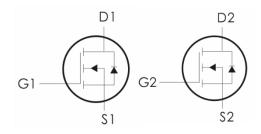


Description:


This Dual N-Channel MOSFET uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge.

It can be used in a wide variety of applications.

Features:

- 1) V_{DS} =30V, I_D =6.9A, $R_{DS(ON)}$ <32m Ω @ V_{GS} =10V
- 2) Low gate charge.
- 3) Green device available.
- 4) Advanced high cell denity trench technology for ultra low R_{DS(ON)}.
- 5) Excellent package for good heat dissipation.

Absolute Maximum Ratings: (T_a=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Units
V _{DS}	Drain-Source Voltage	30	٧
V _{GS}	Gate-Source Voltage	±12	V
	Continuous Drain Current -T _A =25°C ^A	6.9	
I _D	Continuous Drain Current- T _A =70 °C ^A	5.8	А
	Pulsed Drain Current ^B	30	
P _D	Power Dissipation	2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	${\mathbb C}$

Thermal Characteristics:

Symbol	Parameter	Max	Units
R _{OJL}	Maximum Junction-to-Lead	60	
R _{OJA}	Thermal Resistance, Junction to Ambient	110	°C/W

Electrical Characteristics: $(T_c=25^{\circ}C)$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Characteristics						
BV _{DSS}	Drain-Sourtce Breakdown Voltage	V _{GS} =0V,I _D =250 µ A	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =24V			1	μА
I _{GSS}	Gate-Source Leakage Current	V_{GS} = \pm 12V, V_{DS} =0A			±100	nA
On Characteristics ³						
V _{GS(th)}	GATE-Source Threshold Voltage	V _{GS} =V _{DS} , I _D =250 μ A	0.65		1.3	V
R _{DS(ON)}	Drain-Source On Resistance	V _{GS} =10V,I _D =6.9A		24	32	_
		V _{GS} =4.5V,I _D =5A		27	36	m Ω
G _{FS}	Forward Transconductance	$V_{DS=}5V$, $I_D=5A$		9		S
Dynamic Characteristics ⁴						
C _{iss}	Input Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		600		
C _{oss}	Output Capacitance			95		pF
C _{rss}	Reverse Transfer Capacitance			68		
Rg	Gate resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		3		Ω
Switching Characteristics ⁴						
t _{d(on)}	Turn-On Delay Time			4.6		ns
t _r	Rise Time	V_{DS} =15V, R_L =2.1 Ω R_{GEN} =3 Ω . V_{GS} =10V,		4.1		ns
t _{d(off)}	Turn-Off Delay Time			20.6		ns
t _f	Fall Time			5.2		ns
\mathbf{Q}_{g}	Total Gate Charge	V _{GS} =10V, V _{DS} =15V,		13.84		nC
\mathbf{Q}_{gs}	Gate-Source Charge			1.82		nC
\mathbf{Q}_{gd}	Gate-Drain "Miller" Charge	I _D =6.9A		3.2		nC
Drain-Source Diode Characteristics						
V _{SD}	Source-Drain Diode Forward Voltage	V _{GS} =0V,I _S =1A		0.76	1	V

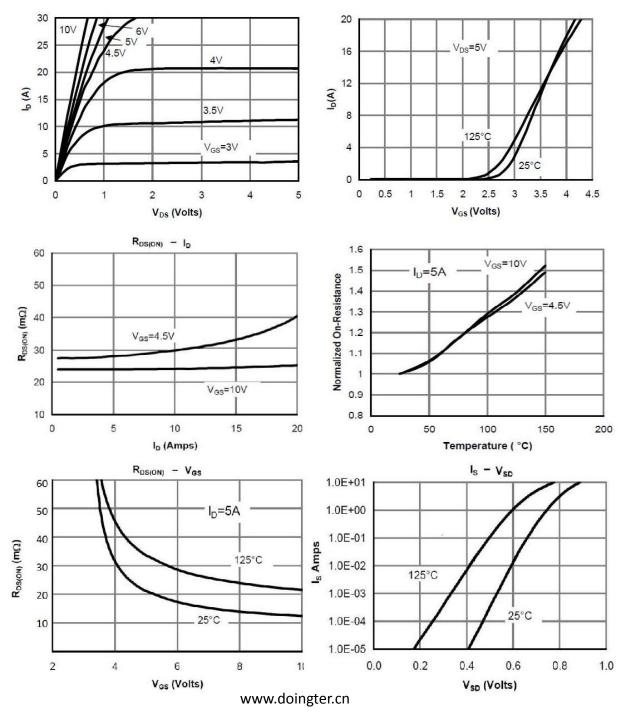
www.doingter.cn

STS2DNF30L

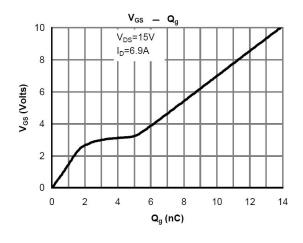
Trr	Body Diode Reverse Recovery Time	I F =6.9A, dI/dt=100A/	 16.5	 Ns
Qrr	Body Diode Reverse Recovery Charge	I F =6.9A, dI/dt=100A/	 7.8	 Nc

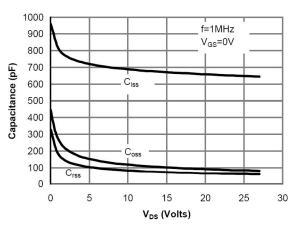
Notes:

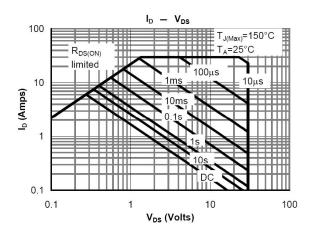
A:The value of R_{θ JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

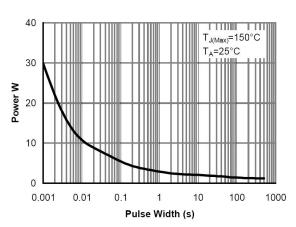

B: Repetitive rating, pulse width limited by junction temperature.

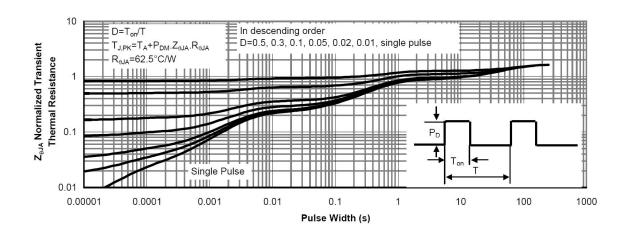
C.The R _{BJA} is the sum of the thermal impedance from junction to lead R _{BJL} and lead to ambient.


D.The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μ s pulses, duty cycle 0.5% max.


E.These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.


Typical Characteristics: (T_c=25^o unless otherwise noted)





0086-0755-8278-9056 www.doingter.cn