features

- \bullet **Regulated 3.3-V Output Voltage From a 1.8-V to 3.6-V Input Voltage Range**
- \bullet **UltraLow Operating Current in Snooze Mode, Typical 2** µ**A**
- \bullet Less Than 5-mV_(PP) Output Voltage Ripple **Achieved With Push-Pull Topology**
- \bullet **Integrated Low-Battery and Power-Good Detector**
- \bullet **Switching Frequency Can Be Synchronized to External Clock Signal**
- \bullet **Extends Battery Usage With up to 90% Efficiency and 35-**µ**A Quiescent Current**
- \bullet **Easy-To-Design, Low Cost, Low EMI Power Supply Since No Inductors Are Used**
- \bullet **Compact Converter Solution in UltraSmall 10-Pin MSOP With Only Four External Capacitors Required**

 \bullet **Evaluation Module Available (TPS60210EVM-167)**

applications

- \bullet **Replaces DC/DC Converters With Inductors in Battery-Powered Applications Like:**
	- **− Two Battery Cells to 3.3-V Conversion**
	- **− MSP430 Ultralow-Power Microcontroller and Other Battery Powered Microprocessor Systems**
	- **− Glucose Meters and Other Medical Instruments**
	- **− MP3 Portable Audio Players**
	- **− Backup-Battery Boost Converters**
	- **− Cordless Phones, PDAs**

description

·

The TPS6021x step-up, regulated charge pumps generate a $3.3-V \pm 4\%$ output voltage from a 1.8-V to 3.6-V input voltage. These devices are typically powered by two alkaline, NiCd, or NiMH battery cells or by one primary lithium MnO2 (or similar) coin cell and operate down to a minimum supply voltage of 1.6 V. Continuous output current is a minimum of 100 mA for the TPS60210 and TPS60211, and 50 mA for the TPS60212 and TPS60213, all from a 2-V input.

VI **- Input Voltage - V**
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PR PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all para

Copyright © 2000, Texas Instruments Incorporated

description (continued)

Three operating modes can be programmed using the SNOOZE pin. When SNOOZE is low, the device is put into snooze mode. In snooze mode, the device operates with a typical quiescent current of 2 µA while the output voltage is maintained at $3.3 V \pm 6\%$. This is lower than the self-discharge current of most batteries. Load current in snooze mode is limited to 2 mA. When SNOOZE is high, the device is put into normal operating mode. During normal operating mode, the device operates in the newly developed linskip mode where it switches seamlessly from the power saving pulse-skip mode at light loads to the low-noise constant-frequency linear-regulation mode once the output current exceeds the linskip current threshold of about 7 mA. In this mode, the device operates from the internal oscillator. The device is synchronized to an external clock signal if SNOOZE is clocked; thus switching harmonics can be controlled and minimized.

Only four external capacitors are needed to build a complete low-ripple dc/dc converter. The push-pull operating mode of two single-ended charge pumps assures the low output voltage ripple as charge is continuously transferred to the output. All the devices can start with full load current. The devices include a low-battery detector that issues a warning if the battery voltage drops below a user-defined threshold voltage or a power-good detector that goes active when the output voltage reaches about 90% of its nominal value. This dc/dc converter requires no inductors; therefore, EMI of the system is reduced to a minimum, making it easier to use in designs. It is available in the small 10-pin MSOP package (DGS).

AVAILABLE OPTIONS

† The DGS package is available taped and reeled. Add R suffix to device type (e.g., TPS60210DGSR) to order quantities of 3000 devices per reel.

functional block diagrams

TPS60210 and TPS60212 with low-battery detector

TPS60211 and TPS60213 with power-good detector

SLVS296 − JUNE 2000

Terminal Functions

detailed description

operating principle

The TPS6021x charge pumps provide a regulated 3.3-V output from a 1.8-V to 3.6-V input. They deliver a minimum 100-mA load current while maintaining the output at $3.3 \text{ V} \pm 4\%$. Designed specifically for space critical battery-powered applications, the complete converter requires only four external capacitors. The device is using the push-pull topology to achieve the lowest output voltage ripple. The converter is also optimized for a very small board space. It makes use of small-sized capacitors, with the highest output current rating per output capacitance.

The TPS6021x circuits consist of an oscillator, a voltage reference, an internal resistive feedback circuit, an error amplifier, two charge-pump power stages with high-current MOSFET switches, a shutdown/start-up circuit, and a control circuit (see functional block diagrams).

push-pull operating mode

The two single-ended charge-pump power stages operate in the push-pull operating mode (i.e., they operate with a 180°C phase shift). Each single-ended charge pump transfers a charge into its flying capacitor (C1 or C2) in one-half of the period. During the other half of the period (transfer phase), the flying capacitor is placed in series with the input to transfer its charge to the load and output capacitor (C_0) . While one single-ended charge pump is in the charge phase, the other one is in the transfer phase. This operation ensures that there is a continuous flow of charge to the load, hence the output capacitor no longer needs to buffer the load current for half of the switching cycle, avoiding the high, inherent output voltage ripple of conventional charge pumps.

In order to provide a regulated output voltage of 3.3 V, the TPS6021x devices operate either in constant-frequency linear-regulation control mode or in pulse-skip mode. The mode is automatically selected based on the output current. If the load current is low, the controller switches into the power-saving pulse-skip mode to boost efficiency at low output power.

detailed description (continued)

constant-frequency mode

When the output current is higher than the linskip current threshold, the charge pump runs continuously at the switching frequency f_{OSC}. The control circuit, fed from the error amplifier, controls the charge on C1 and C2 by regulating the $r_{DS(on)}$ of the integrated MOSFET switches. When the output voltage decreases, the $r_{DS(on)}$ decreases as well, resulting in a larger voltage across the flying capacitors C1 and C2. This regulation scheme minimizes output ripple.

Since the device switches continuously, the output ripple contains well-defined frequency components, and the circuit requires smaller external capacitors for a given output ripple. However, constant-frequency mode, due to higher operating current, is less efficient at light loads. For this reason, the device switches seamlessly into the pulse-skip mode when the output current drops below the linskip current threshold.

pulse-skip mode

The device enters the pulse-skip mode when the load current drops below the linskip current threshold of about 7 mA. In pulse-skip mode, the controller disables switching of the power stages when it detects an output voltage higher than 3.3 V. It skips switching cycles until the output voltage drops below 3.3 V. Then the controller reactivates the oscillator and switching of the power stages starts again. A 30-mV output voltage offset is introduced in this mode.

The pulse-skip regulation mode minimizes operating current because it does not switch continuously and deactivates all functions except the voltage reference and error amplifier when the output is higher than 3.3 V. Even in pulse-skip mode the r_{DS(ON)} of the MOSFETs is controlled. This way the energy per switching cycle that is transferred by the charge pump from the input to the output is limited to the minimum that is necessary to sustain a regulated output voltage, with the benefit that the output ripple is kept to a minimum. When switching is disabled in pulse-skip mode, the load is isolated from the input.

start up, snooze mode, short circuit protection

During start-up (i.e., when voltage is applied to the supply pin IN) the input is connected to the output until the output voltage reaches $0.8 \times V_1$. When the start-up comparator detects this limit, the actual charge pump output stages are activated to boost the voltage higher than the input voltage. This precharging of the output current with a limited current ensures a short start-up time and avoids high inrush currents into an empty output capacitor.

Driving SNOOZE low, programs the device into the snooze mode. In this mode, the converter will still maintain the output voltage at 3.3 V $\pm 6\%$. The operating current in snooze mode, is however, drastically reduced to a typical value of 2 µA, while the output current is limited to a maximum of 2 mA. If the load current increases above 2 mA, the controller recognizes a further drop of the output voltage and the device enters the start-up mode to bring the voltage up to its nominal value again. However, it does not switch into the normal operating mode. The device limits short circuit currents to typically 60 mA.

synchronization to an external clock signal

The operating frequency of the charge pump is limited to 400 kHz in order to avoid troublesome interference problems in the sensitive 455-kHz IF band. The device can either run from the integrated oscillator, or an external clock signal can be used to drive the charge pump. The maximum frequency of the external clock signal is 800 kHz. The switching frequency used internally to drive the charge pump power stages is half of the external clock frequency. The external clock signal is applied to the SNOOZE-pin. The device will switch into the snooze mode if the signal on $\overline{\text{SNOOZE}}$ is held low for more than 10 μ s.

When the load current drops below the linskip current threshold, the device enters the pulse-skip mode but stays synchronized to the external clock signal.

SLVS296 − JUNE 2000

detailed description (continued)

low-battery detector (TPS60210 and TPS60212)

The low-battery comparator trips at 1.18 V $\pm 5\%$ when the voltage on pin LBI ramps down. The voltage V $_{\text{TRIP}}$ at which the low-battery warning is issued can be adjusted with a resistive divider as shown in Figure 2. The sum of resistors R1 and R2 is recommended to be in the 100-kΩ to 1-MΩ range.

LBO is an open drain output. An external pullup resistor to OUT, or any other voltage rail in the appropriate range, in the 100-kΩ to 1-MΩ range is recommended. During start-up, the LBO output signal is invalid for the first 500 µs. LBO is high impedance when the device is programmed into snooze mode.

If the low battery function is not used, connect LBI to ground and leave LBO unconnected. When the device is programmed into snooze mode ($\overline{\text{SNOOZE}}$ = LOW), the low-battery detector is disabled.

A 100-nF ceramic capacitor should be connected in parallel to R2 if large line transients are expected. These voltage drops may inadvertently trigger the low-battery comparator and produce a wrong low-battery warning signal at the LBO pin.

Formulas to calculate the resistive divider for low-battery detection, with $V_{LBI} = 1.13$ V to 1.23 V and the sum of resistors R1 and R2 equal 1 MΩ:

$$
R2 = 1 M\Omega \times \frac{V_{LBI}}{V_{Bat}} \tag{1}
$$

$$
R1 = 1 M\Omega - R2 \tag{2}
$$

Formulas to calculate the minimum and maximum battery voltage:

$$
V_{\text{Bat}(min)} = V_{\text{LBI}(min)} \times \frac{R1_{(min)} + R2_{(max)}}{R2_{(max)}}
$$
(3)

$$
V_{\text{Bat(max)}} = V_{\text{LBI(max)}} \times \frac{R1_{\text{(max)}} + R2_{\text{(min)}}}{R2_{\text{(min)}}}
$$
(4)

detailed description (continued)

Table 1. Recommended Values for the Resistive Divider From the E96 Series (±**1%)**

power-good detector (TPS60211 and TPS60213)

The power-good output is an open-drain output that pulls low when the output is out of regulation. When the output rises above 91% of its nominal voltage, the power-good output is released. When the device is programmed into snooze mode $(\overline{SNOOZE} = LOW)$, the power-good detector is disabled and PG is high impedance. In normal operation, an external pullup resistor must be connected between PG and OUT, or any other voltage rail in the appropriate range. The pullup resistor should be in the 100-kΩ to 1-MΩ range. If the PG output is not used, it should remain unconnected.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE 1 FREE-AIR TEMPERATURE

The thermal resistance junction to ambient of the DGS package is R_{TH−JA} = 294°C/W.

recommended operating conditions

SLVS296 − JUNE 2000

electrical characteristics at C_i= 2.2 µF, C1 = C2 = 1 µF, C₀ = 2.2 µF, T_A = -40°C to 85°C, V_I = 2.4 V, SNOOZE = VI (unless otherwise noted)

electrical characteristics for low-battery comparator of devices TPS60210 and TPS60212 at $T_A = -40^\circ \text{C}$ to 85 $^\circ \text{C}$, V_I = 2.4 V and $\overline{\text{SNOOZE}} = V_I$ (unless otherwise noted)

NOTE: During start-up of the converter the LBO output signal is invalid for the first 500 µs.

electrical characteristics for power-good comparator of devices TPS60211 and TPS60213 at $T_A = -40^\circ \text{C}$ to 85 $^\circ \text{C}$, V_I = 2.4 V and $\overline{\text{SNOOZE}} = V_I$ (unless otherwise noted)

NOTE: During start-up of the converter the PG output signal is invalid for the first 500 µs.

TYPICAL CHARACTERISTICS

Table of Graphs

NOTE: All typical characteristics were measured using the typical application circuit of Figure 21 (unless otherwise noted).

TYPICAL CHARACTERISTICS

SLVS296 − JUNE 2000

TYPICAL CHARACTERISTICS

SLVS296 − JUNE 2000

TYPICAL CHARACTERISTICS

SLVS296 − JUNE 2000

SLVS296 − JUNE 2000

APPLICATION INFORMATION

capacitor selection

The TPS6021x devices require only four external capacitors to achieve a very low output voltage ripple. The capacitor values are closely linked to the required output current. Low ESR (< 0.1-Ω) capacitors should be used at the input and output of the charge pump. In general, the transfer capacitors (C1 and C2) will be the smallest. A 1-µF value is recommended if full load current performance is needed. With smaller capacitor values, the maximum possible load current is reduced and the linskip threshold is lowered.

The input capacitor improves system efficiency by reducing the input impedance. It also stabilizes the input current of the power source. The input capacitor should be chosen according to the power supply used, the distance from the power source to the converter $IC. C_l$ is recommended to be about two to four times as large as the flying capacitors C1 and C2.

The minimum required capacitance is $2.2 \mu F$. Larger values will improve the load transient performance and will reduce the maximum output ripple voltage. The larger the output capacitor, the better the output voltage accuracy, and the more output current can be drawn from the converter when programmed into snooze mode.

Only ceramic capacitors are recommended for input, output and flying capacitors. Depending on the material used to manufacture them, ceramic capacitors might lose their capacitance over temperature and voltage. Ceramic capacitors of type X7R or X5R material will keep their capacitance over temperature and voltage, whereas Z5U- or Y5V-type capacitors will decrease in capacitance. Table 1 lists recommended capacitor values.

APPLICATION INFORMATION

Table 2. Recommended Capacitor Values (Ceramic X5R and X7R)

Table 3. Recommended Capacitor Types

Table 4. Recommended Capacitor Manufacturers

SLVS296 − JUNE 2000

APPLICATION INFORMATION

typical operating circuit TPS60210

Figure 21. Typical Operating Circuit TPS60210 With Low-Battery Comparator

Figure 22. Typical Operating Circuit TPS60212 With Low-Battery Comparator

The current losses through the resistive divider used to set the low-battery threshold can be avoided if an additional MOSFET (like BSS138) is used in series to the resistors. This switch is controlled using the SNOOZE signal. When the SNOOZE-signal is taken high, the device is programmed into normal operating mode, the switch will turn on and the resistive divider draws current to set the LBI threshold voltage. When SNOOZE is taken low, the device is programmed into snooze mode during which the low-battery comparator is disabled. In addition, the resistive divider R1/R2 is disconnected from GND and therefore draws no current from the battery. A typical schematic for this circuit is shown in Figure 22.

APPLICATION INFORMATION

typical operating circuit TPS60211

Figure 23. Typical Operating Circuit TPS60211 With Power-Good Comparator

power dissipation

The power dissipated in the TPS6021x devices depends mainly on input voltage (V_I) and output current (I_O) and is approximated by:

$$
P_{(DISS)} = I_0 \times (2 \times V_1 - V_0) \text{ for } I_{(Q)} < \langle I_0 \rangle
$$
 (5)

By observing equation 5, it can be seen that the power dissipation is worse with a higher input voltage and a higher output current. For an input voltage of 3.6 V and an output current of 100 mA, the calculated power dissipation $(P_{(DISS)})$ is 390 mW. This is also the point where the charge pump operates with its lowest efficiency.

With the recommended maximum junction temperature of 125°C and an assumed maximum ambient operating temperature of 85°C, the maximum allowed thermal resistance junction to ambient of the system can be calculated.

$$
R_{\Theta JA(max)} = \frac{T_{J(MAX)} - T_A}{P_{DISS(max)}} = \frac{125^{\circ}\text{C} - 85^{\circ}\text{C}}{390 \text{ mW}} = 102^{\circ}\text{C/W}
$$
(6)

P_{DISS} must be less than that allowed by the package rating. The thermal resistance junction to ambient of the used 10-pin MSOP is 294°C/W for an unsoldered package. The thermal resistance junction to ambient with the IC soldered to a printed circuit using a board layout as described in the application information section, the R $_{\Theta,IA}$ is typically 200°C/W, which is higher than the maximum value calculated previously. However, in a battery powered application, both the V_I and the ambient temperature (T_A) will typically be lower than the worst case ratings used in equation 6, and P_{DISS} should not be a problem in most applications.

layout and board space

Careful board layout is necessary due to the high transient currents and switching frequency of the converter. All capacitors should be placed in close proximity to the device. A PCB layout proposal for a one-layer board is given in Figure 24.

An evaluation module for the TPS60210 is available and can be ordered under product code TPS60210EVM−167. The EVM uses the layout shown in Figure 26. The EVM has the form factor of a 14-pin dual in-line package and can be mounted accordingly on a socket. All components, including the pins, are shown in Figure 24. The actual size of the EVM is 17,9 mm x 10,2 mm = 182,6 mm².

APPLICATION INFORMATION

layout and board space (continued)

Figure 24. Recommended Component Placement and Board Layout

Table 5. Component Identification

Capacitor C5 should be included if large line transients are expected. This capacitor suppresses toggling of the LBO due to these line changes.

TPS60210, TPS60211, TPS60212, TPS60213 REGULATED 3.3 V, LOW-RIPPLE CHARGE PUMP
WITH ULTRALOW OPERATING CURRENT
‱ auvs296 – JUNE 2000

APPLICATION INFORMATION

device family products

Other charge pump dc-dc converters from Texas Instruments are:

Table 6. Product Identification

PACKAGING INFORMATION

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

www.ti.com 15-Apr-2017

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check<http://www.ti.com/productcontent>for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

Texas
Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

TEXAS
INSTRUMENTS

PACKAGE MATERIALS INFORMATION

www.ti.com 19-Nov-2012

*All dimensions are nominal

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: А. All linear dimensions are in millimeters.

- This drawing is subject to change without notice. **B.**
- Body dimensions do not include mold flash or protrusion. $C.$
- D. Falls within JEDEC MO-187 variation BA.

DGS (S-PDSO-G10)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Ti's published terms of sale for semiconductor products [\(http://www.ti.com/sc/docs/stdterms.htm\)](http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated