TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC161AP,TC74HC161AF,TC74HC161AFN TC74HC163AP,TC74HC163AF,TC74HC163AFN

Synchronous Presettable 4-Bit Counter

TC74HC161AP/AF/AFN Binary, Asynchronous Clear

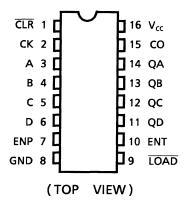
TC74HC163AP/AF/AFN Binary, Synchronous Clear

The TC74HC161A and 163A are high speed CMOS BINARY PRESETTABLE COUNTERs fabricated with silicon gate C²MOS technology.

They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The CK input is active on the rising edge. Both $\overline{\text{LOAD}}$ and $\overline{\text{CLR}}$ inputs are active on low logic level.

Presetting of their IC's is synchronous to the rising edge of CK. The clear function of the TC74HC163A is synchronous to CK, while the TC74HC161A is cleared asynchronously.


Two enable inputs (ENP and ENT) and CO are provided to enable easy cascading of counters, which facilitates easy implementation of n-bit counters without using external gates.

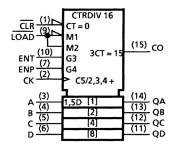
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

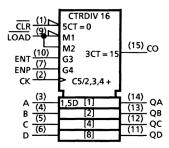
- High speed: $f_{max} = 63 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A$ (max) at $T_a = 25$ °C
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: | I_{OH} | = I_{OL} = 4 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS161, 163

Pin Assignment

Note: xxxFN (JEDEC SOP) is not available in Japan.



Weight


DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.)

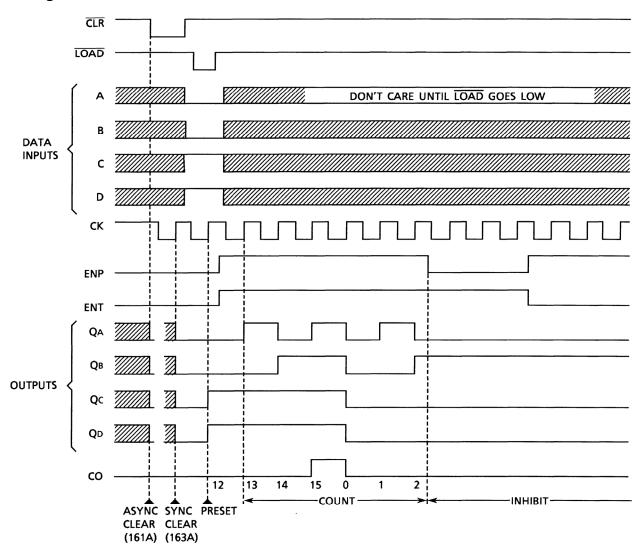
IEC Logic Symbol

TC74HC161A

TC74HC163A

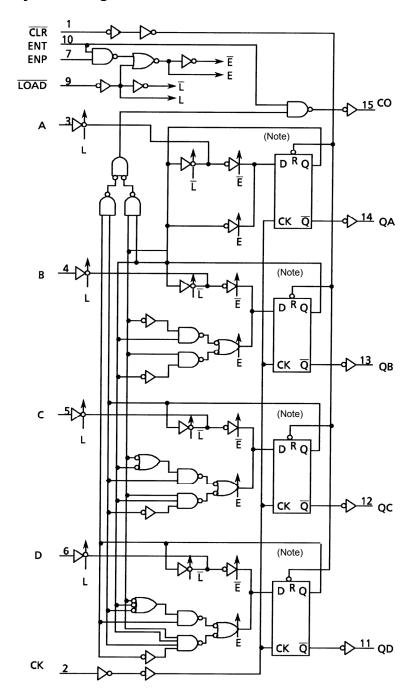
Truth Table

TC74HC161A				TC74HC163A				Outputo						
		Inputs					Inputs			Outputs			Function	
CLR	19	ENP	ENT	CK	CLR	lД	ENP	ENT	CK	QA	QB	QC	QD	
L	Х	Х	Х	Х	L	Χ	Х	Х		L	L	L	L	Reset to "0"
Н	L	Х	Х		Н	L	Х	Х		Α	В	С	D	Preset Data
Н	Н	Х	L		Н	Н	Х	L	\Box	No Change				No Count
Н	Н	L	Х		Н	Н	L	Х		No Change				No Count
Н	Н	Н	Н		Н	Н	Н	Н		Count Up				Count
Н	Х	Х	Х	\Box	Х	Х	Х	Х	\Box		No CI	nange		No Count


