











SN74CB3T3245

SCDS136B - OCTOBER 2003-REVISED JUNE 2015

# SN74CB3T3245 8-Bit FET Bus Switch 2.5-V and 3.3-V Low-Voltage With 5-V-Tolerant Level Shifter

#### **Features**

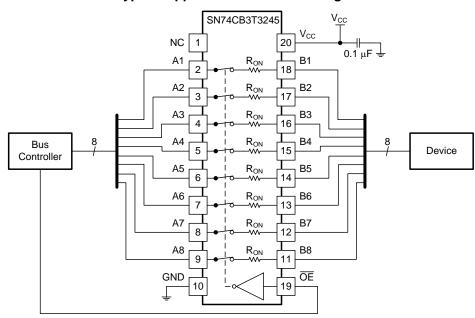
- Standard '245-Type Pinout
- Output Voltage Translation Tracks V<sub>CC</sub>
- Supports Mixed-Mode Signal Operation on All Data I/O Ports
  - 5-V Input Down to 3.3-V Output Level Shift With 3.3-V V<sub>CC</sub>
  - 5-V/3.3-V Input Down to 2.5-V Output Level Shift With 2.5-V V<sub>CC</sub>
- 5-V-Tolerant I/Os With Device Powered Up or Powered Down
- Bidirectional Data Flow With Near-Zero **Propagation Delay**
- Low ON-State Resistance (r<sub>on</sub>) Characteristics (r<sub>on</sub> = 5  $\Omega$  Typical)
- Low Input/Output Capacitance Minimizes Loading  $(C_{io(OFF)} = 5 pF Typical)$
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption ( $I_{CC} = 40 \mu A Maximum$ )
- V<sub>CC</sub> Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0- to 5-V Signaling Levels (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- Ioff Supports Partial-Power-Down Mode Operation

- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Performance Tested Per JESD 22
  - 2000-V Human-Body Model (A114-B, Class II)
  - 1000-V Charged-Device Model (C101)
- Ideal for Low-Power Portable Equipment

# 2 Applications

Supports Digital Applications: Level Translation, PCI Interface, USB Interface, Memory Interleaving, Bus Isolation

# 3 Description


The SN74CB3T3245 device is a high-speed TTLcompatible 8-bit FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks V<sub>CC</sub>.

#### Device Information<sup>(1)</sup>

| PART NUMBER     | PACKAGE    | BODY SIZE (NOM)    |
|-----------------|------------|--------------------|
| SN74CB3T3245DBQ | SSOP (20)  | 8.65 mm × 3.90 mm  |
| SN74CB3T3245DGV | TVSOP (20) | 5.00 mm × 4.40 mm  |
| SN74CB3T3245DW  | SOIC (20)  | 12.80 mm × 7.50 mm |
| SN74CB3T3245PW  | TSSOP (20) | 6.50 mm × 4.40 mm  |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

#### **Typical Application Functional Diagram**





#### **Table of Contents**

| 1 | Features 1                           | 8.3 Feature Description                             | 9          |
|---|--------------------------------------|-----------------------------------------------------|------------|
| 2 | Applications 1                       | 8.4 Device Functional Modes                         | 9          |
| 3 | Description 1                        | 9 Application and Implementation                    | 10         |
| 4 | Revision History2                    | 9.1 Application Information                         | 10         |
| 5 | Pin Configuration and Functions3     | 9.2 Typical Application                             | 10         |
| 6 | Specifications                       | 10 Power Supply Recommendations                     | <b>1</b> 1 |
| • | 6.1 Absolute Maximum Ratings         | 11 Layout                                           | 11         |
|   | 6.2 ESD Ratings                      | 11.1 Layout Guidelines                              | 11         |
|   | 6.3 Recommended Operating Conditions | 11.2 Layout Example                                 | 11         |
|   | 6.4 Thermal Information              | 12 Device and Documentation Support                 | 12         |
|   | 6.5 Electrical Characteristics       | 12.1 Documentation Support                          | 12         |
|   | 6.6 Switching Characteristics        | 12.2 Community Resources                            | 12         |
|   | 6.7 Typical Characteristics          | 12.3 Trademarks                                     | 12         |
| 7 | Parameter Measurement Information    | 12.4 Electrostatic Discharge Caution                | 12         |
| 8 | Detailed Description8                | 12.5 Glossary                                       | 12         |
| • | 8.1 Overview 8                       | 13 Mechanical, Packaging, and Orderable Information | 10         |
|   | 8.2 Functional Block Diagram 8       |                                                     | 12         |

### 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

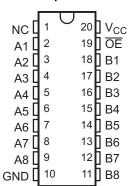
#### Changes from Revision A (August 2012) to Revision B

Page

Added Applications, Device Information table, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section
 Removed Ordering Information table.

#### Changes from Original (March 2005) to Revision A

**Page** 


Submit Documentation Feedback

Copyright © 2003–2015, Texas Instruments Incorporated



# 5 Pin Configuration and Functions

DBQ, DGV, DW, and PW Package 20-Pin SSOP, TVSOP, SOIC, TSSOP Top View



NC — No internal connection

#### **Pin Functions**

|     | PIN             | 1/0 | DECODIDETION              |
|-----|-----------------|-----|---------------------------|
| NO. | NAME            | I/O | DESCRIPTION               |
| 1   | NC              | _   | Not internally connected  |
| 2   | A1              | I/O | Switch 1 A terminal       |
| 3   | A2              | I/O | Switch 2 A terminal       |
| 4   | A3              | I/O | Switch 3 A terminal       |
| 5   | A4              | I/O | Switch 4 A terminal       |
| 6   | A5              | I/O | Switch 5 A terminal       |
| 7   | A6              | I/O | Switch 6 A terminal       |
| 8   | A7              | I/O | Switch 7 A terminal       |
| 9   | A8              | I/O | Switch 8 A terminal       |
| 10  | GND             | _   | Ground                    |
| 11  | В8              | I/O | Switch 8 B terminal       |
| 12  | B7              | I/O | Switch 7 B terminal       |
| 13  | B6              | I/O | Switch 6 B terminal       |
| 14  | B5              | I/O | Switch 5 B terminal       |
| 15  | B4              | I/O | Switch 4 B terminal       |
| 16  | В3              | I/O | Switch 3 B terminal       |
| 17  | B2              | I/O | Switch 2 B terminal       |
| 18  | B1              | I/O | Switch 1 B terminal       |
| 19  | ŌĒ              | I   | Output enable, active low |
| 20  | V <sub>CC</sub> | _   | Power                     |



# 6 Specifications

#### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                   |                                                   |                      | MIN  | MAX  | UNIT |
|-------------------|---------------------------------------------------|----------------------|------|------|------|
| V <sub>CC</sub>   | Supply voltage <sup>(2)</sup>                     |                      | -0.5 | 7    | V    |
| $V_{IN}$          | Control input voltage (2)(3)                      |                      | -0.5 | 7    | V    |
| $V_{I/O}$         | Switch I/O voltage (2)(3)(4)                      |                      | -0.5 | 7    | V    |
| I <sub>IK</sub>   | Control input clamp current                       | V <sub>IN</sub> < 0  |      | -50  | mA   |
| I <sub>I/OK</sub> | I/O port clamp current                            | V <sub>I/O</sub> < 0 |      | -50  | mA   |
| I <sub>I/O</sub>  | ON-state switch current <sup>(5)</sup>            |                      |      | ±128 | mA   |
|                   | Continuous current through V <sub>CC</sub> or GND |                      |      | ±100 | mA   |
| $T_{J}$           | Junction temperature                              |                      |      | 150  | °C   |
| T <sub>stg</sub>  | Storage temperature                               |                      | -65  | 150  | C    |

<sup>(1)</sup> Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground unless otherwise specified.

#### 6.2 ESD Ratings

|                    |                         |                                                                                | VALUE | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------|
|                    |                         | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)                         | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±1000 | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

#### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

|                  |                                   |                                            | MIN | MAX | UNIT |
|------------------|-----------------------------------|--------------------------------------------|-----|-----|------|
| $V_{CC}$         | Supply voltage                    |                                            | 2.3 | 3.6 | V    |
| V <sub>IH</sub>  | Lligh level central input valtage | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.7 | 5.5 | 1/   |
|                  | High-level control input voltage  | $V_{CC}$ = 2.7 V to 3.6 V                  | 2   | 5.5 | V    |
|                  | Law lavel control input voltage   | V <sub>CC</sub> = 2.3 V to 2.7 V           | 0   | 0.7 |      |
| $V_{IL}$         | Low-level control input voltage   | 0                                          | 8.0 | V   |      |
| V <sub>I/O</sub> | Data input/output voltage         |                                            | 0   | 5.5 | V    |
| T <sub>A</sub>   | Operating free-air temperature    |                                            | -40 | 85  | °C   |

<sup>(1)</sup> All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

#### 6.4 Thermal Information

|                 |                                        |            | SN74CE         | 33T3245   |            |      |
|-----------------|----------------------------------------|------------|----------------|-----------|------------|------|
|                 | THERMAL METRIC <sup>(1)</sup>          | DBQ (SSOP) | DGV<br>(TVSOP) | DW (SOIC) | PW (TSSOP) | UNIT |
|                 |                                        | 20 PINS    | 20 PINS        | 20 PINS   | 20 PINS    |      |
| $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 68         | 92             | 58        | 83         | °C/W |

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

<sup>(3)</sup> The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

<sup>(4)</sup>  $V_I$  and  $V_O$  are used to denote specific conditions for  $V_{I/O}$ .

<sup>(5)</sup> I<sub>I</sub> and I<sub>O</sub> are used to denote specific conditions for I<sub>I/O</sub>.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



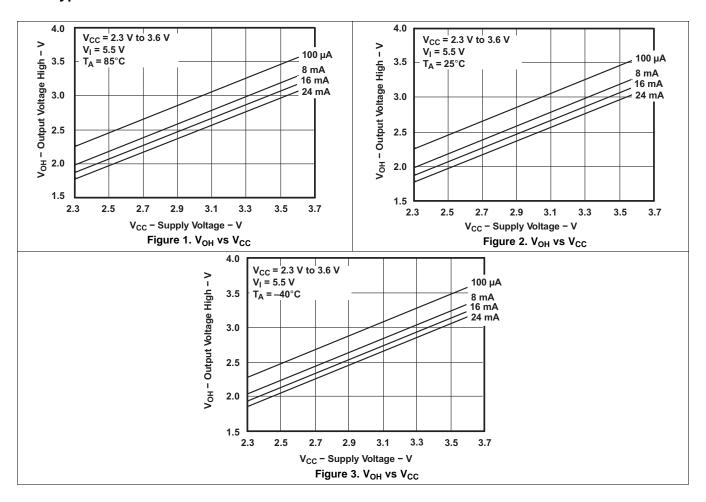
#### 6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)(1)

| PA                              | RAMETER        | TEST CONDITION                                                                           | MIN                                                | TYP <sup>(2)</sup> | MAX | UNIT |    |  |
|---------------------------------|----------------|------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|-----|------|----|--|
| V <sub>IK</sub>                 |                | V <sub>CC</sub> = 3 V, I <sub>I</sub> = -18 mA                                           |                                                    |                    |     | -1.2 | V  |  |
| V <sub>OH</sub>                 |                | See and Figure 1                                                                         |                                                    |                    |     |      | V  |  |
| I <sub>IN</sub>                 | Control inputs | V <sub>CC</sub> = 3.6 V, V <sub>IN</sub> = 3.6 V to 5.5 V or GND                         |                                                    |                    |     | ±10  | μΑ |  |
|                                 | ·              |                                                                                          | $V_{I} = V_{CC} - 0.7 \text{ V to } 5.5 \text{ V}$ |                    |     | ±20  |    |  |
| I <sub>I</sub>                  |                | $V_{CC} = 3.6 \text{ V}$ , Switch ON, $V_{IN} = V_{CC}$ or GND                           | $V_{I} = 0.7 \text{ V to } V_{CC} - 0.7 \text{ V}$ |                    |     | -40  | μΑ |  |
|                                 |                |                                                                                          | $V_{I} = 0 \text{ to } 0.7 \text{ V}$              |                    |     | ±5   |    |  |
| I <sub>OZ</sub> <sup>(3)</sup>  |                | $V_{CC} = 3.6 \text{ V}, V_{O} = 0 \text{ to } 5.5 \text{ V}, V_{I} = 0, \text{ Switch}$ | OFF, $V_{IN} = V_{CC}$ or GND                      |                    |     | ±10  | μΑ |  |
| I <sub>off</sub>                |                | $V_{CC} = 0$ , $V_O = 0$ to 5.5 V, $V_I = 0$ ,                                           |                                                    |                    |     | 10   | μΑ |  |
| -                               |                | $V_{CC} = 3.6 \text{ V}, I_{VO} = 0,$                                                    | $V_1 = V_{CC}$ or GND                              |                    |     | 40   | μA |  |
| Icc                             |                | Switch ON or OFF, $V_{IN} = V_{CC}$ or GND                                               | V <sub>I</sub> = 5.5 V                             |                    |     | 40   |    |  |
| ΔI <sub>CC</sub> <sup>(4)</sup> | Control inputs | $V_{CC}$ = 3 V to 3.6 V, One input at $V_{CC}$ – 0.6 V GND                               | /, Other inputs at V <sub>CC</sub> or              |                    |     | 300  | μA |  |
| C <sub>in</sub>                 | Control inputs | $V_{CC} = 3.3 \text{ V}, V_{IN} = V_{CC} \text{ or GND}$                                 |                                                    |                    | 4   |      | pF |  |
| C <sub>io(OFF)</sub>            |                | $V_{CC}$ = 3.3 V, $V_{I/O}$ = 5.5 V, 3.3 V, or GND, SV GND                               | vitch OFF, V <sub>IN</sub> = V <sub>CC</sub> or    |                    | 5   |      | pF |  |
|                                 |                | V 00 V 0 sitely ON V 0 or OND                                                            | $V_{I/O} = 5.5 \text{ V or } 3.3 \text{ V}$        |                    | 5   |      |    |  |
| $C_{io(ON)}$                    |                | $V_{CC} = 3.3 \text{ V}$ , Switch ON, $V_{IN} = V_{CC}$ or GND                           | $V_{I/O} = GND$                                    |                    | 13  |      | pF |  |
|                                 |                | V 22 V TVD et V 25 V V 2                                                                 | I <sub>O</sub> = 24 mA                             | ·                  | 5   | 8.5  |    |  |
| <b>"</b> (5)                    |                | $V_{CC} = 2.3 \text{ V}, \text{ TYP at } V_{CC} = 2.5 \text{ V}, V_{I} = 0$              | I <sub>O</sub> = 16 mA                             |                    | 5   | 8.5  | 0  |  |
| r <sub>on</sub> (5)             |                | V 2VV 0                                                                                  | I <sub>O</sub> = 64 mA                             | ·                  | 5   | 7    | Ω  |  |
|                                 |                | $V_{CC} = 3 \text{ V}, V_I = 0$                                                          | I <sub>O</sub> = 32 mA                             |                    | 5   | 7    |    |  |

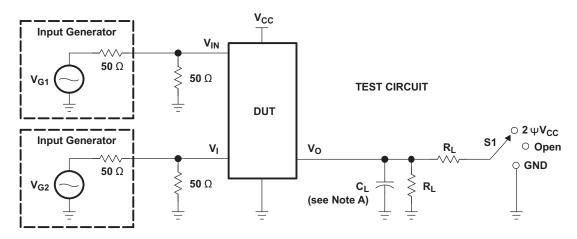
- $V_{IN}$  and  $I_{IN}$  refer to control inputs.  $V_I$ ,  $V_O$ ,  $I_I$ , and  $I_O$  refer to data pins. All typical values are at  $V_{CC}$  = 3.3 V (unless otherwise noted),  $T_A$  = 25°C.
- For I/O ports, the parameter I<sub>OZ</sub> includes the input leakage current.
- This is the increase in supply current for each input that is at the specified TTL voltage level, rather than  $V_{CC}$  or GND. Measured by the voltage drop between A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

#### 6.6 Switching Characteristics

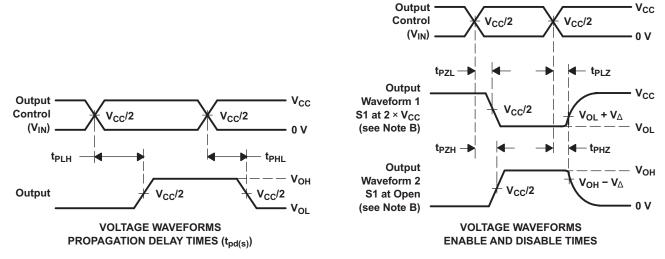

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4)

| PARAMETER                      | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 2<br>± 0.2 | 2.5 V<br>2 V | V <sub>CC</sub> = 3<br>± 0.3 |      | UNIT |
|--------------------------------|-----------------|----------------|------------------------------|--------------|------------------------------|------|------|
|                                | (INFOT)         | (001701)       | MIN                          | MAX          | MIN                          | MAX  |      |
| t <sub>pd</sub> <sup>(1)</sup> | A or B          | B or A         |                              | 0.15         |                              | 0.25 | ns   |
| t <sub>en</sub>                | ŌĒ              | A or B         | 1                            | 10.5         | 1                            | 8    | ns   |
| t <sub>dis</sub>               | ŌĒ              | A or B         | 1                            | 5.5          | 1                            | 7.5  | ns   |

The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).




