

PCI Express Gen 2 & Gen 3 Clock Generator

Features

- Low power PCI Express Gen 2 & Gen 3clock generator
- One100-MHz differential SRC clocks
- Low power push-pull output buffers (no 50ohm to ground needed)
- Integrated 33ohm series termination resistors
- Low jitter (<50pS)

- SSON input for enabling spread spectrum clock
- Triangular Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- Input frequency of 14.318MHz
- Industrial Temperature -40°C to 85°C
- 3.3V power supply
- 16-pin TSSOP package

Pin Definitions

Pin No.	Name	Туре	Description
1	XIN	I	14.318 MHz Crystal input.
2	VDD	PWR	3.3V power supply
3	VDD	PWR	3.3V power supply
4	VSS	GND	Ground
5	VDD	PWR	3.3V power supply
6	VSS	GND	Ground
7	SRC1	O, DIF	100 MHz Differential serial reference clocks.
8	SRC1#	O, DIF	100 MHz Differential serial reference clocks.
9	VSS	GND	Ground
10	VDD	PWR	3.3V power supply
11	VDD	PWR	3.3V power supply
12	VSS	GND	Ground
13	VDD	PWR	3.3V power supply
14	SSON	I	3.3V LVTTL input for enabling spread spectrum clock 0 = Disable, 1 = Enable (-0.5% SS) Extrenal 10K ohm pull-up or pull-down resistor required
15	VSS	GND	Ground
16	XOUT	0	14.318 MHz Crystal output.

Table 1. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Drive (max.)	Shunt Cap (max.)	Motional (max.)	Tolerance (max.)	Stability (max.)	Aging (max.)
14.31818 MHz	AT	Parallel	20 pF	0.1 mW	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

The SL28SRC01 requires a Parallel Resonance Crystal. Substituting a series resonance crystal causes the SL28SRC01 to operate at the wrong frequency and violates the ppm specification. For most applications there is a 300-ppm frequency shift between series and parallel crystals due to incorrect loading.

Crystal Loading

Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, use the total capacitance the crystal sees to calculate the appropriate capacitive loading (CL).

Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal. It is not true that load capacitors are in parallel with the crystal and are approximately equal to the load capacitance of the crystal.

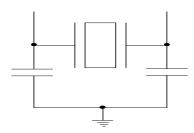


Figure 1. Crystal Capacitive Clarification

Calculating Load Capacitors

In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance on both side is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides.

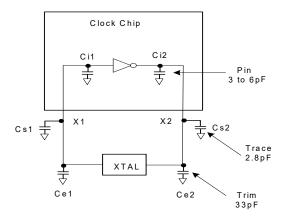


Figure 2. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for ${\sf Ce1}$ and ${\sf Ce2}$.

Load Capacitance (each side)

$$Ce = 2 * CL - (Cs + Ci)$$

Total Capacitance (as seen by the crystal)

CLe =
$$\frac{1}{(\frac{1}{Ce1 + Cs1 + Ci1} + \frac{1}{Ce2 + Cs2 + Ci2})}$$

Ci Internal capacitance (lead frame, bond wires, etc.)

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V_{DD}	Core Supply Voltage		_	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	4.6	V_{DC}
T _S	Temperature, Storage	Non-functional	-65	150	°C
T _{A (commercial)}	Temperature, Operating Ambient, Commercial	Functional	0	85	°C
T _{A (industrial)}	Temperature, Operating Ambient, Industrial	Functional	-40	85	°C
T_J	Temperature, Junction	Functional	_	150	°C
Ø _{JC}	Dissipation, Junction to Case	JEDEC (JESD 51)	_	20	°C/ W
\emptyset_{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	_	60	°C/ W
ESD _{HBM}	ESD Protection (Human Body Model)	JEDEC (JESD 22 - A114)	2000	-	V
UL-94	Flammability Rating	UL (Class)	V-	-0	

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
VDD	3.3V Operating Voltage	3.3 ± 5%	3.135	3.465	V
V _{IH}	3.3V Input High Voltage		2.0	$V_{DD} + 0.3$	V
V _{IL}	3.3V Input Low Voltage		$V_{SS} - 0.3$	8.0	V
I _{IH}	Input High Leakage Current	Except internal pull-down resistors, $0 < V_{IN} < V_{DD}$	-	5	μА
I _{IL}	Input Low Leakage Current	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	- 5	_	μΑ
V _{OH}	3.3V Output High Voltage	I _{OH} = -1 mA	2.4	_	V
V_{OL}	3.3V Output Low Voltage	I _{OL} = 1 mA	_	0.4	V
I _{OZ}	High-impedance Output Current		-10	10	μА
C _{IN}	Input Pin Capacitance		1.5	5	pF
C _{OUT}	Output Pin Capacitance			6	pF
L _{IN}	Pin Inductance		-	7	nΗ
V_{XIH}	Xin High Voltage		0.7V _{DD}	V_{DD}	V
V_{XIL}	Xin Low Voltage		0	0.3V _{DD}	V
I _{DD3.3V}	Dynamic Supply Current		_	40	mA

AC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
Crystal					
T _{DC}	XIN Duty Cycle	The device operates reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification	47.5	52.5	%
T _{PERIOD}	XIN Period	When XIN is driven from an external clock source	69.841	71.0	ns
T_R/T_F	XIN Rise and Fall Times	Measured between $0.3V_{DD}$ and $0.7V_{DD}$	-	10.0	ns
T _{CCJ}	XIN Cycle to Cycle Jitter	As an average over 1-μs duration	_	500	ps
L _{ACC}	Long-term Accuracy	Measured at VDD/2 differential	_	250	ppm
Clock Input					
T _{DC}	CLKIN Duty Cycle	Measured at VDD/2	47	53	%
T_R/T_F	CLKIN Rise and Fall Times	Measured between 0.2V _{DD} and 0.8V _{DD}	0.5	4.0	V/ns
T _{CCJ}	CLKIN Cycle to Cycle Jitter	Measured at VDD/2	_	250	ps
T _{LTJ}	CLKIN Long Term Jitter	Measured at VDD/2	_	350	ps
V _{IL}	Input Low Voltage	XIN / CLKIN pin	_	0.8	V
V _{IH}	Input High Voltage	XIN / CLKIN pin	2	VDD+0.3	V
I _{IL}	Input LowCurrent	XIN / CLKIN pin, 0 < VIN < 0.8	_	20	uA
I _{IH}	Input HighCurrent	XIN / CLKIN pin, VIN = VDD	_	35	uA
SRC		1 /			
T _{DC}	SRC Duty Cycle	Measured at 0V differential	45	55	%
T _{PERIOD}	100 MHz SRC Period	Measured at 0V differential at 0.1s	9.99900	10.0010	ns
T _{PERIODSS}	100 MHz SRC Period, SSC	Measured at 0V differential at 0.1s	10.02406	10.02607	ns
T _{PERIODAS}	100 MHz SRC Absolute Period	Measured at 0V differential at 1 clock	9.87400	10.1260	ns
T _{PERIODSSAbs}	100 MHz SRC Absolute Period, SSC	Measured at 0V differential at 1 clock	9.87406	10.1762	ns
T _{CCJ}	SRC Cycle to Cycle Jitter	Measured at 0V differential	-	50	ps
RMS _{GEN1}	Output PCle* Gen1 REFCLK phase jitter	BER = 1E-12 (including PLL BW 8 - 16 MHz, ζ = 0.54, Td=10 ns, Ftrk=1.5 MHz)	0	108	ps
RMS _{GEN2}	Output PCIe* Gen2 REFCLK phase jitter	Includes PLL BW 8 - 16 MHz, Jitter Peaking = 3dB, ζ = 0.54, Td=10 ns), Low Band, F < 1.5MHz	0	3.0	ps
RMS _{GEN2}	Output PCle* Gen2 REFCLK phase jitter	Includes PLL BW 8 - 16 MHz, Jitter Peaking = 3dB, ζ = 0.54, Td=10 ns), Low Band, F < 1.5MHz	0	3.1	ps
RMS _{GEN3}	Output phase jitter impact – PCIe* Gen3	Includes PLL BW 2 - 4 MHz, CDR = 10MHz)	0	1.0	ps
L _{ACC}	SRC Long Term Accuracy	Measured at 0V differential	_	100	ppm
T _R / T _F	SRC Rising/Falling Slew Rate	Measured differentially from ±150 mV	2.5	8	V/ns
T _{RFM}	Rise/Fall Matching	Measured single-endedly from ±75 mV	_	20	%
V_{HIGH}	Voltage High			1.15	V
V_{LOW}	Voltage Low		-0.3	-	V
V _{OX}	Crossing Point Voltage at 0.7V Swing		300	550	mV
T _{jphasepll}	Phase Jitter (PLL BW 8-16MHz, 5-16MHz)	RMS value		3.1	pS
ENABLE/DISA	ABLE and SET-UP				
T _{STABLE}	Clock Stabilization from Power-up		_	1.8	ms
T _{SS}	Stopclock Set-up Time		10.0	_	ns

Test and Measurement Set-up

For SRC Signals

This diagram shows the test load configuration for the differential SRC outputs

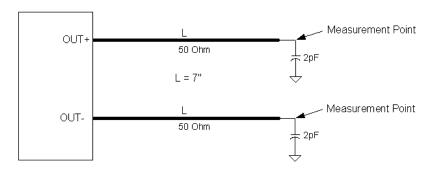


Figure 3. 0.7V Differential Load Configuration

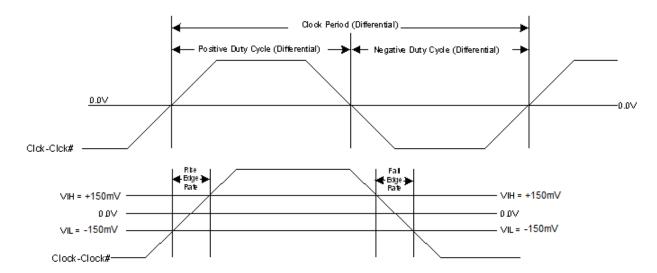


Figure 4. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)

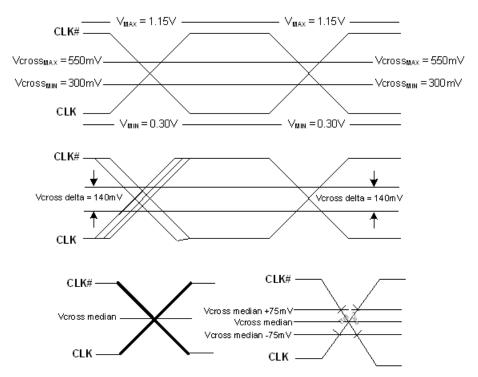
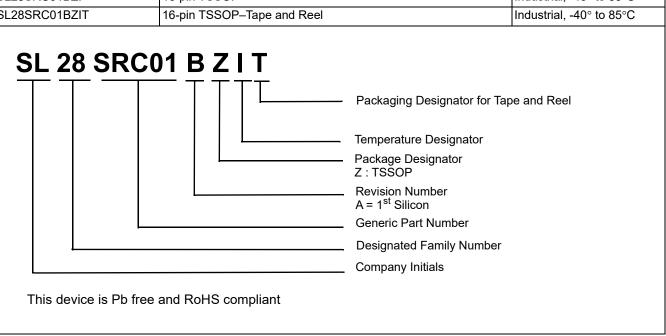
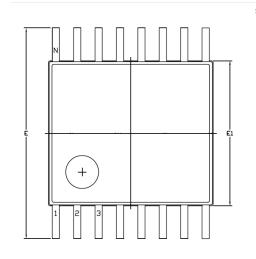
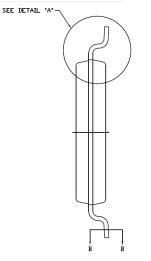
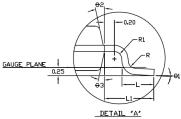



Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)

Ordering Information


Part Number	Package Type	Product Flow
Lead-free		
SL28SRC01BZI	16-pin TSSOP	Industrial, -40° to 85°C
SL28SRC01BZIT	16-pin TSSOP-Tape and Reel	Industrial, -40° to 85°C

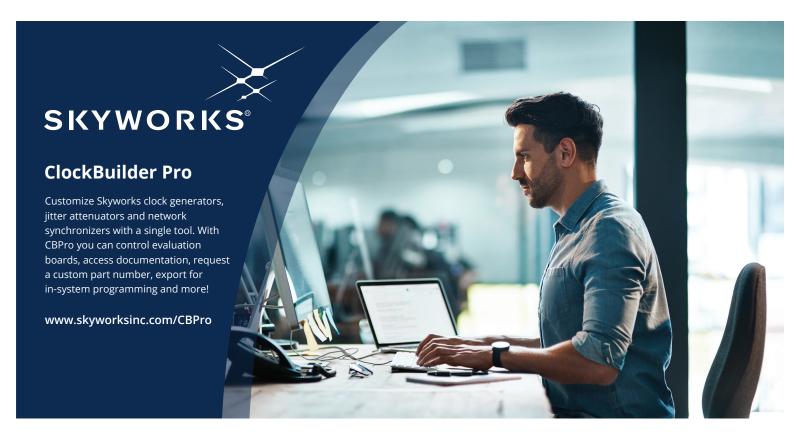




Package Diagrams

16-pin TSSOP

NOTES:


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSION D' DIES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- 3, DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION, INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- 4. "N" IS THE NUMBER OF TERMINAL POSITIONS.
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
- 6. REFERENCE DRAWING JEDEC MO-153, VARIATION AB.

SYMBOL	DIMEN	NDIS/	IN MM	DIMEN	ISION I	N INCH
SIMBUL	MIN.	NDM,	MAX.	MIN.	N□M.	MAX.
Α			1.20			.047
A1	0.05		0.15	.002		.006
A2	0.80	0.90	1.05	.031	.035	.041
b	0.19		0.30	,007		.012
b1	0.19	0.22	0.25	.007	.009	.010
C	0.09		0.20	.004		.008
c1	0,09		0.16	.004		.006
D	4,90	5,00	5,10	.193	197،	'500
е	0.65 BSC.			.026 BSC.		
Ε	6	40 BS	C,	.252 BSC.		
E1	4,30	4,40	4,50	.169	.173	.177
L	0.50	0.60	0.75	.020	.024	.030
L1	1.	00 RE	F,	.039 REF.		
R	0,09			,004		
R1	0,09			.004		
0 1	0		8	0		8
0 2	1	2 REF		1 1	2 REF	
0 3	1	2 RFF		1	2 REE	

Document History

REV.	ECR#	Issue Date	Orig. of Change	Description of Change
1.0		09/13/09	JMA	New datasheet
1.1		11/06/09	JMA	Updated Figure 4
AA	1454	04/25/10	JMA	Updated pin 6 definition on page 2 Updated revision to be ISO compliant Updated package information Added commercial temperature grade Added clock in features

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.