X: Don't care

A, B, C, D: Logic level of data inputs

Carry: Carry = $ENT \cdot QA \cdot QB \cdot QC \cdot QD$


Timing Chart

3

System Diagram

Note: Truth table of internal F/F

	TC	74HC16	61A		TC74HC163A							
D	CK	R	Q	Q	D	СК	R	Q	IØ			
Х	Х	L	L	Н	Х		L	L	Н			
L		Н	L	Н	L		Н	L	Н			
Н		Н	Н	L	Н		Н	Н	L			
Х	\Box	Η	No CI	nange	L	\Box	Н	No Cl	nange			

X: Don't care

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to $65^{\circ}C$. From Ta = 65 to $85^{\circ}C$ a derating factor of -10 mW/°C shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	٧
Output voltage	V _{OUT}	0 to V _{CC}	٧
Operating temperature	T _{opr}	−40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol			-	Γa = 25°(Ta = -40 to 85°C		Unit	
				V _{CC} (V)	Min	Тур.	Max	Min	Max	
				2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}	_		4.5	3.15	_	_	3.15	_	V
				6.0	4.20	_	_	4.20	_	
				2.0	_	_	0.50	_	0.50	
Low-level input voltage	V_{IL}		_	4.5	_	_	1.35	_	1.35	V
				6.0	_	_	1.80	_	1.80	
				2.0	1.9	2.0	_	1.9	_	
			$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	
	V _{OH}	V _{IN} = V _{IH} or V _{II}		6.0	5.9	6.0	_	5.9	_	V
			I _{OH} = -4 mA	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
				2.0	_	0.0	0.1	_	0.1	
High-level output voltage $V_{OH} = V_{IH} \text{ or } V_{IL} = V_{IH} \text{ or } V$	_	0.0	0.1	_	0.1					
	V_{OL}	V _{IN} = V _{IH} or V _{II}		6.0	_	0.1	0.1	_	0.1	V
		"" "	I _{OL} = 4 mA	4.5	_	0.17	0.26	_	Max	
			$I_{OL} = 5.2 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or	GND	6.0	_	_	±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or	· GND	6.0	_	_	4.0	_	40.0	μА

Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics		Symbol		Ta = 25°C		Ta = -40 to 85°C	Unit	
				V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width		t _{W (H)}		2.0	_	75	95	
(CK)			Figure 1	4.5	_	15	19	ns
(OIT)		t _{W (L)}		6.0	_	13	16	
Minimum pulse width				2.0	_	75	95	
(CLR)	(Note 1)	t _{W (L)}	Figure 4	4.5	_	15	19	ns
(OLIV)	(Note 1)			6.0	_	13	16	
Minimum set-up time				2.0	_	100		
(LOAD, ENP, ENT)		t_{s}	Figure 2, Figure 3	4.5	_	20	25	ns
(LOAD, LINF, LINT)				6.0		17	21	
Minimum set-up time				2.0	_	75	95	
(A, B, C, D)		ts	Figure 2	4.5	_	15	19	ns
(A, B, C, D)				6.0	_	13	16	
Minimum set-up time				2.0	_	75	95	
(CLR)	(Note 2)	ts	Figure 5	4.5	_	15	19	ns
(GLK)	(Note 2)			6.0		13	16	
				2.0	_	0	0	
Minimum hold time		t_h	Figure 2, Figure 3, Figure 5	4.5	_	0	0	ns
				6.0		0	0	
Minimum removal time				2.0	_	50	65	
(CLR)	(Note 1)	t _{rem}	Figure 4	4.5	_	10	13	ns
(OLK)	(INOIE I)			6.0		9	11	
				2.0	_	6	5	
Clock frequency		f	_	4.5	_	31	25	MHz
				6.0		36	85°C Limit 95 19 16 95 19 16 95 19 16 95 19 16 0 0 0 65 13 11 5	

7

Note 1: For TC74HC161A only Note 2: For TC74HC163A only

AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Output transition time		t _{TLH} t _{THL}	Figure 1	_	4	8	ns	
Propagation delay time		t _{pLH}	Figure 1		13	21	ns	
(CK-Q)		t _{pHL}	i igure i		13	21	113	
Propagation delay time		+						
(CK-CO)		t _{pLH}	Figure 1	_	16	26	ns	
[count mode]		t _{pHL}						
Propagation delay time		t _{pLH}		_	18	30		
(CK-CO)			Figure 2				ns	
[preset mode]		t _{pHL}		_	20	35		
Propagation delay time		t_{pLH}	Figure 6		10	17	ns	
(ENT-CO)		t _{pHL}	rigure o		10	17	115	
Propagation delay time			Figure 4		17	26		
(CLR -Q)	(Note)	t _{pHL}	Figure 4		17	20	ns	
Propagation delay time			Figure 4		20	25		
(CLR -CO)	(Note)	t _{pHL}	Figure 4	_	20	35	35 ns	
Maximum clock frequency		f _{max}	_	36	63	_	MHz	

8

Note: For TC74HC161A only

AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		-	Га = 25°C		_	a = o 85°C	Unit
	-		V _{CC} (V)	Min	Тур.	Max	Min	Max	
Output transition time	t _{TLH} t _{THL}	_	2.0 4.5 6.0	_ _ _	25 7 6	75 15 13	_ _ _	95 19 16	ns
Propagation delay time (CK-Q)	t _{pLH}	Figure 1	2.0 4.5 6.0	_ _ _	48 16 14	125 25 21	_ _ _	155 31 26	ns
Propagation delay time (CK-CO) [count mode]	^t pLH t _{pHL}	Figure 1	2.0 4.5 6.0	_ _ _	57 19 16	150 30 26	_ _ _	190 38 33	ns
Propagation delay time	t _{pLH}	Figure 2	2.0 4.5 6.0	_ _ _	66 22 19	175 35 30	_ _ _	220 44 37	ns
(CK-CO) [preset mode]	^t pHL		2.0 4.5 6.0	 - -	72 24 20	200 40 34	_ _ _	250 50 43	
Propagation delay time (ENT-CO)	t _{pLH} t _{pHL}	Figure 6	2.0 4.5 6.0		39 13 11	100 20 17		125 25 21	ns
Propagation delay time (CLR -Q) (Note 2)	t _p HL	Figure 4	2.0 4.5 6.0		60 20 17	150 30 26	_ _ _	190 38 33	ns
Propagation delay time (CLR -CO) (Note 2)	t _{pHL}	Figure 4	2.0 4.5 6.0		72 24 20	200 40 34	_ _ _	250 50 43	ns
Maximum clock frequency	f _{max}	_	2.0 4.5 6.0	6 31 36	18 53 62		5 25 29	— — —	MHz
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note 1)	_		_	34	_	_	_	pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

When the outputs drive a capacitive load, total current consumption is the sum of C_{PD} , and ΔI_{CC} which is obtained from the following formula:

In case of TC74HC161A/163A:

$$\Delta I_{CC} = f_{CK} \cdot V_{CC} \; \big(\frac{C_{QA}}{2} + \frac{C_{QB}}{4} + \frac{C_{QC}}{8} + \frac{C_{QD}}{16} + \frac{C_{CO}}{16} \big)$$

CQA~CQD and CCO are the capacitances at QA~QD and CO, respectively.

9

 f_{CK} is the input frequency of the CK.

Note 2: For TC74HC161A only

Switching Characteristics Test Waveform

Count Mode

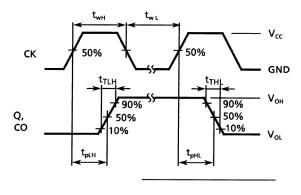


Figure 1

Preset Mode

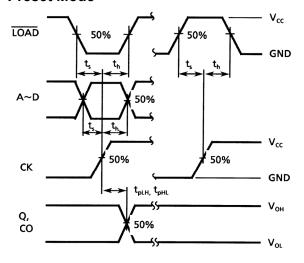


Figure 2

Clear Mode (TC74HC161A)

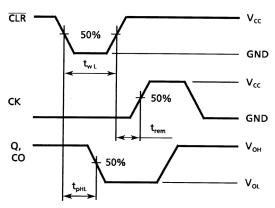


Figure 4

Clear Mode (TC74HC163A)

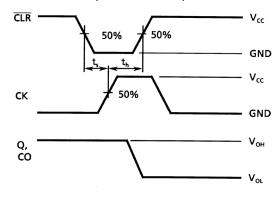


Figure 5

Count Enable Mode

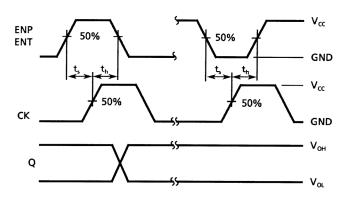


Figure 3

Cascade Mode (fix maximum count)

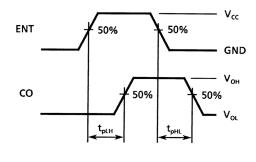
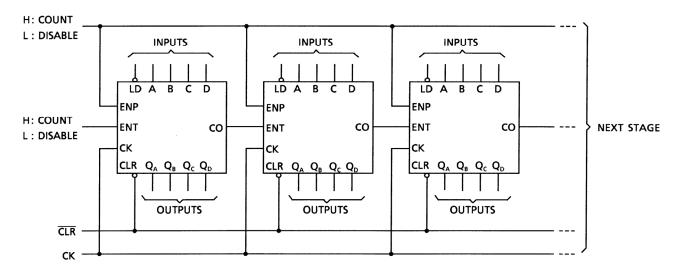
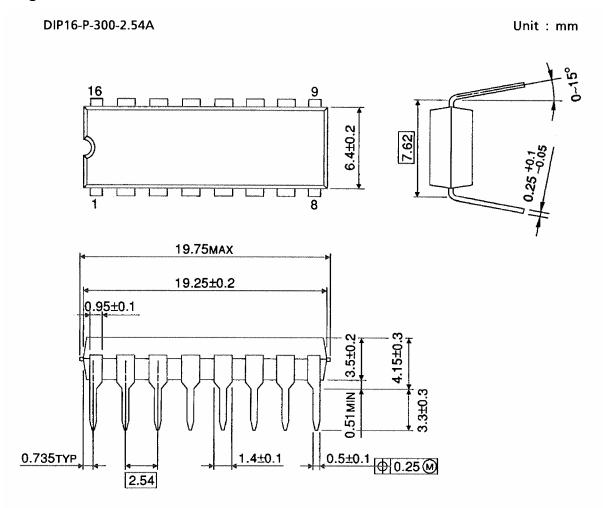
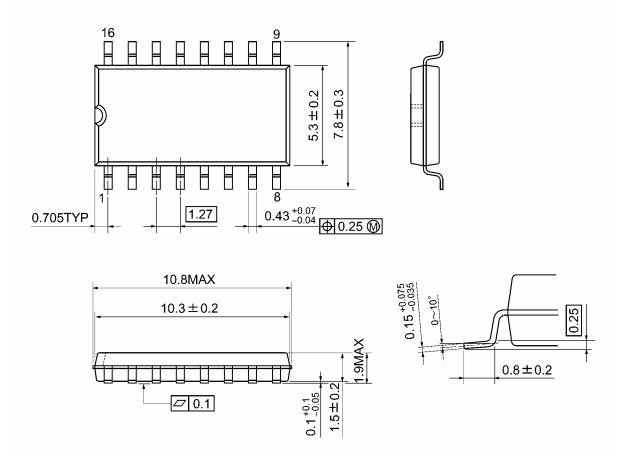



Figure 6


Typical Application

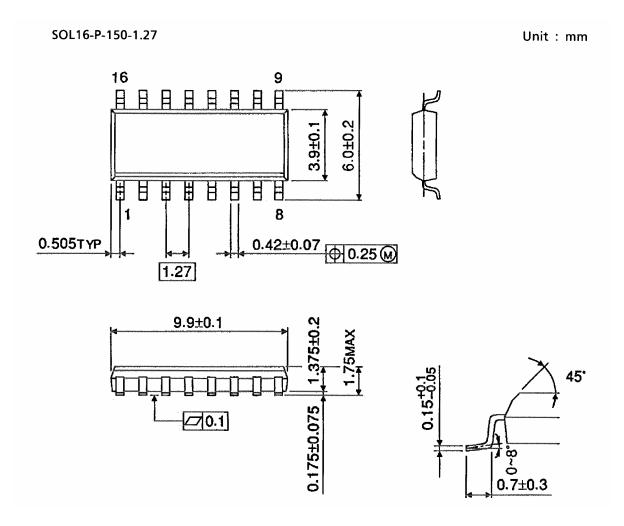
Parallel Carry N-Bit Counter

11


Package Dimensions

Weight: 1.00 g (typ.)

Package Dimensions


SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.