#### 6.7 Typical Characteristics






#### 7 Parameter Measurement Information



| TEST                               | V <sub>CC</sub>                | S1                                         | R <sub>L</sub>            | VI                           | CL             | $\mathbf{V}_{\!\Delta}$ |
|------------------------------------|--------------------------------|--------------------------------------------|---------------------------|------------------------------|----------------|-------------------------|
| t <sub>pd(s)</sub>                 | 2.5 V ± 0.2 V<br>3.3 V ± 0.3 V | Open<br>Open                               | <b>500</b> Ω <b>500</b> Ω | 3.6 V or GND<br>5.5 V or GND | 30 pF<br>50 pF |                         |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | 2.5 V ± 0.2 V<br>3.3 V ± 0.3 V | 2 × V <sub>CC</sub><br>2 × V <sub>CC</sub> | <b>500</b> Ω <b>500</b> Ω | GND<br>GND                   | 30 pF<br>50 pF | 0.15 V<br>0.3 V         |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | 2.5 V ± 0.2 V<br>3.3 V ± 0.3 V | Open<br>Open                               | <b>500</b> Ω <b>500</b> Ω | 3.6 V<br>5.5 V               | 30 pF<br>50 pF | 0.15 V<br>0.3 V         |



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

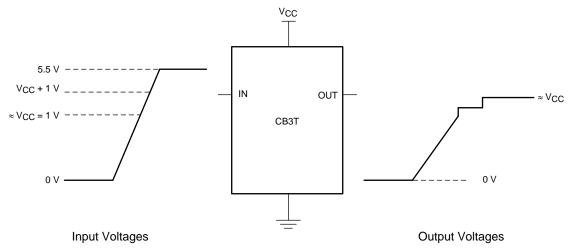
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR $\leq$  10 MHz,  $Z_0 = 50$  W,  $t_r \leq$  2.5 ns,  $t_f \leq$  2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G. tpLH and tpHL are the same as tpd(s). The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Test Circuit and Voltage Waveforms



## 8 Detailed Description

#### 8.1 Overview


The SN74CB3T3245 device is a high-speed TTL-compatible FET bus switch with low ON-state resistance ( $r_{on}$ ), allowing for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by providing voltage translation that tracks  $V_{CC}$ . The SN74CB3T3245 device supports systems using 5-V TTL, 3.3-V LVTTL, and 2.5-V CMOS switching standards, as well as user-defined switching levels (see Figure 5).

The SN74CB3T3245 device is an 8-bit bus switch with a single ouput-enable  $(\overline{OE})$  input and a standard '245 pinout. When  $\overline{OE}$  is low, the 8-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When  $\overline{OE}$  is high, the 8-bit bus switch is OFF, and a high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

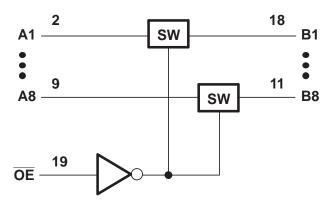
To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

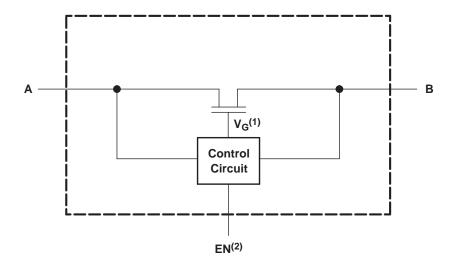
#### 8.2 Functional Block Diagram



If the input high voltage ( $V_{IH}$ ) level is greater than or equal to  $V_{CC}$  + 1V, and less than or equal to 5.5V, the output high voltage ( $V_{OH}$ ) level will be equal to approximately the  $V_{CC}$  voltage level.

Figure 5. Typical DC Voltage Translation Characteristics





Figure 6. Logic Diagram (Positive Logic)

Submit Documentation Feedback

Copyright © 2003–2015, Texas Instruments Incorporated



#### Functional Block Diagram (continued)



- 1) Gate Voltage ( $V_G$ ) is approximately equal to  $V_{CC}$  +  $V_T$  when the switch is ON and  $V_I > (V_{CC} + V_T)$ .
- 2) EN is the internal enable signal applied to the switch.

Figure 7. Simplified Schematic, Each FET Switch (SW)

#### 8.3 Feature Description

The SN74CB3T3245 device uses the standard '245-type pinout. The output voltage tracks  $V_{CC}$ , allowing for easy down-translation. The device is ideal for low-power portable equipment.

Mixed-mode signal operation is supported on all data I/O ports. 5-V input down to 3.3-V output level shift with 3.3-V  $V_{CC}$  and 5-V/3.3-V input down to 2.5-V output level shift With 2.5-V  $V_{CC}$  are possible due to overvoltage tolerant inputs.

This part is friendly to partial power down systems. The I/Os are 5-V-tolerant with the device powered up or powered down and I<sub>off</sub> supports partial-power-down mode operation

The SN74CB3T3245 has a bidirectional data flow with near-zero propagation delay.

The SN74CB3T3245 has low ON-state resistance ( $r_{on}$ ) characteristics ( $r_{on} = 5 \Omega$  Typical)

The SN74CB3T3245 has both low input and output capacitance minimizes loading (C<sub>io(OFF)</sub> = 5 pF Typical)

Data and control inputs provide undershoot clamp diodes.

The SN74CB3T3245 has low power consumption ( $I_{CC} = 40 \mu A$  Maximum)

The SN74CB3T3245 has a  $V_{CC}$  operating range from 2.3 V to 3.6 V.

The data I/Os support 0- to 5-V signaling levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V)

Control inputs can be driven by TTL or 5-V/3.3-V CMOS outputs

#### 8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74CB3T3245.

**Table 1. Function Table** 

| INPUT<br>OE | INPUT/OUTPUT<br>A | FUNCTION        |
|-------------|-------------------|-----------------|
| L           | В                 | A port = B port |
| Н           | Z                 | Disconnect      |



# 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

# 9.1 Application Information

This application is specifically to connect a 5-V bus to a 3.3-V device. It is assumed that communication in this particular application is one-directional, going from the bus controller to the device.

# 9.2 Typical Application

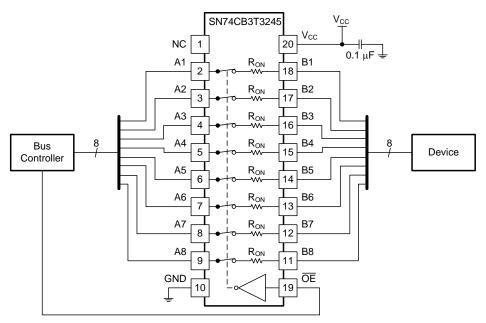



Figure 8. Typical Application Schematic

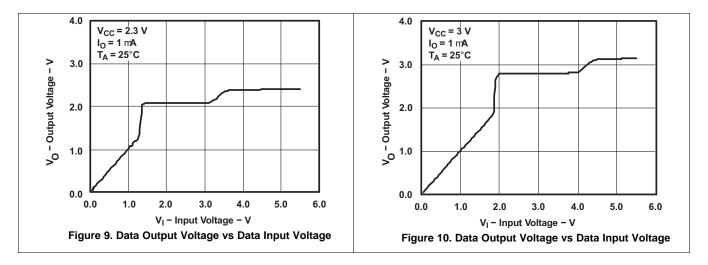
#### 9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits.

Because this design is for down-translating voltage, no pullup resistors are required.

#### 9.2.2 Detailed Design Procedure

- 1. Recommended Input conditions
  - Specified high and low levels. See (V<sub>IH</sub> and V<sub>IL</sub>) in Recommended Operating Conditions
  - Inputs are overvoltage tolerant allowing them to go as high as 7 V at any valid  $V_{CC}$
- 2. Recommend output conditions
  - Load currents should not exceed 128 mA on each channel


Submit Documentation Feedback

Copyright © 2003–2015, Texas Instruments Incorporated



## **Typical Application (continued)**

#### 9.2.3 Application Curves



## 10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each  $V_{CC}$  terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- $\mu$ F bypass capacitor is recommended. If there are multiple pins labeled  $V_{CC}$ , then a 0.01- $\mu$ F or 0.022- $\mu$ F capacitor is recommended for each  $V_{CC}$  because the  $V_{CC}$  pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example  $V_{CC}$  and  $V_{DD}$ , a 0.1- $\mu$ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- $\mu$ F and 1- $\mu$ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

#### 11 Layout

#### 11.1 Layout Guidelines

Reflections and matching are closely related to the loop antenna theory but are different enough to be discussed separately from the theory. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 11 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

#### 11.2 Layout Example

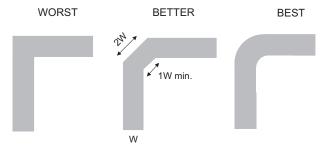



Figure 11. Trace Example

Copyright © 2003–2015, Texas Instruments Incorporated



## 12 Device and Documentation Support

#### 12.1 Documentation Support

#### 12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

#### 12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

## 12.4 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### 12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.





24-Apr-2015

#### **PACKAGING INFORMATION**

| Orderable Device  | Status | Package Type |         | Pins |      | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | <b>Device Marking</b> | Samples |
|-------------------|--------|--------------|---------|------|------|----------------------------|------------------|---------------------|--------------|-----------------------|---------|
|                   | (1)    |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                 |              | (4/5)                 |         |
| 74CB3T3245DGVRE4  | ACTIVE | TVSOP        | DGV     | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245DBQR  | ACTIVE | SSOP         | DBQ     | 20   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | CB3T3245              | Samples |
| SN74CB3T3245DGVR  | ACTIVE | TVSOP        | DGV     | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245DW    | ACTIVE | SOIC         | DW      | 20   | 25   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | CB3T3245              | Samples |
| SN74CB3T3245DWG4  | ACTIVE | SOIC         | DW      | 20   | 25   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | CB3T3245              | Samples |
| SN74CB3T3245DWR   | ACTIVE | SOIC         | DW      | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | CB3T3245              | Samples |
| SN74CB3T3245DWRG4 | ACTIVE | SOIC         | DW      | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | CB3T3245              | Samples |
| SN74CB3T3245PW    | ACTIVE | TSSOP        | PW      | 20   | 70   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245PWE4  | ACTIVE | TSSOP        | PW      | 20   | 70   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245PWG4  | ACTIVE | TSSOP        | PW      | 20   | 70   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245PWR   | ACTIVE | TSSOP        | PW      | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245PWRE4 | ACTIVE | TSSOP        | PW      | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |
| SN74CB3T3245PWRG4 | ACTIVE | TSSOP        | PW      | 20   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | KS245                 | Samples |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.



# PACKAGE OPTION ADDENDUM

24-Apr-2015

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

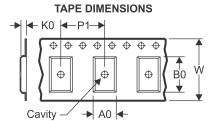
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

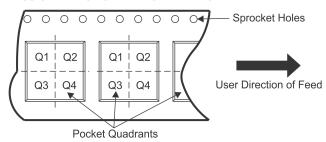
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

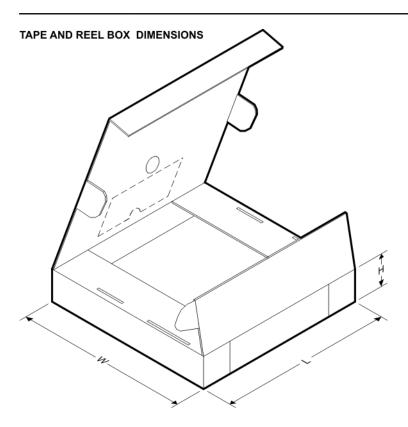
www.ti.com 7-Nov-2013


# TAPE AND REEL INFORMATION





| _ |    |                                                           |
|---|----|-----------------------------------------------------------|
|   |    | Dimension designed to accommodate the component width     |
|   |    | Dimension designed to accommodate the component length    |
|   |    | Dimension designed to accommodate the component thickness |
|   | W  | Overall width of the carrier tape                         |
| Γ | P1 | Pitch between successive cavity centers                   |


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

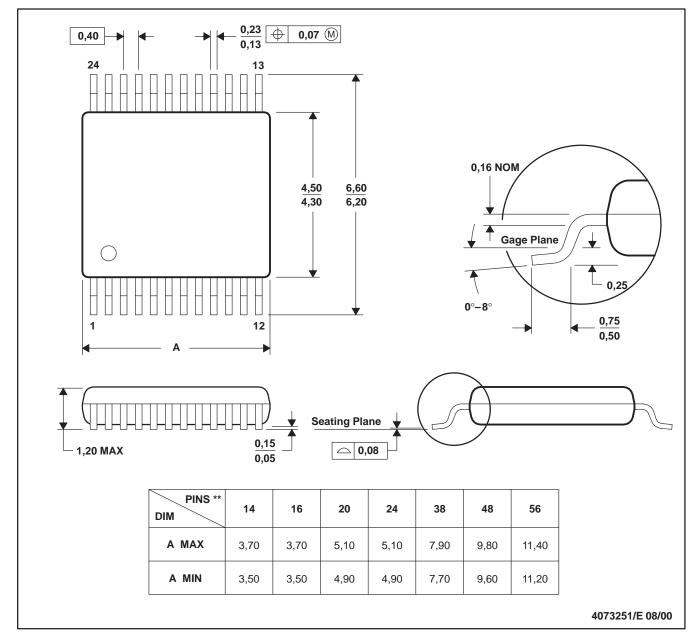


#### \*All dimensions are nominal

| All differsions are norminal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|------------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74CB3T3245DBQR             | SSOP            | DBQ                | 20 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| SN74CB3T3245DGVR             | TVSOP           | DGV                | 20 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74CB3T3245DWR              | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1               |
| SN74CB3T3245PWR              | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.1        | 1.6        | 8.0        | 16.0      | Q1               |

www.ti.com 7-Nov-2013




\*All dimensions are nominal

| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74CB3T3245DBQR | SSOP         | DBQ             | 20   | 2500 | 367.0       | 367.0      | 38.0        |
| SN74CB3T3245DGVR | TVSOP        | DGV             | 20   | 2000 | 367.0       | 367.0      | 35.0        |
| SN74CB3T3245DWR  | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74CB3T3245PWR  | TSSOP        | PW              | 20   | 2000 | 367.0       | 367.0      | 38.0        |

# DGV (R-PDSO-G\*\*)

#### **24 PINS SHOWN**

#### **PLASTIC SMALL-OUTLINE**



NOTES: A. All linear dimensions are in millimeters.

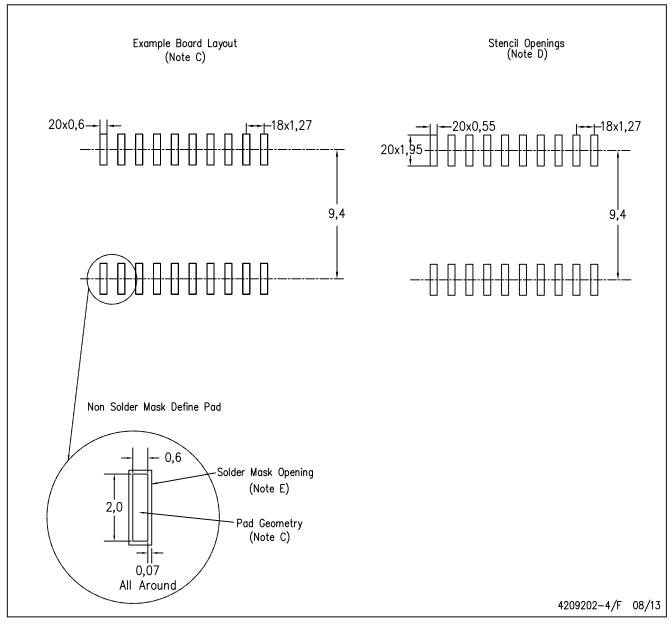
B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 DW (R-PDSO-G20)

# PLASTIC SMALL OUTLINE



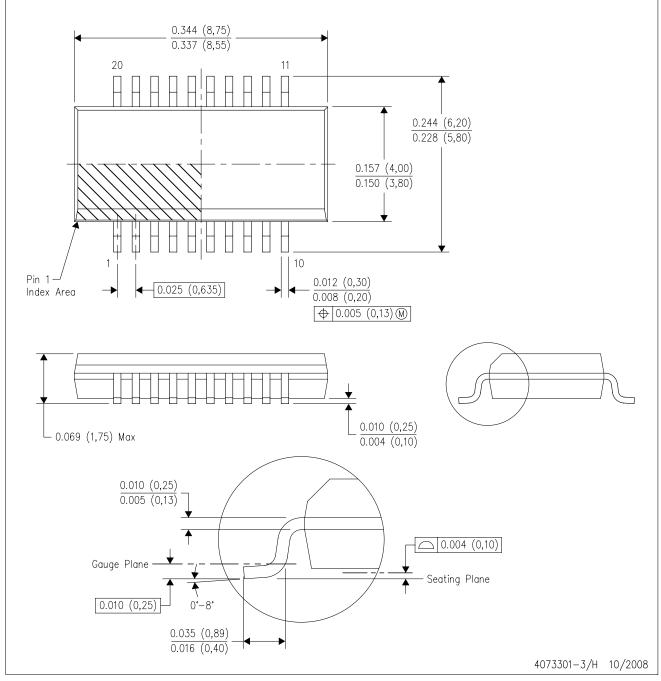

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.



# DW (R-PDSO-G20)

# PLASTIC SMALL OUTLINE

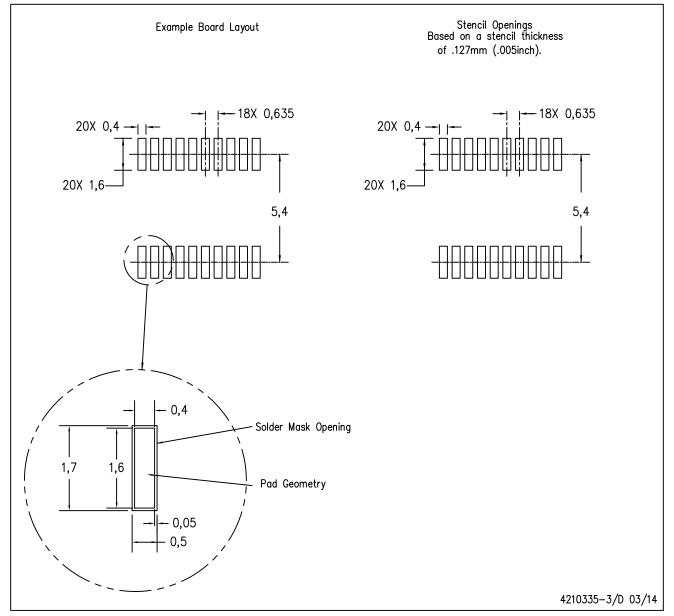



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



DBQ (R-PDSO-G20)

# PLASTIC SMALL-OUTLINE PACKAGE

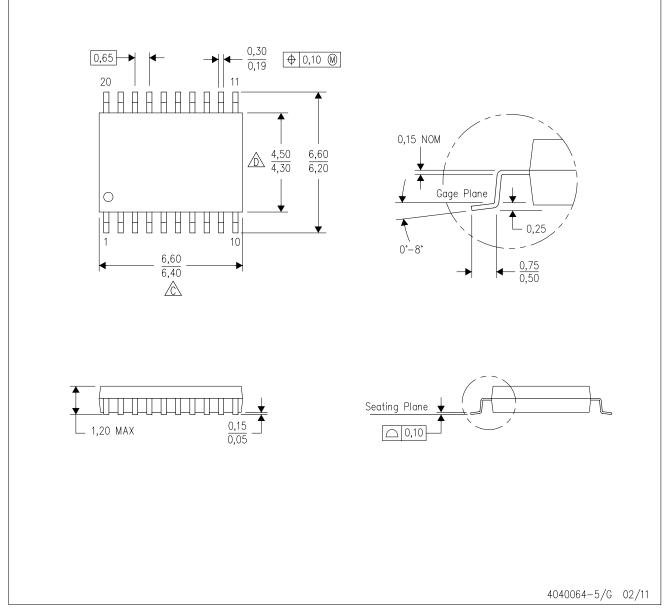



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AD.



DBQ (R-PDSO-G20)

# PLASTIC SMALL OUTLINE PACKAGE

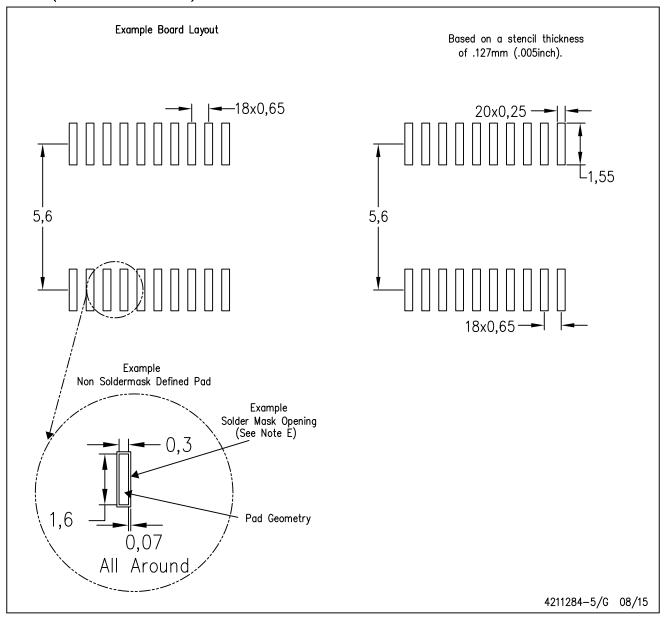



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



PW (R-PDSO-G20)

# PLASTIC SMALL OUTLINE

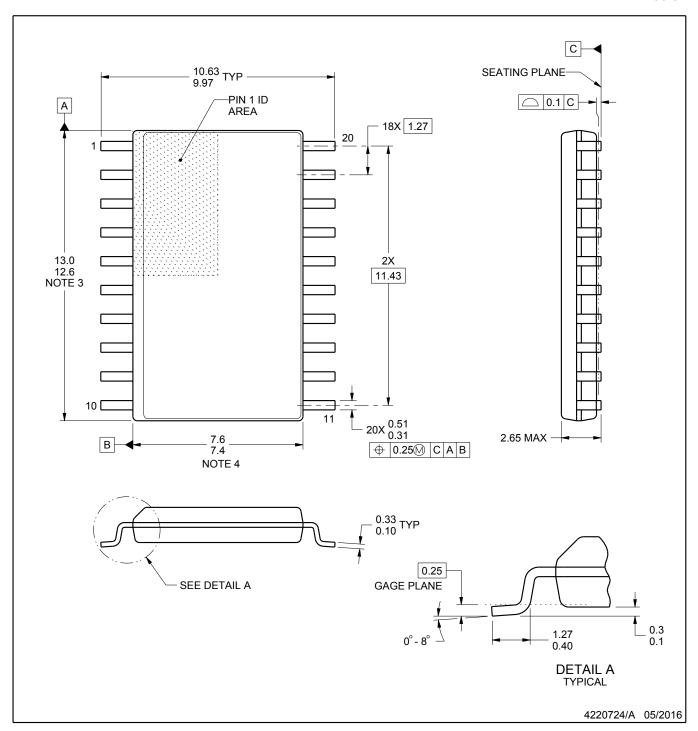



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



# PW (R-PDSO-G20)

# PLASTIC SMALL OUTLINE



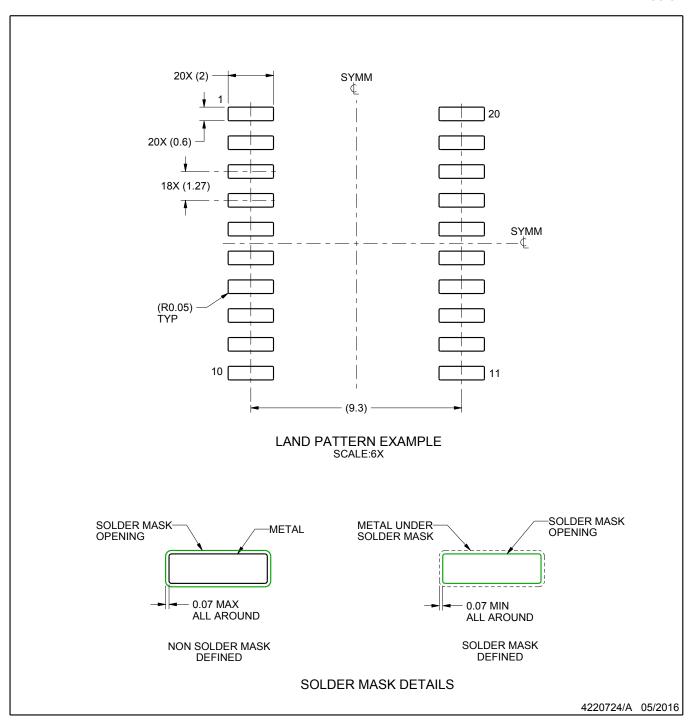

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
  C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.





SOIC




- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

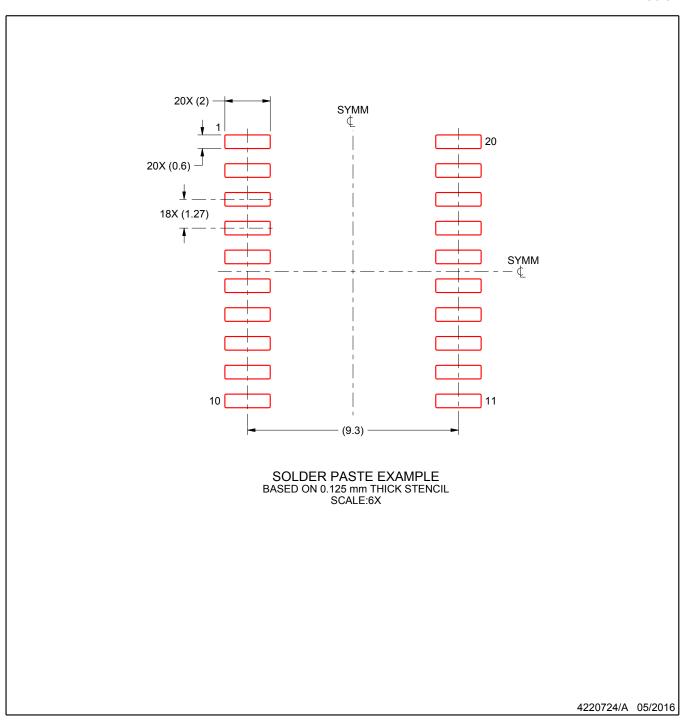
  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



SOIC




NOTES: (continued)

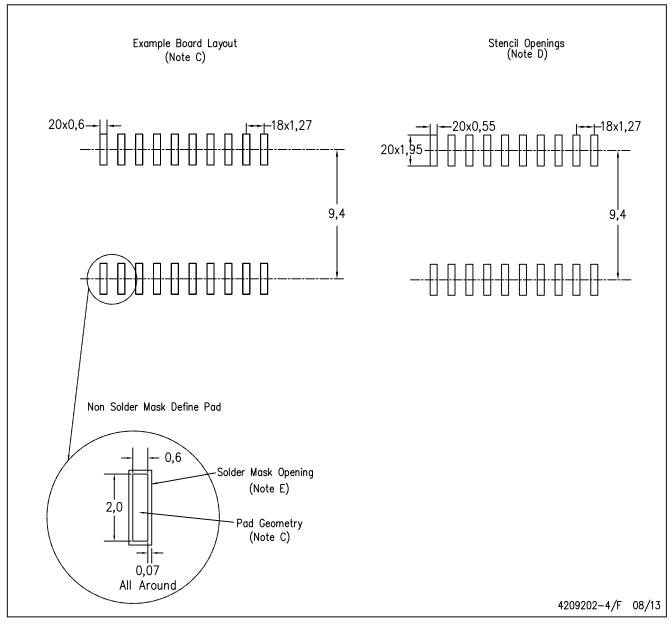
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SOIC




NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



# DW (R-PDSO-G20)

# PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity