

LOW INPUT VOLTAGE, ULTRA-LOW ron LOAD SWITCHES

FEATURES

- Input Voltage: 0.9 V to 3.6 V
- Ultra-Low ON Resistance
 - $r_{ON} = 14 \text{ m}\Omega \text{ at } V_{IN} = 3.6 \text{ V}$
 - $r_{ON} = 20 \text{ m}\Omega$ at $V_{IN} = 2.5 \text{ V}$
 - $r_{ON} = 33 \text{ m}\Omega \text{ at } V_{IN} = 1.8 \text{ V}$
 - r_{ON} = 67 $m\Omega$ at V_{IN} = 1.2 V
 - $r_{ON} = 116 \text{ m}\Omega$ at $V_{IN} = 1.0 \text{ V}$
- 2-A Maximum Continuous Switch Current
- Ultra-Low Quiescent Current: 78 nA at 1.8 V
- Ultra-Low Shutdown Current: 35 nA at 1.8 V
- Low Threshold Control Input Enable the use of 1.2V/1.8V/2.5V/3.3V Logic
- Controlled Slew Rate to Avoid Inrush Currents
 - TPS22921 and TPS22922: 30 μS
 - TPS22922B: 200 μS
- ESD Performance Tested Per JESD 22
 - 3000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Six Terminal Wafer-Chip-Scale Package
 - 0.9 mm x 1.4 mm, 0.5 mm Pitch,
 0.5 mm Height
 - 0.8 mm × 1.2 mm, 0.4 mm Pitch,
 0.5 mm Height

.....

YFP, YZP, AND YZT PACKAGES

Laser Marking View Bump View

APPLICATIONS

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Peripheral Ports
- Portable Media Players
- RF Modules

DESCRIPTION

TPS22921, TPS22922, and TPS22922B are ultra-low r_{ON} load switches with controlled turn on. TPS22921/2/2B contain an ultra-low r_{ON} P-channel MOSFET that can operate over an input voltage range of 0.9 V to 3.6 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. In TPS22922 and in TPS22922B, a 120- Ω on-chip load resistor is added for output quick discharge when switch is turned off. The rise time (slew rate) of the device is internally controlled in order to avoid inrush current: TPS22921 and TPS22922 feature a 30 μ s rise time whereas TPS22922B is 200 μ s.

TPS22921, TPS22922, and TPS22922B feature ultra low quiescent and shutdown current and are available in space-saving 6-terminals wafer-chip-scale packages (WCSP: YZP with 0.5-mm pitch and YFP with 0.4-mm pitch) which make it ideal for portable electronics. The devices are characterized for operation over the free-air temperature range of -40°C to 85°C.

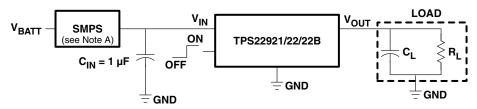
TERMINAL ASSIGNMENTS

С	ON	GND
В	V_{IN}	V _{OUT}
Α	V_{IN}	V _{OUT}
	2	1

	r _{ON} AT 1.8 V (TYP)	SLEW RATE (TYP at 1.8V)	QUICK OUTPUT DISCHARGE ⁽¹⁾	MAX OUTPUT CURRENT	ENABLE
TPS22921	33 mΩ	30 μs		2 A	active high
TPS22922	33 mΩ	30 μs	Yes	2 A	active high
TPS22922B	33 mΩ	200 μs	Yes	2 A	active high

(1) This feature discharges the output of the switch to ground through a $120-\Omega$ resistor, preventing the output from floating.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



ORDERING INFORMATION

T _A	PAC	KAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			TPS22921YFPR	3Y_
	WCSP – YFP (0.4 mm pitch)	Tape and reel	TPS22922YFPR	2Z_
	(o.4 mm piton)		TPS22922BYFPR	PREVIEW
–40°C to 85°C			TPS22921YZPR	3Y_
40 0 10 00 0	WCSP – YZP (0.5 mm pitch)	Tape and reel	TPS22922YZPR	2Z_
	(0.0 mm piton)		TPS22922BYZPR	3Z_
	WCSP – YZT (0.5 mm pitch) Tape and reel		TPS22921YZTR	3Y_

- (1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

TYPICAL APPLICATION

A. Switched mode power supply

APPLICATION BLOCK DIAGRAM

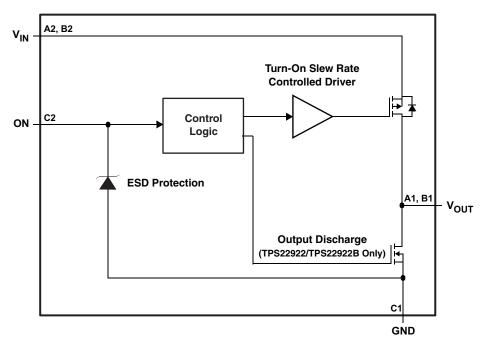


Figure 1. Functional Block Diagram

FUNCTION TABLE

ON	V _{IN} TO V _{OUT}	V _{OUT} TO GND ⁽¹⁾				
L	OFF	ON				
Н	ON	OFF				

(1) TPS22922/TPS22922B only

TERMINAL FUNCTIONS

TERM	IINAL	DESCRIPTION
NO.	NAME	DESCRIPTION
A1, B1	V _{OUT}	Switch output
A2, B2	V _{IN}	Switch input
C1	GND	Ground
C2	ON	Switch control input, active high. Do not leave floating

ABSOLUTE MAXIMUM RATINGS(1)

			MIN	MAX	UNIT
V _{IN}	Input voltage range		-0.3	4	V
V _{OUT}	Output voltage range			V _{IN} + 0.3	V
V _{ON}	Input voltage range		-0.3	4	V
Р	Power dissipation at T _A = 25°C	Power dissipation at T _A = 25°C			
I _{MAX}	Maximum continuous switch current		2	Α	
T _A	Operating free-air temperature range		-40	85	°C
T _{stg}	Storage temperature range		-65	150	°C
T _{lead}	Maximum lead temperature (10-s soldering tir	me)		300	°C
		Human-Body Model (HBM)		3000	
ESD	Electrostatic discharge protection	Charged Device Model (CDM)		1000	V
		Machine Model (MM)		300	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE RATINGS

				UNIT
0	Package thermal impedance ⁽¹⁾	YFP package	155	°C/W
θ_{JA}		YZP/YZT package	123	C/VV

⁽¹⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V _{IN}	Input voltage range	0.9	3.6	V
V _{OUT}	Output voltage range		V_{IN}	
V_{IH}	High-level input voltage, ON	0.85	3.6	V
V _{IL}	Low-level input voltage, ON		0.4	V
C _{IN}	Input capacitor	1 ⁽¹⁾		μF

⁽¹⁾ Refer to Application Information.

Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS

 $V_{IN} = 0.9 \text{ V}$ to 3.6 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

P	PARAMETER	TEST	CONDITIONS	T _A	MIN TYP ⁽¹⁾	MAX	UNIT
			V _{IN} = 1-V	Full	30	120	
I _{IN}	Quiescent current	$I_{OUT} = 0$	V _{IN} = 1.8-V	Full	78	235	nA
In In(OFF)			V _{IN} = 3.6-V	Full	200	880	
IN(OFF) IN(LEAKAGE)			V _{IN} = 1-V	Full	10	210	
I _{IN(OFF)}	OFF-state supply current	V _{ON} = GND, OUT = Open	V _{IN} = 1.8-V	Full	35	260	nA
	ourient	Opon.	$V_{IN} = 3.6 - V$	Full	120	700	
			V _{IN} = 1-V	Full	12	78 235 200 880 10 210 35 260 120 700 12 140 50 230 130 610 14 45 50 20 55 60 33 65 75 67 100 120 82 150 160 116 160	
I _{IN(LEAKAGE)}	OFF-state switch current	$V_{ON} = GND, V_{OUT} = 0$	V _{IN} = 1.8-V	Full	50	230	nA
			V _{IN} = 3.6-V	Full	130	610	
			V _{IN} = 3.6 V	25°C	14	45	-
			VIN = 3.0 V	Full		50	
			V _{IN} = 2.5 V	25°C	20	55	
				Full		60	
			V _{IN} = 1.8 V	25°C	33	65	
	ON-state resistance	l – 200 mΛ		Full		75	
ION	ON-State resistance	$I_{OUT} = -200 \text{ mA},$	V 40V	25°C	67	100	11122
			V _{IN} = 1.2 V	Full		120	
			V = 1.1 V	25°C	82	150	
			$V_{IN} = 1.1 \text{ V}$	Full		160	
			25	25°C	116	160	
			$V_{IN} = 1.0 \text{ V}$	Full		170	
r _{PD}	Output pulldown resistance	V _{IN} = 3.3 V, V _{ON} = 0, I _O (TPS22922/TPS22922	_{DUT} = 30 mA B only)	25°C	65	120	Ω
I _{ON}	ON input leakage current	V _{ON} = 1.1 V to 3.6 V or GND		Full		25	nA

⁽¹⁾ Typical values are at the specified V_{IN} and T_A = 25°C.

SWITCHING CHARACTERISTICS

 $V_{IN} = 0.9 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST COL	TEST CONDITIONS			TPS22	2922 ⁽¹⁾	TPS2292	TPS22922B ⁽¹⁾		
PARAMETER		TEST COI	TEST CONDITIONS		MAX	MIN T	YP MAX	MIN T	P MAX	UNIT	
t _{ON} Turn-ON time		$C_L = 0.1 \mu F$	121		1	21	6	38			
	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	160		1	60	7	12	μs		
		$C_L = 3 \mu F$	188		1	88	7	99			
		$C_L = 0.1 \mu F$	46			40		40			
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	308		2	79	2	79	μs	
			$C_L = 3 \mu F$	975		8	307	8	07	i	
			$C_L = 0.1 \mu F$	60			60	4	62		
t _r	V_{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	85			85	4	65	μs	
			$C_L = 3 \mu F$	107		1	07	5	07		
			$C_L = 0.1 \mu F$	119			51		51		
t _f	V _{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	969		4	34	4	34	μs	
			$C_L = 3 \mu F$	3174		12	264	12	64		

⁽¹⁾ RL_CHIP = 120 Ω

 $V_{IN} = 1.0 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TPS22921	TPS22921		TPS22922 ⁽¹⁾			TPS22922B ⁽¹⁾			
PARAMETER		IESI CO	TEST CONDITIONS		MAX	MIN TYP MAX		MIN	TYP	MAX	UNIT		
t _{ON} Turn-ON time		$C_L = 0.1 \mu F$	105			105			549				
	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	136			136			613		μs		
		$C_L = 3 \mu F$	157			157			683				
		$C_L = 0.1 \mu F$	46			28			28				
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	309			186		186		μs		
			$C_L = 3 \mu F$	983			511			511			
			$C_L = 0.1 \mu F$	51			51			386			
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	78			78			388		μs	
			$C_L = 3 \mu F$	88			88			419			
	V _{OUT} fall time		$C_L = 0.1 \mu F$	121			34			34		μs	
t _f		$R_L = 500 \Omega$,	$C_L = 1 \mu F$	986			306			306			
			$C_L = 3 \mu F$	3300			908			908			

⁽¹⁾ $RL_CHIP = 120 \Omega$

SWITCHING CHARACTERISTICS

 $V_{IN} = 1.1 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS		TPS22921		TPS22922 ⁽¹⁾			TPS22922B ⁽¹⁾			UNIT		
	PARAMETER			MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII		
t _{ON} Turn-ON time		$C_L = 0.1 \mu\text{F}$	91			93			484					
	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	118			118			540		μs			
		$C_L = 3 \mu F$	137			137			599					
		$C_L = 0.1 \mu F$	44			21			21					
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	311			144			144		μs		
			$C_L = 3 \mu F$	99			383			383				
			$C_L = 0.1 \mu\text{F}$	46			46			335				
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	60			60			336		μs		
			$C_L = 3 \mu F$	76			76			363				
	V _{OUT} fall time		$C_L = 0.1 \mu F$	122			29			29				
t _f		V _{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	1000			224			224		μs	
			$C_L = 3 \mu F$	3300			732			732				

⁽¹⁾ RL_CHIP = 120 Ω

 $V_{IN} = 1.2 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEST CO	TEST CONDITIONS			TPS229	22 ⁽¹⁾	TPS2292	22B ⁽¹⁾	UNIT
	PARAMETER	TEST CO			MAX	MIN TYP	MAX	MIN 7	YP MAX	UNII
			$C_L = 0.1 \mu F$	83		83	3		135	
t _{ON}	t _{ON} Turn-ON time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	103		103	3		185	μs
			$C_L = 3 \mu F$	122		122	!	ļ	536	
			$C_L = 0.1 \mu F$	44		17	•		17	
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	312		117	•		117	μs
			$C_L = 3 \mu F$	1000		319)	;	319	
			$C_L = 0.1 \mu F$	41		4		;	301	
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$R_L = 500 \Omega$, $C_L = 1 \mu F$ 54 54		ļ	302		μs		
			$C_L = 3 \mu F$	67		67	•	;	325	
			$C_L = 0.1 \mu F$	123		25	;		25	
t _f	V _{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	1000		214			214	μs
		,	$C_L = 3 \mu F$	3400		632		ı	632	

⁽¹⁾ RL_CHIP = 120 Ω

SWITCHING CHARACTERISTICS

 $V_{IN} = 1.8 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS		TPS2292	1	TPS	2292	2 ⁽¹⁾	TPS22922B ⁽¹⁾		1)	UNIT	
	PARAMETER			MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
			$C_L = 0.1 \mu F$	54			54			282			
t_{ON}	ON Turn-ON time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	67			67			314		μs	
		$C_L = 3 \mu F$	78			78			344				
			$C_L = 0.1 \mu F$	41			10			10			
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	312			67			67		μs	
			$C_L = 3 \mu F$	1000			181			181			
			$C_L = 0.1 \mu F$	30			30			200			
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	37			37			202		μs	
			$C_L = 3 \mu F$	47			47			219			
			$C_L = 0.1 \mu F$	121			17			17			
t _f	V _{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	1000			158			158		μs	
		1.6	$C_L = 3 \mu F$	3450			461			461			

⁽¹⁾ RL_CHIP = 120 Ω

 $V_{IN} = 2.5 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TPS22921		TPS	S22922	2 ⁽¹⁾	TPS2	2922B ⁽	1)	UNIT
	PARAWETER			MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
			$C_L = 0.1 \mu F$	40			40			211		
t_{ON}	t _{ON} Turn-ON time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	50			50			233		μs
			$C_L = 3 \mu F$	59			59			256		
			$C_L = 0.1 \mu F$	41			10			10		
t_{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	316			56			56		μs
			$C_L = 3 \mu F$	1000			153			153		
			$C_L = 0.1 \mu F$	23			23			164		
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	29			29			165		μs
			$C_L = 3 \mu F$	38			38			177		
			$C_L = 0.1 \mu F$	122			16			16		
t _f	V_{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	1086			147			147		μs
			$C_L = 3 \mu F$	3600			430			430		

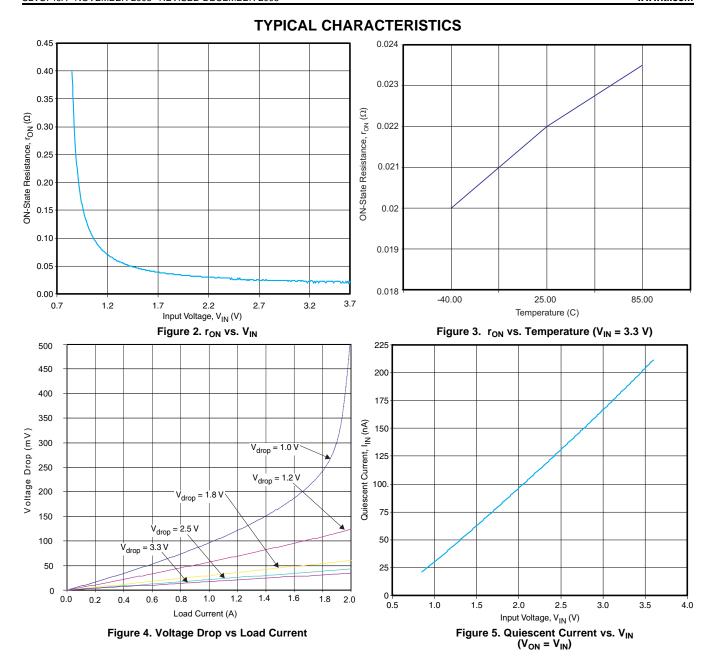
⁽¹⁾ $RL_CHIP = 120 \Omega$

SWITCHING CHARACTERISTICS

 $V_{IN} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

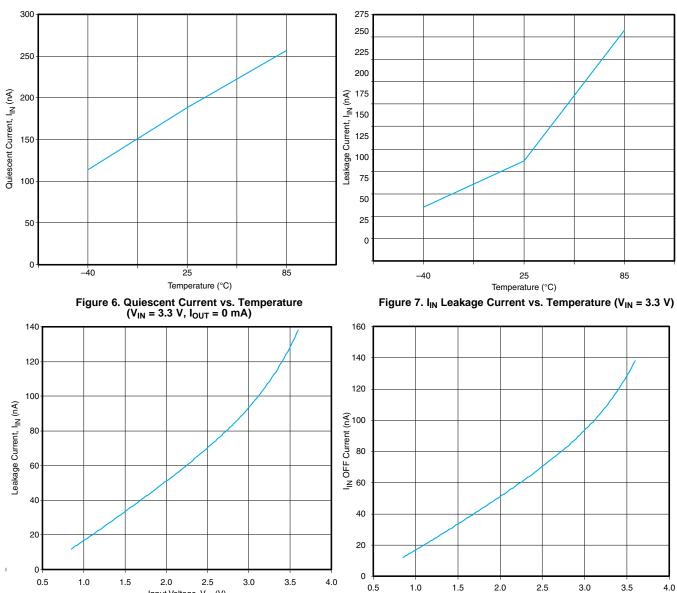
	DADAMETED	TEST CONDITIONS		TPS	S22921		TPS	S2292	2 ⁽¹⁾	TPS	22922B	1)	LINIT	
	PARAMETER					MIN TYP MAX		MIN TYP MAX		MAX	UNIT			
			$C_L = 0.1 \mu F$		30			30			182			
t _{ON}	Turn-ON time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$		38			38			201		μs	
			$C_L = 3 \mu F$		45			45			221		·	
			$C_L = 0.1 \mu F$		40			10			10			
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$		353			51			51		μs	
			$C_L = 3 \mu F$		1036			139			139			
			$C_L = 0.1 \mu F$		20			20			149			
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$		25			25			150		μs	
			$C_L = 3 \mu F$		33			33			161			
			$C_L = 0.1 \mu F$		104			15			15			
t _f	V _{OUT} fall time R	$R_L = 500 Ω$	$C_L = 1 \mu F$		1030			143			143		μs	
			$C_L = 3 \mu F$		3230			419			419			

⁽¹⁾ RL_CHIP = 120 Ω



 $V_{IN} = 3.6 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

	DADAMETED	TEST CONDITIONS		TPS22921		TPS2	2922	(1)	TPS22922B ⁽¹⁾			UNIT	
	PARAMETER			MIN TYP	MAX	MIN 7	ТҮР	MAX	MIN	TYP	MAX	UNIT	
			$C_L = 0.1 \mu F$	30			30			159			
t _{ON}	t _{ON} Turn-ON time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	38			38			175		μs	
			$C_L = 3 \mu F$	45			45			193			
			$C_L = 0.1 \mu F$	42			10			10			
t _{OFF}	t _{OFF} Turn-OFF time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	310			51			51		μs	
			$C_L = 3 \mu F$	988			139			139			
			$C_L = 0.1 \mu F$	20			20			137			
t _r	V _{OUT} rise time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	25			25			138		μs	
			$C_L = 3 \mu F$	33			33			148			
			$C_L = 0.1 \mu F$	120			15			15			
t _f	V _{OUT} fall time	$R_L = 500 \Omega$,	$C_L = 1 \mu F$	1100			143			143		μs	
		,	$C_L = 3 \mu F$	3600			419			419			


⁽¹⁾ RL_CHIP = 120 Ω

Submit Documentation Feedback

 $\label{eq:local_local} \text{Input Voltage, V}_{IN}\left(V\right)$ Figure 8. Leakage Current vs V_{IN}

 $\begin{aligned} & \text{Input Voltage, V}_{\text{IN}} \left(\text{V} \right) \\ & \text{Figure 9. I}_{\text{IN}} \left(\text{OFF} \right) \text{ vs V}_{\text{IN}} \left(\text{V}_{\text{ON}} = 0 \text{ V} \right) \end{aligned}$

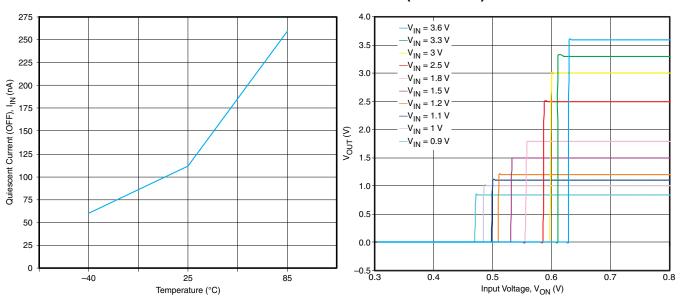


Figure 10. I_{IN} (OFF) vs Temperature (V_{IN} = 3.3 V)

Figure 11. ON-Input Threshold

TPS22921

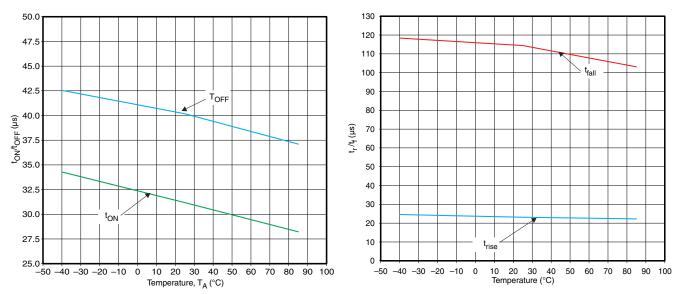


Figure 12. t_{ON}/t_{OFF} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

Figure 13. t_{rise}/t_{fall} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

TPS22922

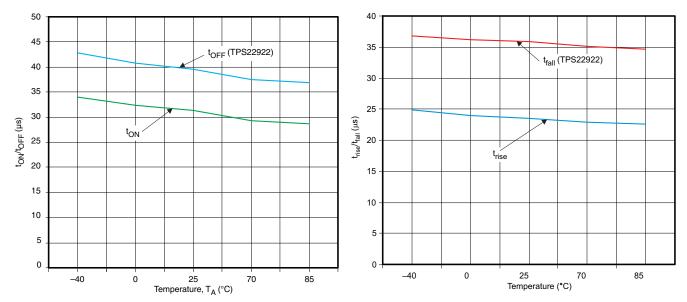


Figure 14. t_{ON}/t_{OFF} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

Figure 15. t_{rise}/t_{fall} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

TPS22922B

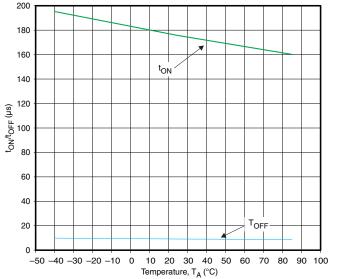


Figure 16. t_{ON}/t_{OFF} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

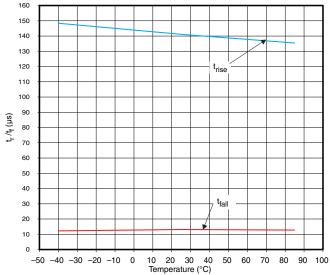


Figure 17. t_{rise}/t_{fall} vs Temperature ($V_{IN} = 3.3 \text{ V}$)

TPS22921 and TPS22922

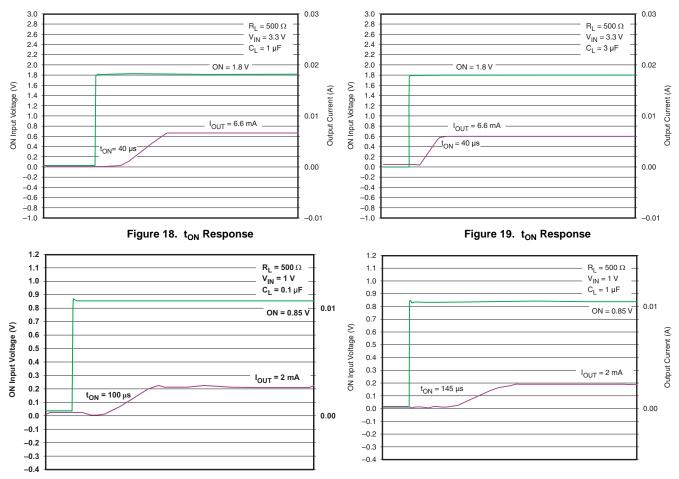
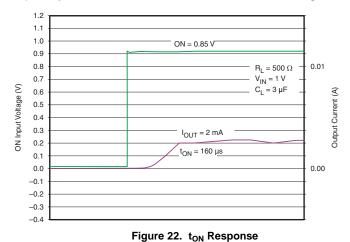



Figure 20. toN Response

Figure 21. t_{ON} Response

TPS22921

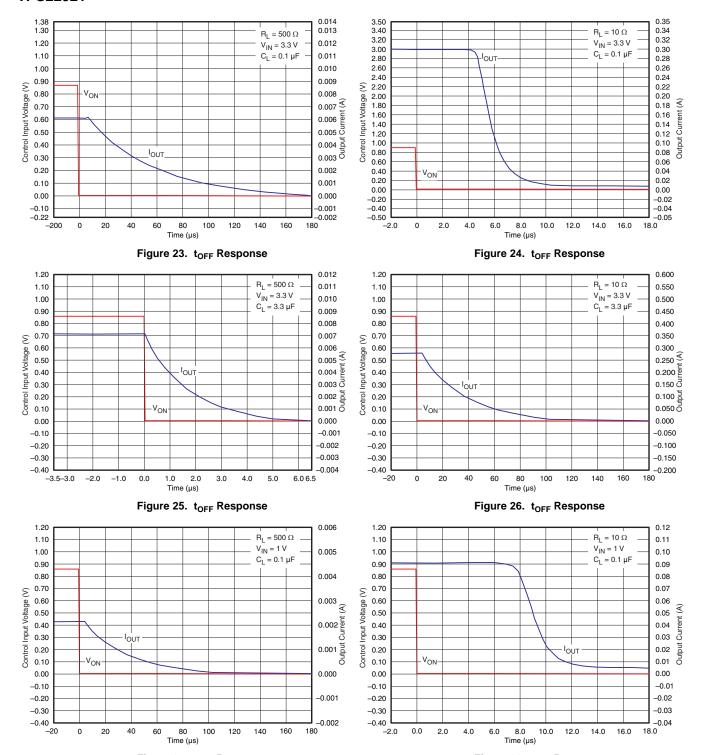


Figure 27. t_{OFF} Response

Figure 28. t_{OFF} Response

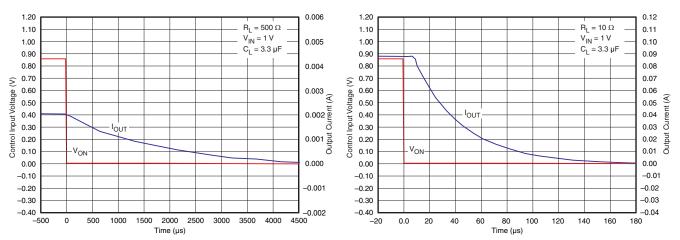


Figure 29. t_{OFF} Response

Figure 30. t_{OFF} Response

TPS22922

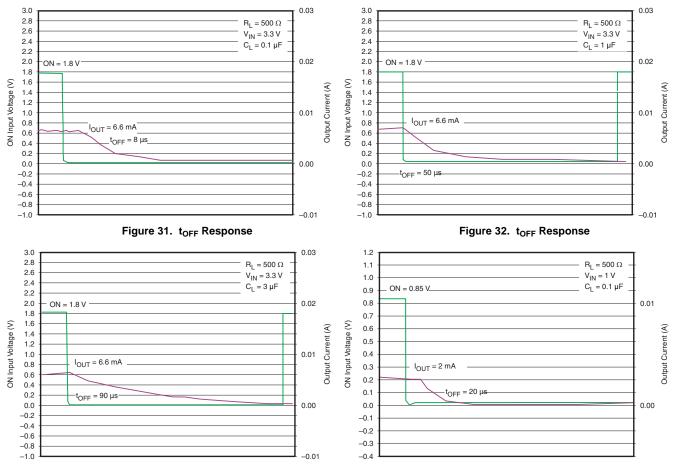


Figure 33. t_{OFF} Response

Figure 34. t_{OFF} Response

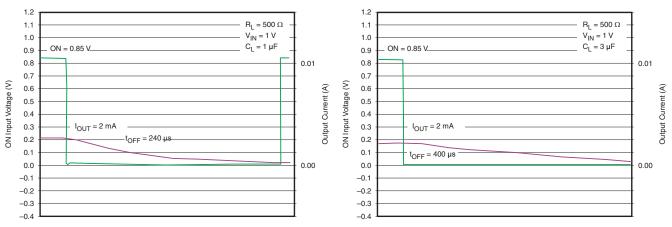


Figure 35. t_{OFF} Response

Figure 36. t_{OFF} Response

TPS22922B

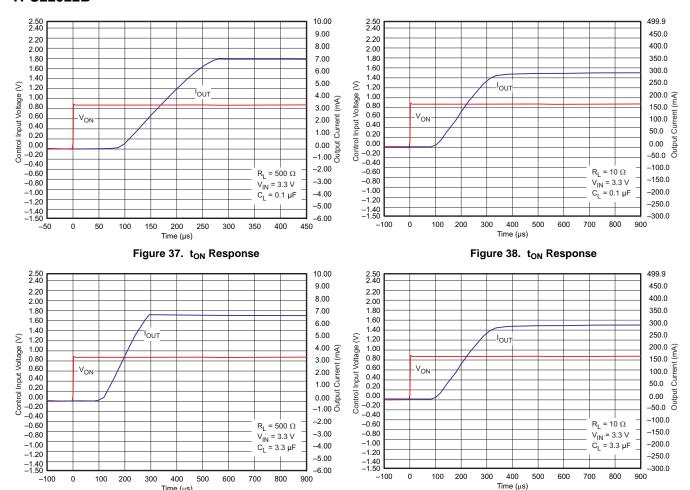


Figure 39. toN Response

Figure 40. toN Response

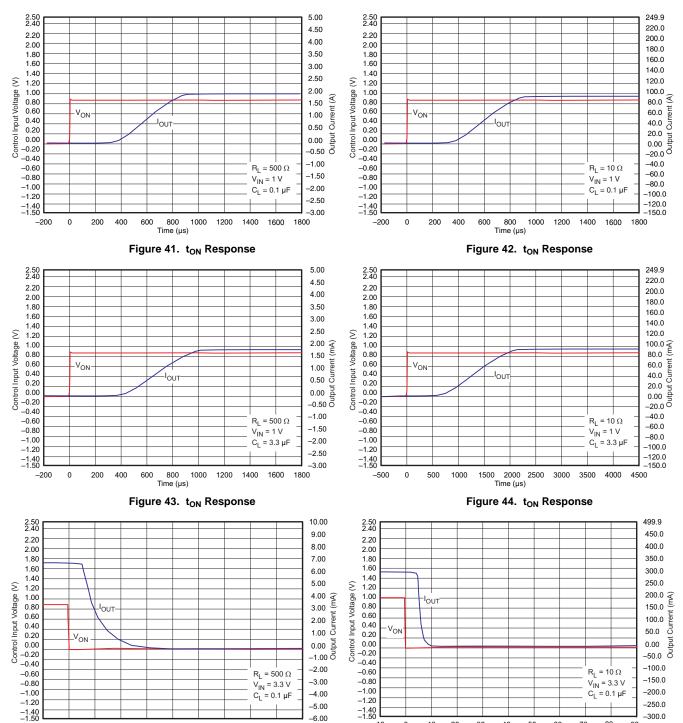


Figure 45. t_{OFF} Response

Time (µs)

80

90

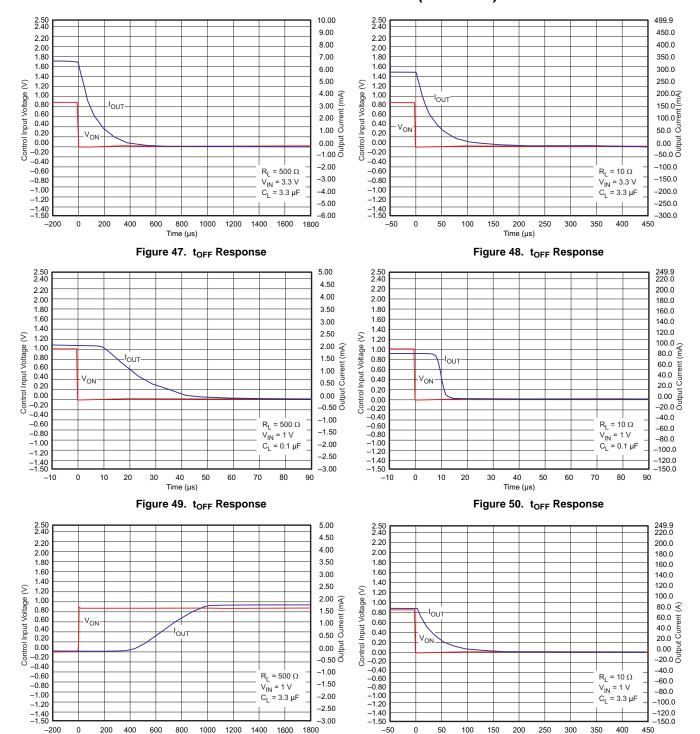
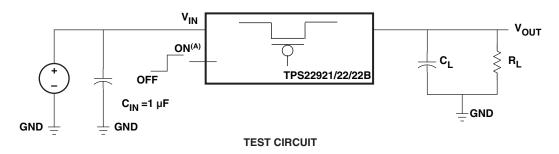
Figure 46. t_{OFF} Response

10 20

80

-10

10

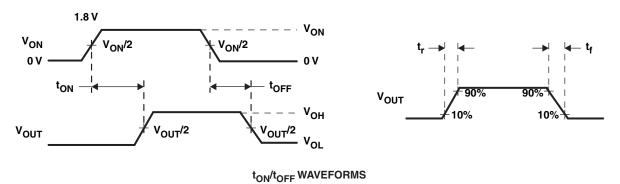

Figure 51. t_{OFF} Response

Figure 52. t_{OFF} Response

PARAMETER MEASURMENT INFORMATION

A. t_{rise} and t_{fall} of the control signal is 100 ns.

Figure 53. Test Circuit and ton/toff Waveforms

www.ti.com

SLVS749A-NOVEMBER 2008-REVISED DECEMBER 2008

APPLICATION INFORMATION

ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state so long as there is no fault. ON is active HI and has a low threshold making it capable of interfacing with low voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V or 3.3-V GPIOs.

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between V_{IN} and GND . A 1- μ F ceramic capacitor, C_{IN} , placed close to the pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during higher current application. When switching a heavy load, it is recommended to have an input capacitor about 10 or more times higher than the output capacitor in order to avoid any supply drop.

Output Capacitor

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for V_{IN} , V_{OUT} , and GND will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

i.com 21-Jan-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS22921YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22921YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22922BYFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22922BYZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22922YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22922YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

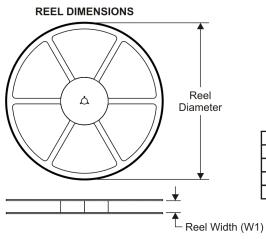
TBD: The Pb-Free/Green conversion plan has not been defined.

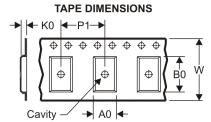
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

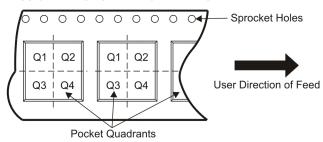
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

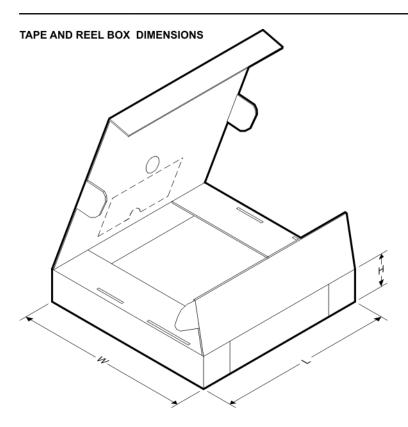

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Jul-2010


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ulmensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22921YFPR	DSBGA	YFP	6	3000	180.0	8.4	0.89	1.29	0.62	4.0	8.0	Q1
TPS22921YZPR	DSBGA	YZP	6	3000	180.0	8.4	1.02	1.52	0.63	4.0	8.0	Q1
TPS22922BYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.02	1.52	0.63	4.0	8.0	Q1
TPS22922YZPR	DSBGA	YZP	6	3000	180.0	8.4	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 20-Jul-2010

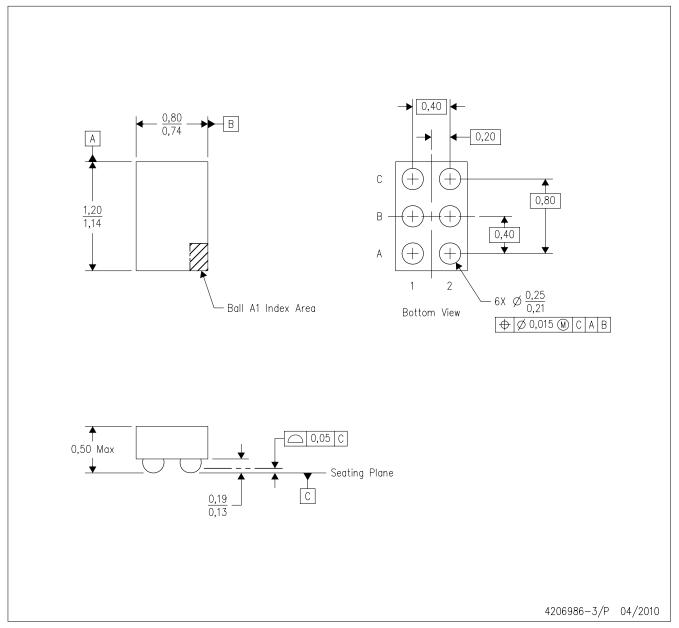
*All dimensions are nominal

7 till difficilities die fremman							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22921YFPR	DSBGA	YFP	6	3000	190.5	212.7	31.8
TPS22921YZPR	DSBGA	YZP	6	3000	220.0	220.0	34.0
TPS22922BYZPR	DSBGA	YZP	6	3000	220.0	220.0	34.0
TPS22922YZPR	DSBGA	YZP	6	3000	220.0	220.0	34.0

YZP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. NanoFree $^{\text{TM}}$ package configuration.
- D. This package is lead-free. Refer to the 6 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YFP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- D. This is a Pb-free solder ball design.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps