02	0.1	μΑ	
T	Thormal objects	un tamparatura	Shutdown, temperature increasing		160		°C	
T_{SD}	Thermal shutdow	vii terriperature	Reset, temperature decreasing		140			

Minimum V $_{\rm IN}$ = V $_{\rm OUT}$ + V $_{\rm DO}$ or 1.7 V, whichever is greater. TPS73201-Q1 is tested at V $_{\rm OUT}$ = 2.5 V.

6.6 Switching Characteristics

Over operating temperature range (T $_J$ = -40°C to 125°C), V_{IN} = $V_{OUT(nom)}$ + 0.5 $V^{(1)}$, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μ F, unless otherwise noted. Typical values are at T_J = 25°C

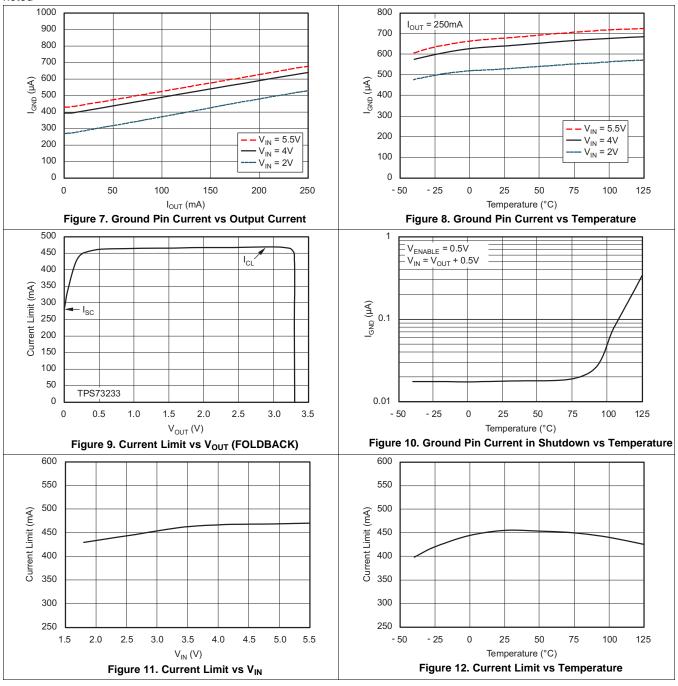
PARAME	TER TI	EST CONDITIONS	MIN	TYP MAX	UNIT
t _{STR} Start-Up	time $V_{OUT} = 3 \text{ V}, R_L = 30$	$0 \Omega C_{OUT} = 1 \mu F, C_{NR} = 0.01 \mu F$		600	μs


(1) Minimum $V_{IN} = V_{OUT} + V_{DO}$ or 1.7 V, whichever is greater.

Fixed-voltage versions only; see *Reverse Current* for more information.

6.7 Typical Characteristics

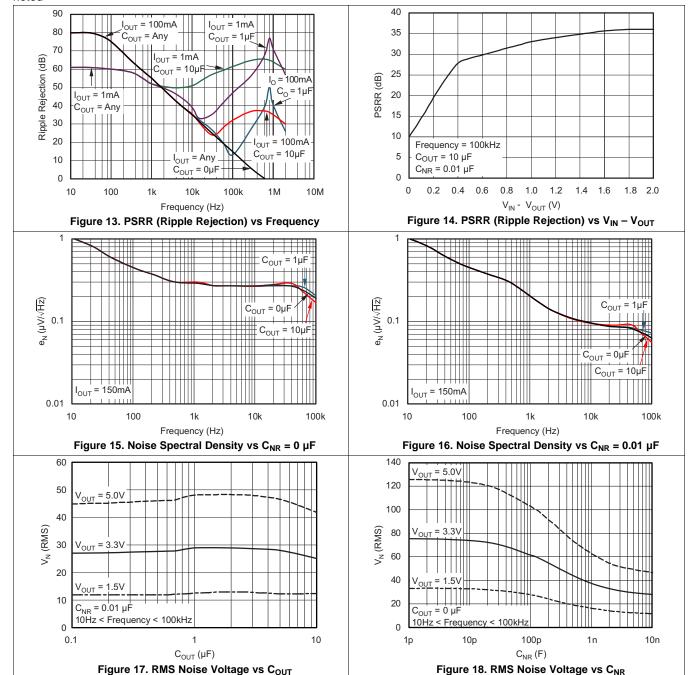
For all voltage versions at $T_J = 25$ °C, $V_{IN} = V_{OUT(nom)} + 0.5$ V, $I_{OUT} = 10$ mA, $V_{EN} = 1.7$ V, and $C_{OUT} = 0.1$ μF , unless otherwise noted


Submit Documentation Feedback

Copyright © 2005–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

For all voltage versions at T_J = 25°C, V_{IN} = $V_{OUT(nom)}$ + 0.5 V, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μ F, unless otherwise noted

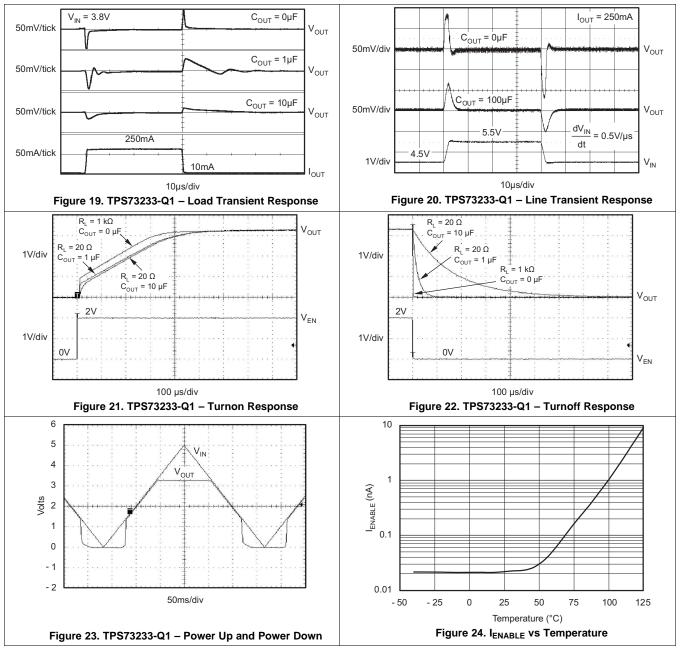


Copyright © 2005–2016, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

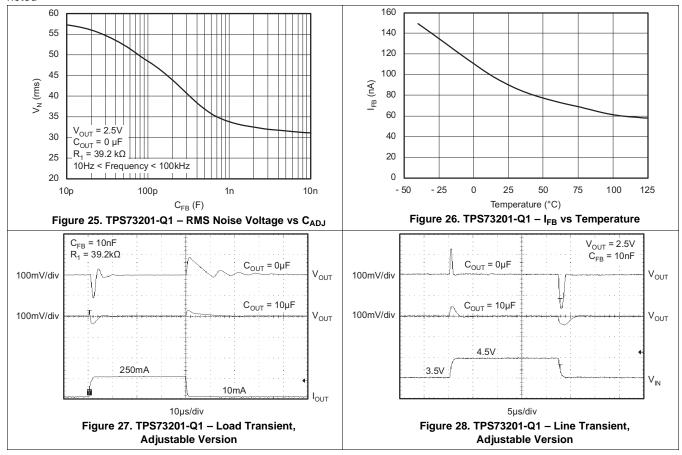
For all voltage versions at T_J = 25°C, V_{IN} = $V_{OUT(nom)}$ + 0.5 V, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μF , unless otherwise noted


Submit Documentation Feedback

Copyright © 2005–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

For all voltage versions at T_J = 25°C, V_{IN} = $V_{OUT(nom)}$ + 0.5 V, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μF , unless otherwise noted



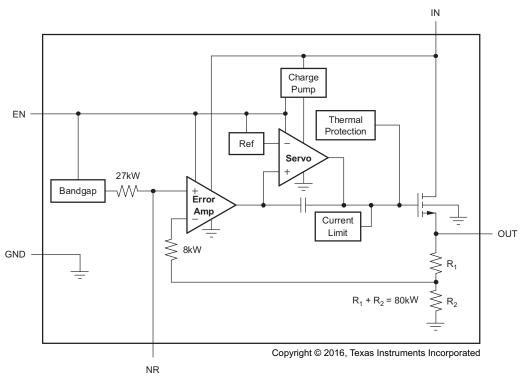
Copyright © 2005–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

For all voltage versions at T_J = 25°C, V_{IN} = $V_{OUT(nom)}$ + 0.5 V, I_{OUT} = 10 mA, V_{EN} = 1.7 V, and C_{OUT} = 0.1 μF , unless otherwise noted

Submit Documentation Feedback

Copyright © 2005–2016, Texas Instruments Incorporated



7 Detailed Description

7.1 Overview

The TPS732-Q1 low-dropout linear regulator devices operate with an input voltage down to 1.7 V and support output voltages down to 1.2 V while sourcing up to 500 mA of load current. These linear regulators use an NMOS pass element with an integrated 4-MHz charge pump to provide a dropout voltage of less than 250 mV at full load current. This unique architecture also permits stable regulation over a wide range of output capacitors. In fact, the TPS732-Q1 family of devices does not require any output capacitor for stability. The increased insensitivity to the output capacitor value and type makes this family of linear regulators an ideal choice when powering a load where the effective capacitance is unknown. The TPS732-Q1 family of devices also features a noise reduction (NR) pin that allows for additional reduction of the output noise. The low noise output featured by the TPS732-Q1 family makes the device well-suited for powering VCOs or any other noise-sensitive load.

7.2 Functional Block Diagram

Fixed voltage version.

7.3 Feature Description

7.3.1 Internal Current Limit

The TPS732-Q1 internal current limit helps protect the regulator during fault conditions. Foldback helps to protect the regulator from damage during output short-circuit conditions by reducing current limit when V_{OUT} drops below 0.5 V. See Figure 9.

7.3.2 Shutdown

The enable pin is active high and is compatible with standard TTL-CMOS levels. V_{EN} below 0.5 V (maximum) turns the regulator off and drops the ground pin current to approximately 10 nA. When shutdown capability is not required, the Enable pin can be connected to V_{IN} . When a pullup resistor is used, and operation down to 1.8 V is required, use pullup resistor values below 50 k Ω .

Feature Description (continued)

7.3.3 Dropout Voltage

The TPS732-Q1 family of devices uses an NMOS pass transistor to achieve extremely low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the NMOS pass device is in its linear region of operation and the input-to-output resistance is the R_{DS-ON} of the NMOS pass element.

For large step changes in load current, the TPS732-Q1 family of devices requires a larger voltage drop from V_{IN} to V_{OUT} to avoid degraded transient response. The boundary of this transient dropout region is approximately twice the dc dropout. Values of $V_{IN} - V_{OUT}$ above this line ensure normal transient response.

Operating in the transient dropout region can cause an increase in recovery time. The time required to recover from a load transient is a function of the magnitude of the change in load current rate, the rate of change in load current, and the available headroom (V_{IN} to V_{OUT} voltage drop). Under worst-case conditions [full-scale instantaneous load change with ($V_{IN}-V_{OUT}$) close to dc dropout levels], the TPS732-Q1 family of devices can take a couple of hundred microseconds to return to the specified regulation accuracy.

7.3.4 Transient Response

The low open-loop output impedance provided by the NMOS pass element in a voltage follower configuration allows operation without an output capacitor for many applications. As with any regulator, the addition of a capacitor (nominal value 1 μ F) from the output pin to ground will reduce undershoot magnitude but increase duration. In the adjustable version, the addition of a capacitor, C_{FB} , from the output to the adjust pin will also improve the transient response.

The TPS732-Q1 family of devices does not have active pulldown when the output is over-voltage. This allows applications that connect higher voltage sources, such as alternate power supplies, to the output. This also results in an output overshoot of several percent if the load current quickly drops to zero when a capacitor is connected to the output. The duration of overshoot can be reduced by adding a load resistor. The overshoot decays at a rate determined by output capacitor C_{OUT} and the internal and external load resistance. The rate of decay is given by Equation 1 and Equation 2:

(Fixed voltage version)

$$dV / dt = \frac{V_{OUT}}{C_{OUT} \times 80 \text{ k}\Omega}$$
(1)

(Adjustable voltage version)

$$dV / dt = \frac{V_{OUT}}{C_{OUT} \times 80 k\Omega || (R_1 + R_2)}$$
(2)

7.3.5 Reverse Current

The NMOS pass element of the TPS732-Q1 family of devices provides inherent protection against current flow from the output of the regulator to the input when the gate of the pass device is pulled low. To ensure that all charge is removed from the gate of the pass element, the enable pin must be driven low before the input voltage is removed. If this is not done, the pass element may be left on due to stored charge on the gate.

After the enable pin is driven low, no bias voltage is needed on any pin for reverse current blocking. Note that reverse current is specified as the current flowing out of the IN pin due to voltage applied on the OUT pin. There will be additional current flowing into the OUT pin due to the $80-k\Omega$ internal resistor divider to ground (see the *Functional Block Diagram* and Figure 31).

For the TPS73201-Q1, reverse current may flow when V_{FB} is more than 1 V above V_{IN}.

Feature Description (continued)

7.3.6 Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This limits the dissipation of the regulator, protecting it from damage due to overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature should be limited to 125°C maximum. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least 35°C above the maximum expected ambient condition of your application. This produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS732-Q1 family of devices has been designed to protect against overload conditions. It was not intended to replace proper heatsinking. Continuously running the TPS732-Q1 family of devices into thermal shutdown will degrade device reliability.

7.4 Device Functional Modes

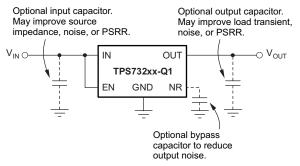
7.4.1 Normal Operation

The TPS632-Q1 family of devices require an input voltage of at least 1.7 V to function properly and attempt to maintain regulation.

When operating the device near 5.5 V, take care to suppress any transient spikes that may exceed the 6-V absolute maximum voltage rating. The device must never operate at a DC voltage greater than 5.5 V.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

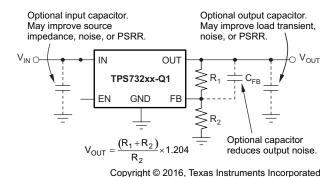
The TPS732-Q1 belongs to a family of new generation LDO regulators that use an NMOS pass transistor to achieve ultra-low-dropout performance, reverse current blockage, and freedom from output capacitor constraints. These features, combined with low noise and an enable input, make the TPS732-Q1 family of devices ideal for portable applications. This regulator family offers a wide selection of fixed output voltage versions and an adjustable output version. All versions have thermal and overcurrent protection, including foldback current limit.

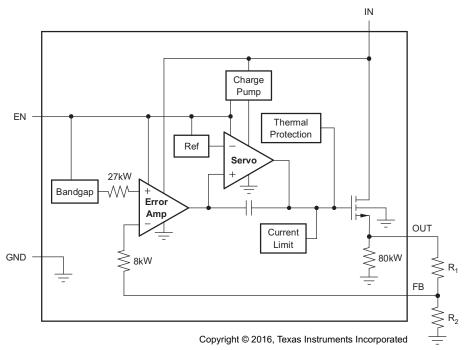
8.2 Typical Application

Figure 29 shows the basic circuit connections for the fixed voltage models. Figure 30 gives the connections for the adjustable output version (TPS73201-Q1).

Copyright © 2016, Texas Instruments Incorporated

Figure 29. Typical Application Circuit for Fixed-Voltage Versions




Figure 30. Typical Application Circuit for Adjustable-Voltage Versions

Typical Application (continued)

8.2.1 Design Requirements

 R_1 and R_2 can be calculated for any output voltage using the formula shown in Figure 30. Sample resistor values for common output voltages are shown in Figure 31. For best accuracy, make the parallel combination of R_1 and R_2 approximately 19 k Ω .

 $\begin{aligned} &V_{OUT} = \left(\ R_1 + R_2 \ \right) / \ R_2 \times 1.204 \\ &R_1 \parallel R_2 \cong 19 \ k\Omega \ \text{for best accuracy}. \end{aligned}$

Figure 31. Adjustable Voltage Version

Table 1. Standard 1% Resistor Values for Common Output Voltages

V _{OUT}	R ₁	R ₂
1.2 V	Short	Open
1.5 V	23.2 kW	95.3 kW
1.8 V	28 kW	56.2 kW
2.5 V	39.2 kW	36.5 kW
2.8 V	44.2 kW	33.2 kW
3 V	46.4 kW	30.9 kW
3.3 V	52.3 kW	30.1 kW
5 V	78.7 kW	24.9 kW

8.2.2 Detailed Design Procedure

8.2.2.1 Input and Output Capacitor Requirements

Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1-µF to 1-µF low ESR capacitor across the input supply near the regulator. This counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated or the device is located several inches from the power source.

The TPS732-Q1 family of devices does not require an output capacitor for stability and has maximum phase margin with no capacitor. It is designed to be stable for all available types and values of capacitors. In applications where $V_{\text{IN}} - V_{\text{OUT}} < 0.5 \text{ V}$ and multiple low ESR capacitors are in parallel, ringing may occur when the product of C_{OUT} and total ESR drops below 50 nF. Total ESR includes all parasitic resistances, including capacitor ESR and board, socket, and solder joint resistance. In most applications, the sum of capacitor ESR and trace resistance will meet this requirement.

8.2.2.2 Output Noise

A precision band-gap reference is used to generate the internal reference voltage, V_{REF} . This reference is the dominant noise source within the TPS732-Q1 family of devices and it generates approximately 32 μV_{RMS} (10 Hz to 100 kHz) at the reference output (NR). The regulator control loop gains up the reference noise with the same gain as the reference voltage, so that the noise voltage of the regulator is approximately given by:

$$V_{N} = 32\mu V_{RMS} \times \frac{(R_{1} + R_{2})}{R_{2}} = 32\mu V_{RMS} \times \frac{V_{OUT}}{V_{REF}}$$
 (3)

Because the value of V_{REF} is 1.2 V, this relationship reduces to:

$$V_{N}(\mu V_{RMS}) = 27 \left(\frac{\mu V_{RMS}}{V}\right) \times V_{OUT}(V)$$

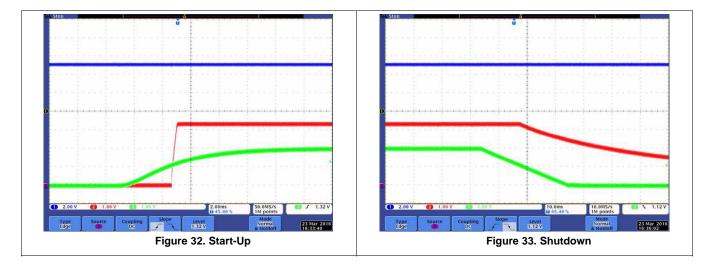
where

An internal 27-k Ω resistor in series with the noise reduction pin (NR) forms a low-pass filter for the voltage reference when an external noise reduction capacitor, C_{NR} , is connected from NR to ground. For C_{NR} = 10 nF, the total noise in the 10-Hz to 100-kHz bandwidth is reduced by a factor of approximately 3.2, giving the approximate relationship:

$$V_N(\mu V_{RMS}) = 8.5 \left(\frac{\mu V_{RMS}}{V}\right) \times V_{OUT}(V)$$

where

•
$$C_{NR} = 10 \text{ nF}$$
 (5)


This noise reduction effect is shown as RMS Noise Voltage vs C_{NR} in Typical Characteristics.

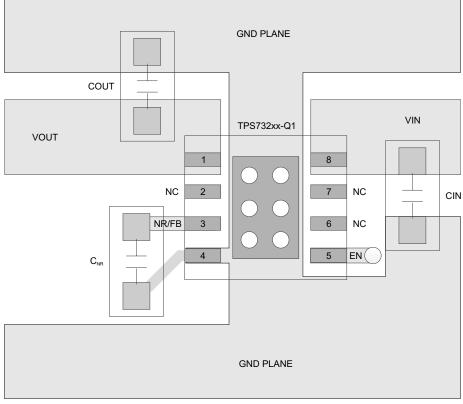
The TPS73201-Q1 adjustable version does not have the noise-reduction pin available. However, connecting a feedback capacitor, C_{FB}, from the output to the FB pin will reduce output noise and improve load transient performance.

The TPS732-Q1 family of devices uses an internal charge pump to develop an internal supply voltage sufficient to drive the gate of the NMOS pass element above V_{OUT} . The charge pump generates approximately 250 μV of switching noise at approximately 2 MHz; however, charge-pump noise contribution is negligible at the output of the regulator for most values of I_{OUT} and C_{OUT} .

8.2.3 Application Curves

9 Power Supply Recommendations

These devices are designed to operate from an input voltage supply range from 1.7 V to 5.5 V. The input voltage range provides adequate headroom for the device to have a regulated output. This input supply must be well regulated. If the input supply is noisy, additional input capacitors with low ESR can help improve the output noise performance.


10 Layout

10.1 Layout Guidelines

To improve ac performance such as PSRR, output noise, and transient response, TI recommends designing the PCB with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor should connect directly to the GND pin of the device.

10.2 Layout Example

Copyright © 2016, Texas Instruments Incorporated

Figure 34. Layout Diagram

10.3 Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Using heavier copper will increase the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers will also improve the heat-sink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation is equal to the product of the output current times the voltage drop across the output pass element (V_{IN}) to V_{OLIT} :

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
(6)

Power dissipation can be minimized by using the lowest possible input voltage necessary to assure the required output voltage.

10.4 Package Mounting

Solder pad footprint recommendations for the TPS732-Q1 family of devices are presented in the *Solder Pad Recommendations for Surface-Mount Devices* (SBFA015) application bulletin.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

Solder Pad Recommendations for Surface-Mount Devices, SBFA015

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

26-Apr-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_		_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS73201QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PJOQ	Samples
TPS73201QDRBRQ1	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	PSAQ	Samples
TPS73218QDCQRQ1	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	73218Q	Samples
TPS73225QDBVRQ1	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	PJNQ	
TPS73250QDCQRQ1	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	73250Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

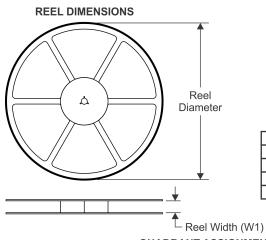
26-Apr-2016

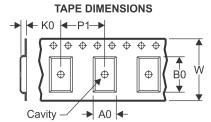
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS73225-Q1:

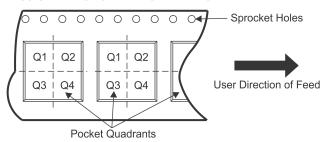
■ Enhanced Product: TPS73225-EP


NOTE: Qualified Version Definitions:

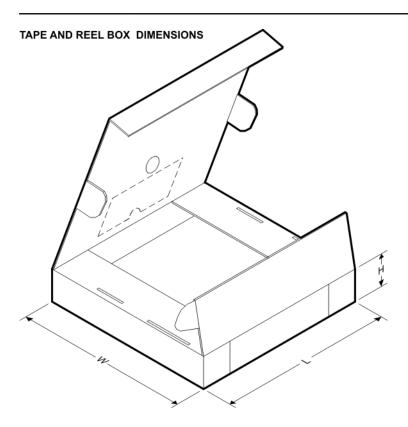

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Apr-2016


TAPE AND REEL INFORMATION

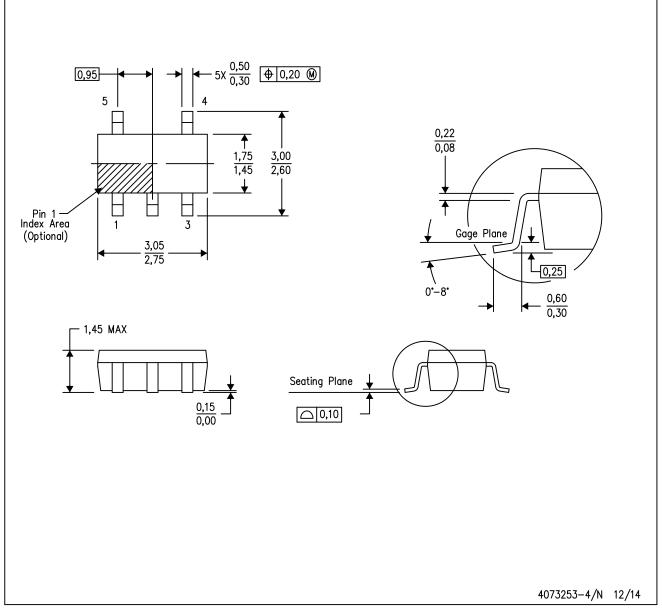
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS73201QDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS73201QDRBRQ1	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS73218QDCQRQ1	SOT-223	DCQ	6	2500	330.0	12.4	7.1	7.45	1.88	8.0	12.0	Q3
TPS73250QDCQRQ1	SOT-223	DCQ	6	2500	330.0	12.4	7.1	7.45	1.88	8.0	12.0	Q3

www.ti.com 27-Apr-2016

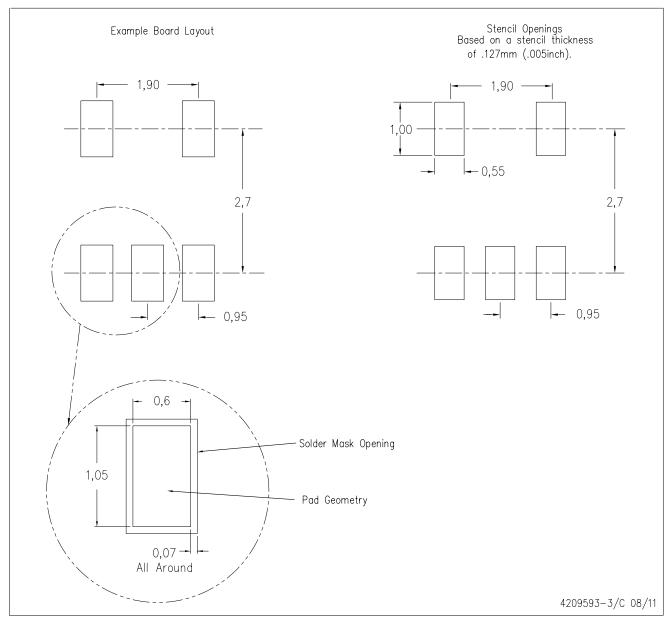


*All dimensions are nominal

7 iii dimensione dre nominal										
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)			
TPS73201QDBVRQ1	SOT-23	DBV	5	3000	203.0	203.0	35.0			
TPS73201QDRBRQ1	SON	DRB	8	3000	367.0	367.0	35.0			
TPS73218QDCQRQ1	SOT-223	DCQ	6	2500	358.0	335.0	35.0			
TPS73250QDCQRQ1	SOT-223	DCQ	6	2500	358.0	335.0	35.0			

DBV (R-PDSO-G5)

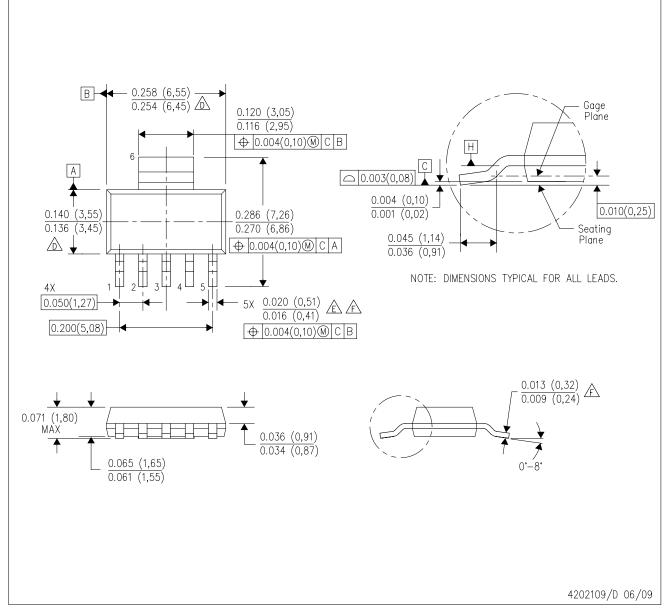
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

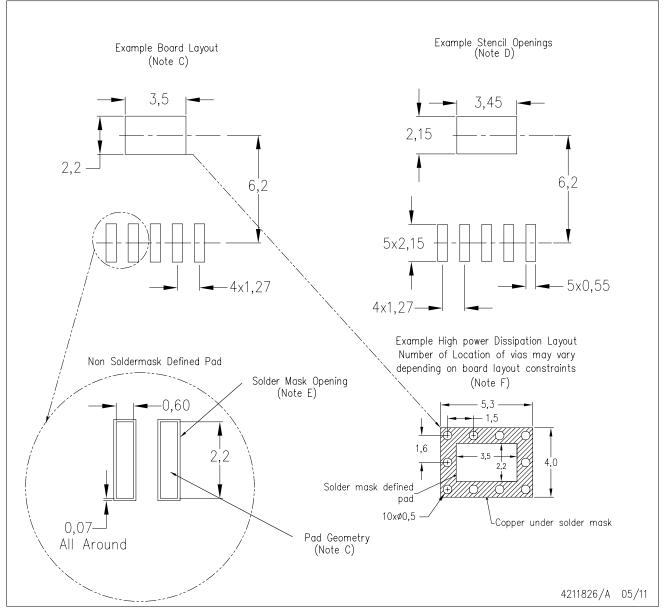
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCQ (R-PDSO-G6)

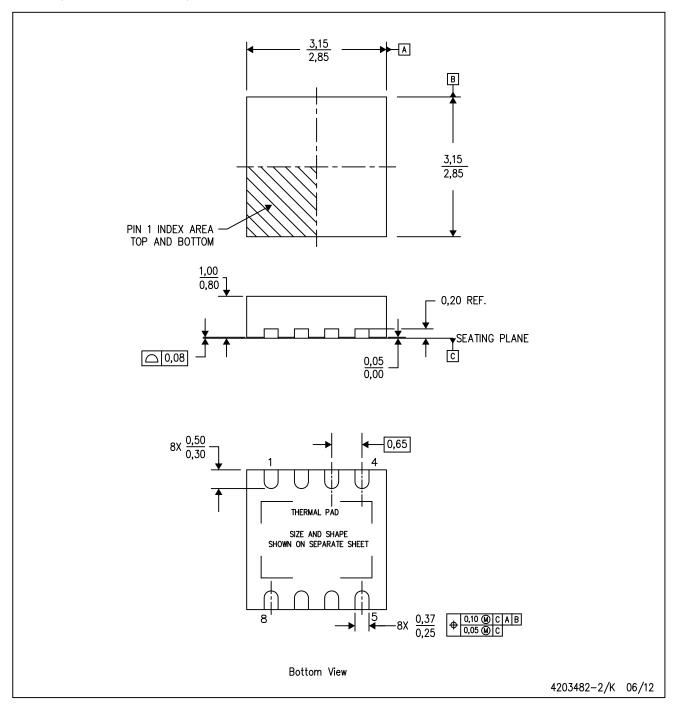
PLASTIC SMALL-OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Controlling dimension in inches.
- Body length and width dimensions are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs, and interlead flash, but including any mismatch between the top and the bottom of the plastic body.
- Lead width dimension does not include dambar protrusion.
- Lead width and thickness dimensions apply to solder plated leads.
- G. Interlead flash allow 0.008 inch max.
- H. Gate burr/protrusion max. 0.006 inch.
- I. Datums A and B are to be determined at Datum H.

DCQ (R-PDSO-G6)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. Please refer to the product data sheet for specific via and thermal dissipation requirements.

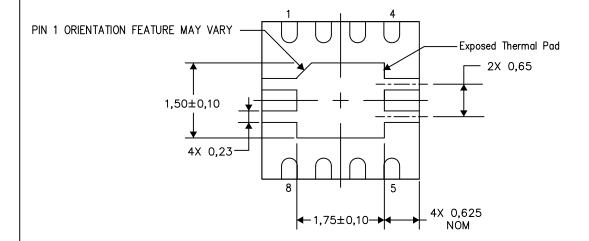
DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

DRB (S-PVSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

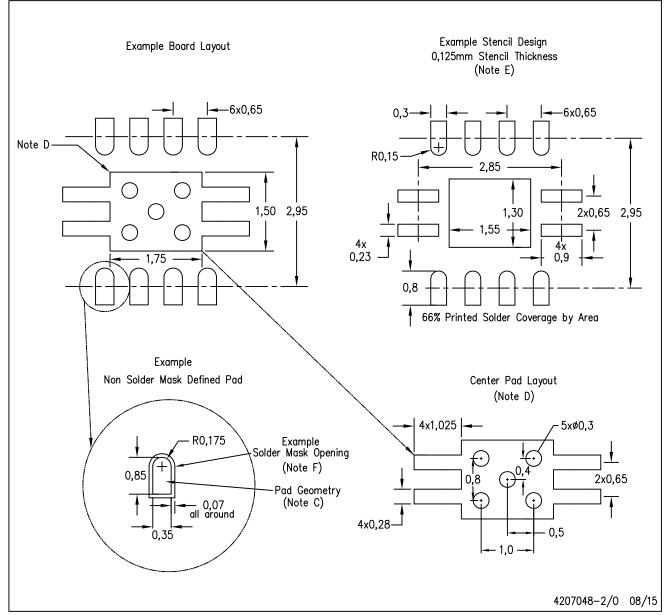
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206340-2/T 08/15

NOTE: All linear dimensions are in millimeters

DRB (S-PVSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

- S: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for solder mask tolerances.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity