

TLV742P

SBVS323-SEPTEMBER 2017

TLV742P 200-mA, Small Size, Low-Dropout Linear Voltage Regulator

Features 1

Texas

INSTRUMENTS

- Input Voltage Range From 2 V to 5.5 V
- **Fixed-Output Voltage Combinations Possible** From 0.85 V to 5 V in 50-mV Steps⁽¹⁾
- 0.5% Typical Accuracy
- High PSRR:
 - 55 dB at 1 MHz
- Io When Enabled: 25 µA
- Io When Disabled: 1 µA
- Active Output Discharge
- Thermal Shutdown and Overcurrent Protection
- Package:
 - 1-mm × 1-mm DQN (X2SON)

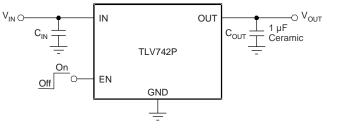
Applications 2

- Point of Sale
- Camera and Machine Vision Modules
- Gaming and Toys
- Building Automation and Video Surveillance
- TVs and Set-Top Boxes

3 Description

The TLV742P series of low-dropout linear voltage regulators (LDOs) are optimized to providing excellent performance by supporting a wide output voltage range. The LDOs can directly regulate a single cell Li-ion battery input-to-output voltage as low as 0.85 V. If used to post-regulate a DC-DC converter output, the high PSRR of 55 dB at 1 MHz suppresses ripple to provide a stable low-noise, wellregulated VOUT.

The TLV742P has an active output discharge feature that helps ensure the output is kept low while the system is disabled, in standby mode, or in sleep mode. Additionally, overcurrent protection is present to protect the device in the event of an output short along with thermal shutdown to prevent overheating.


The TLV742P series of voltage regulators are available in a 1 mm × 1 mm X2SON package to minimize PCB area.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLV742P	X2SON (4)	1.00 mm × 1.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Circuit

Copyright © 2017, Texas Instruments Incorporated

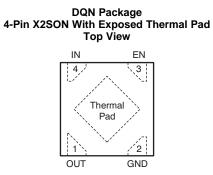
Texas Instruments

www.ti.com

Table of Contents

1	Feat	tures 1				
2	Applications 1					
3		cription1				
4	Rev	ision History 2				
5	Pin	Configuration and Functions 3				
6	Spe	cifications 4				
	6.1	Absolute Maximum Ratings 4				
	6.2	ESD Ratings 4				
	6.3	Recommended Operating Conditions 4				
	6.4	Thermal Information 4				
	6.5	Electrical Characteristics 5				
	6.6	Typical Characteristics 6				
7	Deta	ailed Description 13				
	7.1	Overview 13				
	7.2	Functional Block Diagrams 13				
	7.3	Feature Description 13				
	7.4	Device Functional Modes 14				
8	Арр	lication and Implementation 15				

	8.1	Application Information	15
	8.2	Typical Application	15
	8.3	Do's and Don'ts	18
9	Pow	er Supply Recommendations	19
10	Lay	out	19
	10.1	Layout Guidelines	19
	10.2	Layout Example	20
	10.3	Thermal Considerations	20
	10.4	Power Dissipation	20
11	Dev	ice and Documentation Support	21
	11.1	Device Support	21
	11.2	Receiving Notification of Documentation Updates	21
	11.3		
	11.4	Trademarks	21
	11.5	Electrostatic Discharge Caution	21
	11.6	Glossary	21
12		hanical, Packaging, and Orderable	
	Info	mation	22


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
September 2017	*	Initial release.

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
EN	3	I	Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode. For TLV742P, output voltage is discharged through an internal $120-\Omega$ resistor when device is shut down.		
GND	2	_	bround pin		
IN	4	I	nput pin. For good transient performance, place a small 1-µF ceramic capacitor from this pin to round. See <i>Input and Output Capacitor Requirements</i> for more details.		
OUT	1	0	Regulated output voltage pin. A small $1-\mu F$ ceramic capacitor is required from this pin to ground to ensure stability. See <i>Input and Output Capacitor Requirements</i> for more details.		
Thermal pad	—	_	e thermal pad is electrically connected to the GND node. Connect to the GND plane for proved thermal performance.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	IN	-0.3	6	V
Voltage ⁽²⁾	EN	-0.3	6	V
	OUT	-0.3	6	V
Current (source)	OUT	Internall	y limited	
Output short-circuit duration	n	Inde	finite	
Operating junction, T _J		-55	150	°C
Storage, T _{stg}		-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

(2) All voltages are with respect to GND pin.

6.2 ESD Ratings

			VALUE	UNIT
	Human body model (HBM) QSS 009-105 (JESD22-A114A) ⁽¹⁾	±2000	V	
V _(ESD) Electrostatic discharge		Charged device model (CDM) QSS 009-147 (JESD22-C101B.01) ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage	2		5.5	V
I _{OUT}	Output current	0		200	mA
TJ	Operating junction temperature range	-40		125	°C

6.4 Thermal Information

		TLV742P	
	THERMAL METRIC ⁽¹⁾	DQN (X2SON)	UNIT
		4 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	180.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	152	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	117.2	°C/W
ΨJT	Junction-to-top characterization parameter	5.1	°C/W
Ψјв	Junction-to-board characterization parameter	117	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	99.7	°C/W

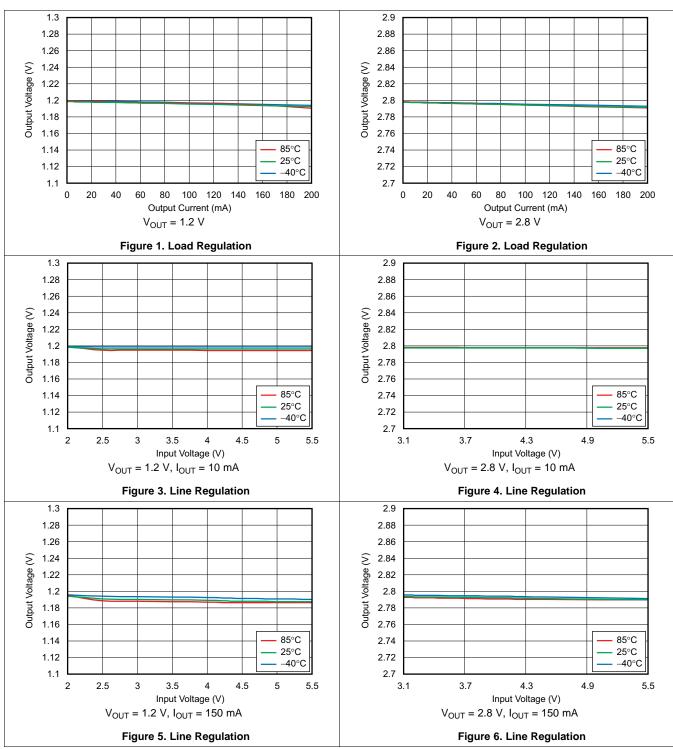
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater); $I_{OUT} = 1$ mA, $V_{EN} = V_{IN}$, $C_{OUT} = 0.47 \mu$ F, and $T_J = -40^{\circ}$ C to +85°C. Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)

PA	RAMETER	TI	EST CONDITIONS		MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range				2		5.5	V
	Output voltage range				0.85		5	V
V _{OUT}	DC output					0.5%		
	accuracy	V _{OUT} ≥ 0.85 V			-1.5%		1.5%	
$\Delta V_{O(\Delta VI)}$	Line regulation					1	5	mV
$\Delta V_{O(\Delta IO)}$	Load regulation	0 mA ≤ I _{OUT} ≤ 150 mA	1			10	20	mV
			2 V < V _{OUT} ≤ 2.4 V	I _{OUT} = 30 mA		65		mV
				I _{OUT} = 150 mA		325	360	mV
			2.4 V < V _{OUT} ≤ 2.8 V	I _{OUT} = 30 mA		50		mV
V _(DO)	Dropout voltage	$V_{IN} = 0.98 \times V_{OUT(NOM)}$		I _{OUT} = 150 mA		250	300	mV
(DO)	g.		2.8 V < V _{OUT} ≤ 3.3 V	I _{OUT} = 30 mA		45		mV
				I _{OUT} = 150 mA		220	270	mV
			3.3 V < V _{OUT} ≤ 5 V	I _{OUT} = 30 mA		40		mV
				I _{OUT} = 150 mA		200	250	mV
I _{CL}	Output current limit	$V_{OUT} = 0.9 \times V_{OUT(NOM)}$			240	300	450	mA
(GND)	Ground pin current	I _{OUT} = 0 mA	I _{OUT} = 0 mA			25	50	μA
(EN)	EN pin current	V _{EN} = 5.5 V	V _{EN} = 5.5 V			0.01		μA
I _{SHUTDOWN}	Shutdown current	V _{EN} ≤ 0.4 V 2 V ≤ V _{IN} ≤ 4.5 V	$V_{EN} \leq 0.4 V$ 2 V $\leq V_{IN} \leq 4.5 V$			1		μA
V _{IL(EN)}	EN pin low-level input voltage (disable device)				0		0.4	V
V _{IH(EN)}	EN pin high-level input voltage (enable device)				0.9		V _{IN}	V
		V _{IN} = 3.3 V		f = 100 Hz		70		
PSRR	Power-supply rejection ratio	V _{OUT} = 2.8 V		f = 10 kHz		55		dB
		I _{OUT} = 30 mA	I _{OUT} = 30 mA f = 1 MHz			55		
V _n	Output noise voltage	$\begin{array}{l} BW = 100 \text{ Hz to } 100 \text{ kH} \\ V_{\text{IN}} = 2.3 \text{ V} \\ V_{\text{OUT}} = 1.8 \text{ V} \\ I_{\text{OUT}} = 10 \text{ mA} \end{array}$	Ζ,			45		μV _{RMS}
t _{STR}	Startup time ⁽¹⁾	C _{OUT} = 1 μF I _{OUT} = 150 mA				100		μs
R _{PULLDOWN}	Pulldown resistance (TLV742P only)					120		Ω
TJ	Operating junction temperature				-40		125	°C

(1) Start-up time = time from EN assertion to 0.98 × V_{OUT} .

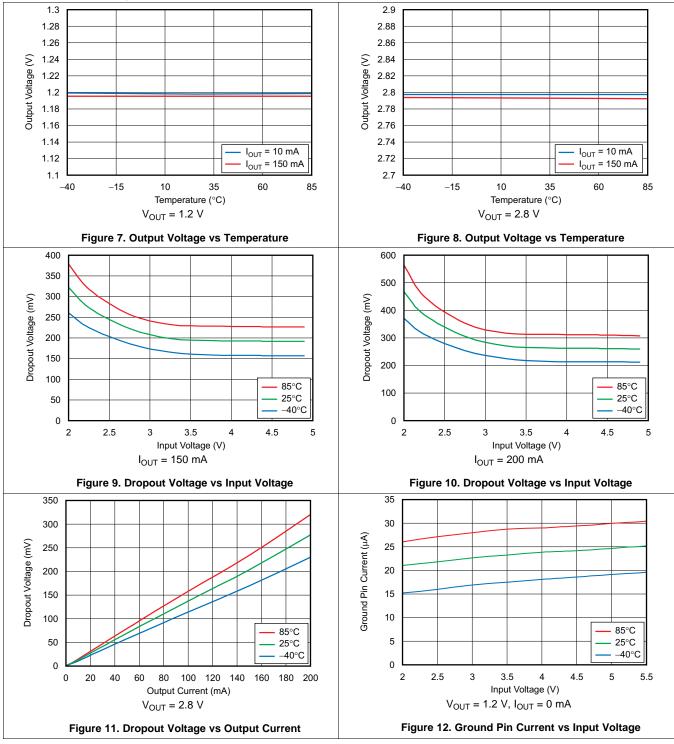

Copyright © 2017, Texas Instruments Incorporated

Submit Documentation Feedback

6

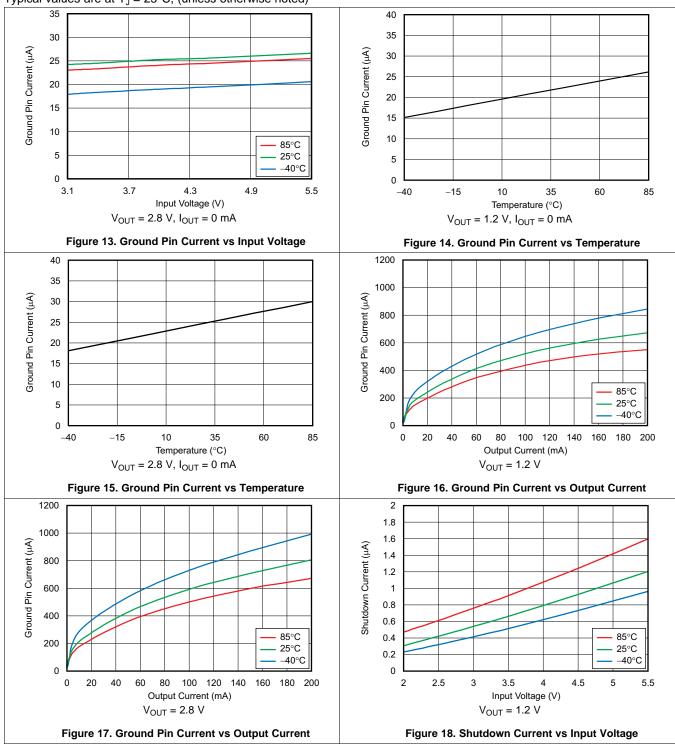
6.6 Typical Characteristics

at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)



www.ti.com

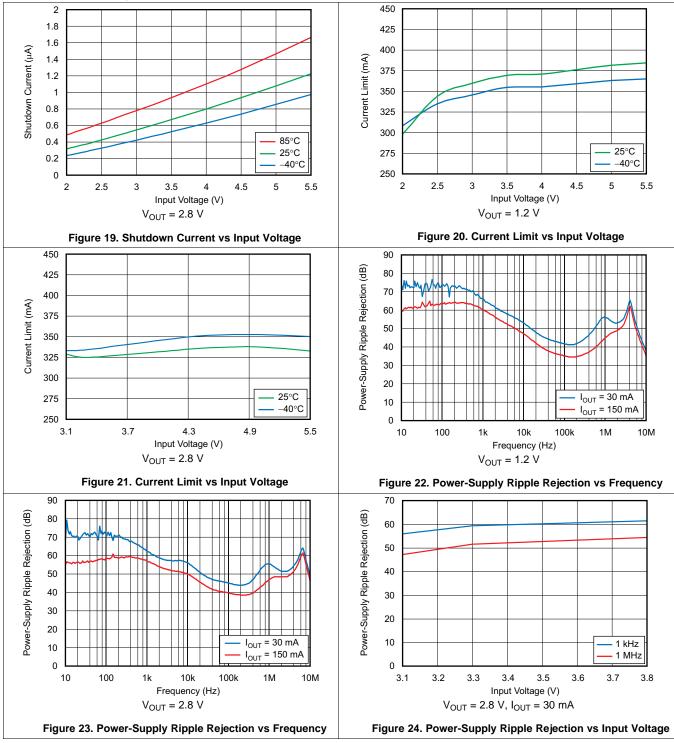
Typical Characteristics (continued)


at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)

Copyright © 2017, Texas Instruments Incorporated

Typical Characteristics (continued)

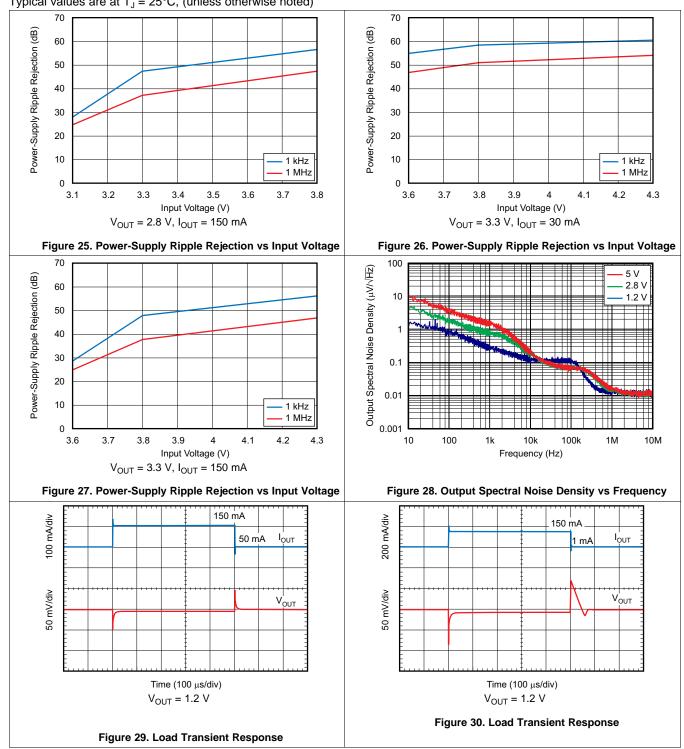
at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)



www.ti.com

Typical Characteristics (continued)

at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)

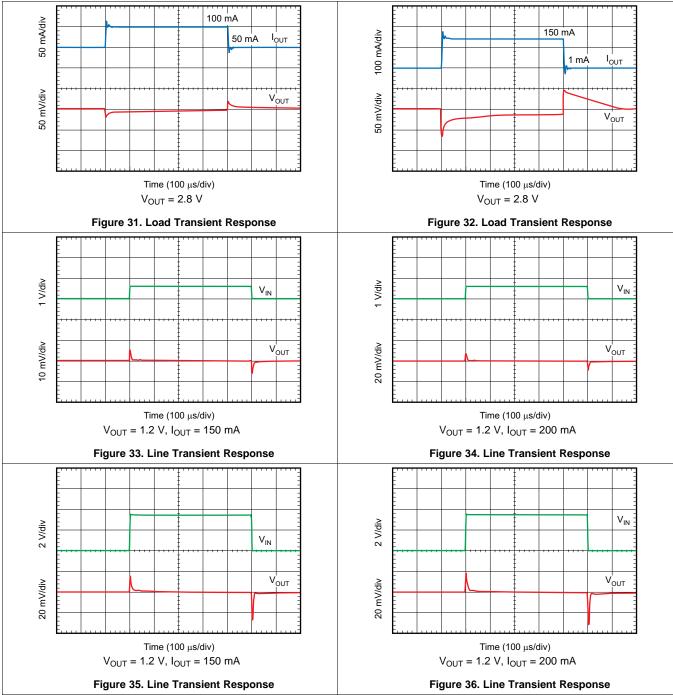


SBVS323-SEPTEMBER 2017

TLV742P

Typical Characteristics (continued)

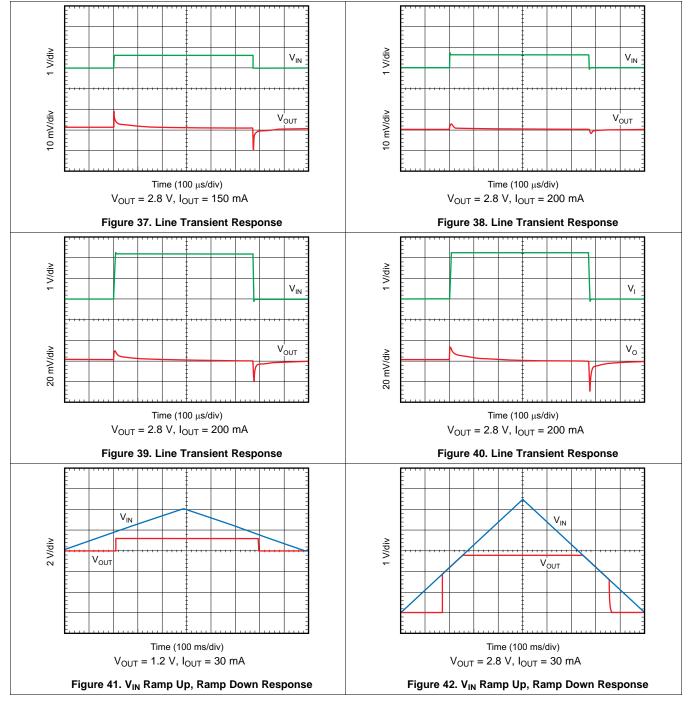
at $T_J = -40^{\circ}C$ to $+85^{\circ}C$, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1$ µF Typical values are at $T_J = 25^{\circ}C$, (unless otherwise noted)



www.ti.com

Typical Characteristics (continued)

at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)



RUMENTS

EXAS

Typical Characteristics (continued)

at $T_J = -40^{\circ}$ C to +85°C, $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 10$ mA, $V_{EN} = V_{IN}$, and $C_{OUT} = 1 \mu$ F Typical values are at $T_J = 25^{\circ}$ C, (unless otherwise noted)

7 Detailed Description

7.1 Overview

The TLV742P device belongs to a family of LDOs. This device consumes low quiescent current and delivers excellent line and load transient performance. These characteristics [combined with low noise and very good PSRR with little ($V_{IN} - V_{OUT}$) headroom] make this device ideal for portable RF applications.

7.2 Functional Block Diagrams

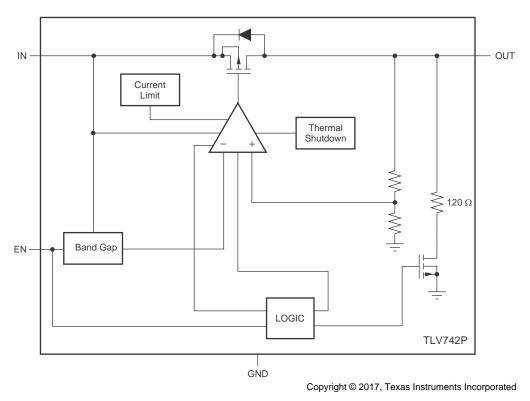


Figure 43. TLV742P Block Diagram

7.3 Feature Description

This LDO regulator offers current limit and thermal protection. The operating junction temperature of this device is -40°C to +125°C.

7.3.1 Internal Current Limit

The internal current limit helps to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of the output voltage. In such a case, the output voltage is not regulated, and is $V_{OUT} = I_{CL} \times R_L$. The PMOS pass transistor dissipates $(V_{IN} - V_{OUT}) \times I_{LIMIT}$ until thermal shutdown is triggered and the device turns off. When the device cools, the internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown; see *Thermal Information* for more details.

The PMOS pass element has a built-in body diode that conducts current when the voltage at OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting to 5% of the rated output current is recommended.

Feature Description (continued)

7.3.2 Shutdown

The enable pin (EN) is active high. The device is enabled when voltage at the EN pin goes above 0.9 V. The device is turned off when the EN pin is held at less than 0.4 V. When shutdown capability is not required, EN can be connected to the IN pin.

The TLV742P version has internal active pulldown circuitry that discharges the output with a time constant as given by Equation 1:

$$\tau = \frac{(120 \bullet R_L)}{(120 + R_L)} \bullet C_{OUT}$$

where:

• R_L = Load resistance

• C_{OUT} = Output capacitor

(1)

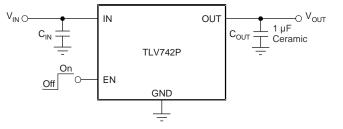
7.4 Device Functional Modes

The TLV742P series is specified over the recommended operating conditions (see *Recommended Operating Conditions*). The specifications may not be met when exposed to conditions outside of the recommended operating range.

To turn on the regulator, the EN pin must be driven over 0.9 V. Driving the EN pin below 0.4 V causes the regulator to enter shutdown mode.

In shutdown, the current consumption of the device typically reduces to 1 μ A.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TLV742P is a LDO with low quiescent current that delivers excellent line and load transient performance. This LDO regulator offers current limit and thermal protection. The operating junction temperature of this device series is -40° C to $+125^{\circ}$ C.

8.2 Typical Application

Copyright © 2017, Texas Instruments Incorporated

Figure 44. Typical Application Circuit

8.2.1 Design Requirements

Provide an input supply with adequate headroom to meet minimum V_{IN} requirements (as listed in Table 1), compensate for the GND pin current, and to power the load.

PARAMETER	DESIGN REQUIREMENT
Input voltage	1.8 V to 3.6 V
Output voltage	1.2 V
Output current	100 mA

Table 1. Design Parameters

8.2.2 Detailed Design Procedure

8.2.2.1 Input and Output Capacitor Requirements

Generally, 1-µF X5R- and X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature.

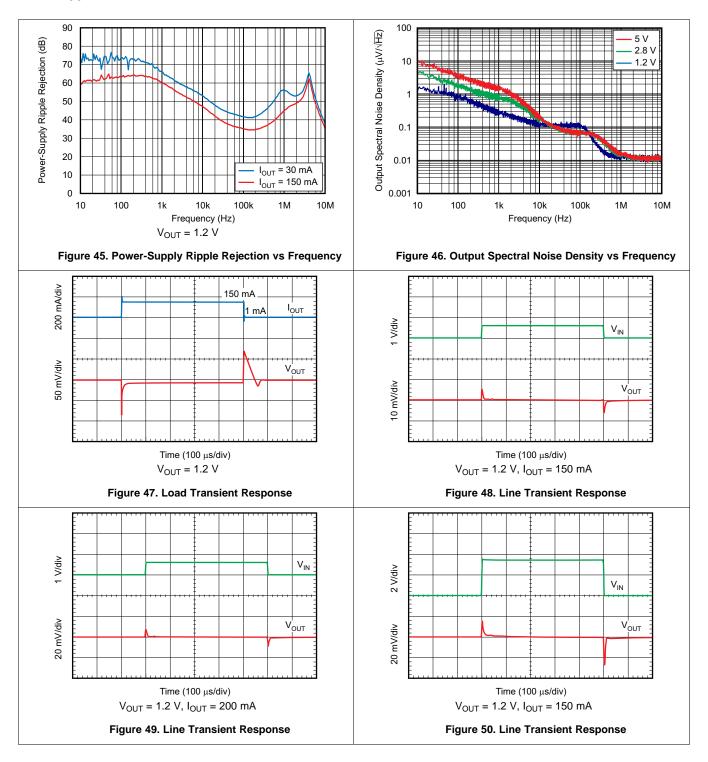
However, the TLV742P is designed to be stable with an effective capacitance of 0.1 μ F or larger at the output. As a result, the device is stable with capacitors of other dielectric types if the effective capacitance under operating bias voltage and temperature is greater than 0.1 μ F. This effective capacitance refers to the capacitance that the LDO detects under operating bias voltage and temperature derating into consideration. In addition to using less expensive dielectrics, this stability with 0.1- μ F effective capacitance enables the use of smaller footprint capacitors that have higher derating in size- and space-constrained applications.

Using a 0.1- μ F rated capacitor at the output of the LDO does not ensure stability because the effective capacitance under the specified operating conditions is less than 0.1 μ F. Maximum ESR must be less than 200 m Ω .

Although an input capacitor is not required for stability, good analog design practice is to connect a $0.1-\mu$ F to $1-\mu$ F, low ESR capacitor across the IN pin and GND pin of the regulator. This capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be required if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source. If source impedance is more than $2-\Omega$, a $0.1-\mu$ F input capacitor may be required to ensure stability.

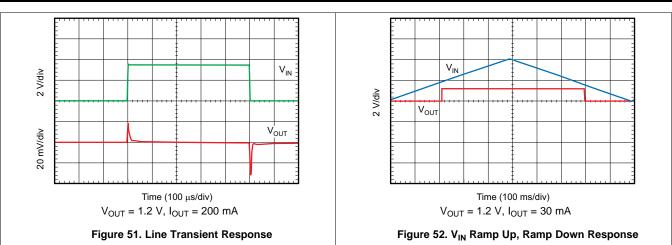
8.2.2.2 Dropout Voltage

The TLV742P series of LDOs use a PMOS pass transistor to achieve low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} scales approximately with output current because the PMOS device functions similar to a resistor in dropout.


PSRR and transient response degrade when $(V_{IN} - V_{OUT})$ approaches dropout.

8.2.2.3 Transient Response

Increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases the duration of the transient response.



8.2.3 Application Curves

Texas Instruments

8.3 Do's and Don'ts

Place at least one 1-µF ceramic capacitor as close as possible to the OUT pin of the regulator.

Do not place the output capacitor more than 10 mm away from the regulator.

Connect a 1- μ F low equivalent series resistance (ESR) capacitor across the IN pin and GND input of the regulator for improved transient performance.

Do not exceed the absolute maximum ratings.

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2 V and 5.5 V. The input voltage range provides adequate headroom for the device to have a regulated output. This input supply must be well-regulated (see Figure 33 through Figure 40). If the input supply is noisy, additional input capacitors with low ESR help improve the output noise performance.

10 Layout

10.1 Layout Guidelines

10.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance

Place input and output capacitors as close to the device pins as possible. To improve ac performance (such as PSRR, output noise, and transient response), TI recommends that the board be designed with separate ground planes for V_{IN} and V_{OUT} , with the ground plane connected only at the GND pin of the device, as shown in Figure 53. Connect the ground connection for the output capacitor directly to the GND pin of the device. High ESR capacitors can degrade PSRR performance.

10.1.2 Package Mounting

Solder pad footprint recommendations are available from the TI website at www.ti.com. The recommended land pattern for the DQN (X2SON-4) package is provided in the *Mechanical, Packaging, and Orderable Information* section.

TEXAS INSTRUMENTS

www.ti.com

10.2 Layout Example

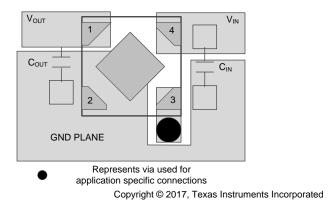


Figure 53. Recommended Layout Example

10.3 Thermal Considerations

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is enables again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator, which protects the regulator from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, limit junction temperature to 125°C (maximum). To estimate the margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions.

For good reliability, thermal protection triggers at least 35°C above the maximum expected ambient condition of the particular application. This configuration produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the LDO is designed to protect against overload conditions. This circuitry is not intended to replace proper heat sinking. Continuously running the LDO into thermal shutdown degrades device reliability.

10.4 Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the printed-circuit-board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air.

Performance data for JEDEC low- and high-K boards are shown in *Thermal Information*. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers improves heat sink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation (P_D) is equal to the product of the output current and the voltage drop across the output pass element, as shown in Equation 2.

$$\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}}) \times \mathsf{I}_{\mathsf{OUT}}$$

(2)

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 Evaluation Modules

An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TLV742P. *TLV70728EVM-612* details the design kits and evaluation modules for TLV70728EVM-612.

The EVM can be requested at the Texas Instruments website through the TLV742P product folder or purchased directly from the TI eStore.

11.1.2 Device Nomenclature

Ordering Information⁽¹⁾

PRODUCT	V _{OUT} ⁽²⁾
TLV742 xx(x)<i>Pyyyz</i>	XX(X) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used in the ordering number; otherwise, three digits are used (for example, $18 = 1.8 \text{ V}$, $285 = 2.85 \text{ V}$). P is optional; devices with P have an LDO regulator with an active output discharge. YYY is the package designator. Z is package quantity. Use R for reel (3000 pieces), and T for tape (250 pieces).

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

(2) Output voltages from 0.85 V to 5 V in 50-mV increments are available. Contact factory for details and availability.

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

6-Apr-2018

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV74211PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8H	Samples
TLV74212PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8G	Samples
TLV74215PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8F	Samples
TLV74218PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8E	Samples
TLV74225PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CS	Samples
TLV74227PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8D	Samples
TLV74228PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8C	Samples
TLV74229PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	8B	Samples
TLV74230PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	СТ	Samples
TLV74233PDQNR	ACTIVE	X2SON	DQN	4	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	7Z	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

6-Apr-2018

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GENERIC PACKAGE VIEW

X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated