

# **PCF8811**

# 80 x 128 pixels matrix LCD driver Rev. 04 — 27 June 2008

**Product data sheet** 

#### **General description** 1.

The PCF8811 is a low-power CMOS LCD controller driver, designed to drive a graphic display of 80 rows and 128 columns or a graphic display of 79 rows and 128 columns and an icon row of 128 symbols. All necessary functions for the display are provided in a single chip, including on-chip generation of the LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The PCF8811 can interface microcontrollers via a parallel bus, serial bus or I<sup>2</sup>C-bus interface.

#### 2. **Features**

- Single-chip LCD controller/driver
- 80 row and 128 column outputs
- Display data RAM 80 × 128 bit
- 128 icons (row 80 can be used for icons in extended command set and when icon rows are enabled)
- Low power consumption; suitable for battery operated systems
- An 8-bit parallel interface, 3 or 4-line Serial Peripheral Interface (SPI) and high-speed I<sup>2</sup>C-bus
- On-chip:
  - Configurable voltage multiplier generating LCD supply voltage V<sub>I CD</sub>; an external V<sub>I CD</sub> is also possible
  - ◆ Linear temperature compensation of V<sub>LCD</sub>; 8 programmable temperature coefficients (extended command set); one fixed temperature coefficient which can be set as default by OTP programming (basic command set)
  - Generation of intermediate LCD bias voltage
  - Oscillator requires no external components
- OTP calibration for V<sub>LCD</sub> and accurate frame frequency
- External reset input pad
- External clock input possible
- Multiplex rate: 1:16 to 1:80 in steps of 8 when no icon row is used, with the icon row steps of 16 can be used
- Logic supply voltage range V<sub>DD1</sub> to V<sub>SS</sub>:
  - ◆ 1.7 V to 3.3 V
- High-voltage multiplier supply voltage range V<sub>DD2</sub>, V<sub>DD3</sub> to V<sub>SS</sub>:
  - ◆ 1.8 V to 3.3 V
- Display supply voltage range V<sub>LCD</sub> to V<sub>SS</sub>:
  - ◆ 3 V to 9 V

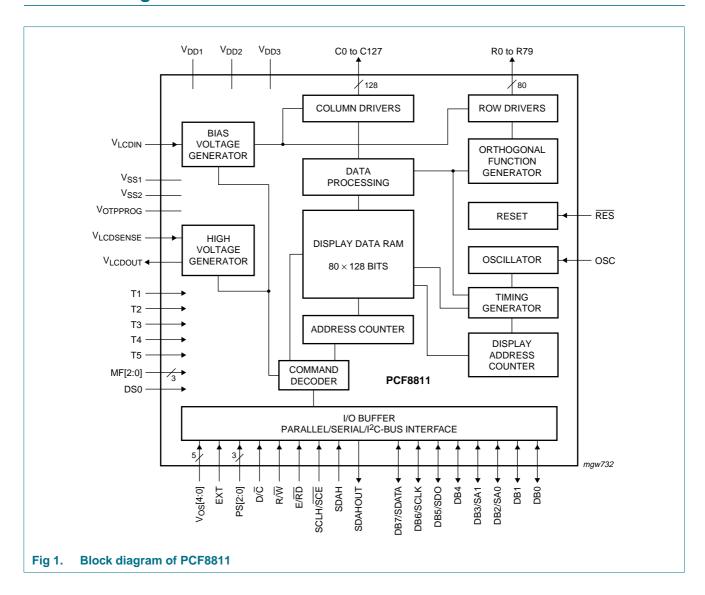


#### 80 x 128 pixels matrix LCD driver

- Programmable bottom row pads mirroring; for compatibility with both Tape Carrier Packages (TCP) and Chip-On-Glass (COG) applications (extended command set)
- Status read, which allows for chip recognition and content checking of some registers
- Start address line which allows, for instance, the scrolling of the displayed image
- Programmable display RAM pointers for variable display sizes
- Slim chip layout, suited for COG applications
- Temperature range:  $T_{amb} = -40 \, ^{\circ}\text{C}$  to +85  $^{\circ}\text{C}$
- CMOS compatible inputs

# 3. Applications

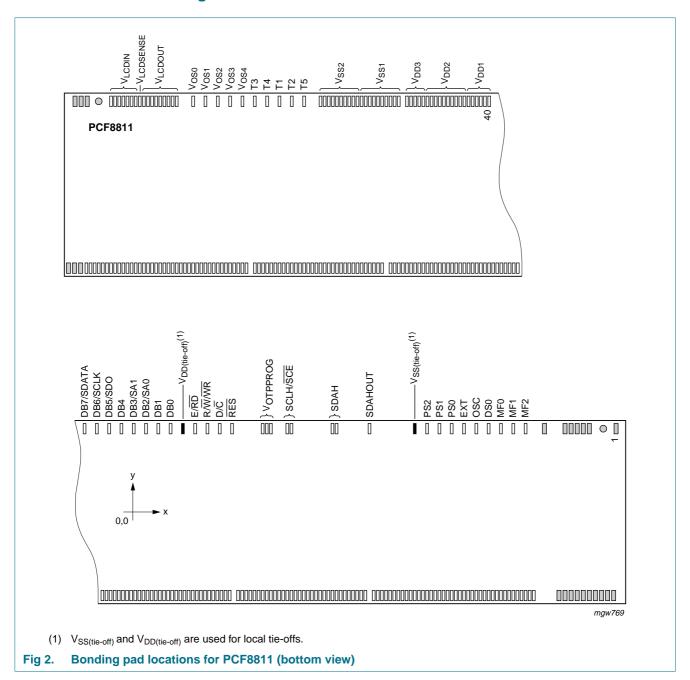
- Automotive displays
- Telecom equipment
- Portable instruments
- Point-of-sale terminals


# 4. Ordering information

#### Table 1. Ordering information

| Type number     | Package |                                                                  |         |  |  |  |
|-----------------|---------|------------------------------------------------------------------|---------|--|--|--|
|                 | Name    | Description                                                      | Version |  |  |  |
| PCF8811U/2DA/1  | -       | chip with bumps in tray (not covered by Motif license agreement) | -       |  |  |  |
| PCF8811MU/2DA/1 | -       | chip with bumps in tray (sold under license from Motif)          | -       |  |  |  |

80 x 128 pixels matrix LCD driver


# 5. Block diagram

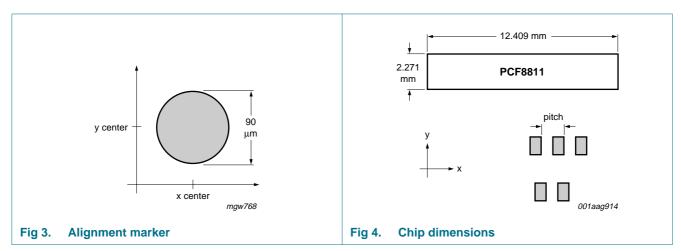


80 x 128 pixels matrix LCD driver

# 6. Pinning information

# 6.1 Pinning




© NXP B.V. 2008. All rights reserved.

# 80 x 128 pixels matrix LCD driver

Table 2. Pad allocation table

| Pad       | Symbol                         | Pad        | Symbol         |
|-----------|--------------------------------|------------|----------------|
| 1 to 8    | -                              | 38         | DB6/SCLK       |
| 9         | MF2                            | 39         | DB7/SDATA      |
| 10        | MF1                            | 40 to 45   | $V_{DD1}$      |
| 11        | MF0                            | 46 to 55   | $V_{DD2}$      |
| 12        | DS0                            | 56 to 60   | $V_{DD3}$      |
| 13        | OSC                            | 61 to 70   | $V_{SS1}$      |
| 14        | EXT                            | 71 to 80   | $V_{SS2}$      |
| 15        | PS0                            | 81         | T5             |
| 16        | PS1                            | 82         | T2             |
| 17        | PS2                            | 83         | T1             |
| 18        | $V_{SS(tie-off)}$              | 84         | T4             |
| 19        | SDAHOUT                        | 85         | T3             |
| 20 and 21 | SDAH                           | 86         | $V_{OS4}$      |
| 22 and 23 | SCLH/SCE                       | 87         | $V_{OS3}$      |
| 24 to 26  | $V_{OTPPROG}$                  | 88         | $V_{OS2}$      |
| 27        | RES                            | 89         | $V_{OS1}$      |
| 28        | D/C                            | 90         | $V_{OS0}$      |
| 29        | $R/\overline{W}/\overline{W}R$ | 91 to 99   | $V_{LCDOUT}$   |
| 30        | E/RD                           | 100        | $V_{LCDSENSE}$ |
| 31        | $V_{DD(tie-off)}$              | 101 to 107 | $V_{LCDIN}$    |
| 32        | DB0                            | 108 to 114 | -              |
| 33        | DB1                            | 115 to 154 | R79 to R40     |
| 34        | DB2/SA0                        | 155        | R79[1]         |
| 35        | DB3/SA1                        | 156 to 283 | C0 to C127     |
| 36        | DB4                            | 284 to 323 | R0 to R39      |
| 37        | DB5/SDO                        | 324 to 333 | -              |

[1] Duplicate of R79.



## 80 x 128 pixels matrix LCD driver

Table 3. Bonding pad and chip dimensions

| <u> </u>                          |                      |                           |
|-----------------------------------|----------------------|---------------------------|
| Pad                               | Row/Column side (μm) | Interface side (µm)       |
| Pad pitch                         | 51.84 min            | 54.0 min                  |
| Pad size (aluminium)              | 42.84 × 105          | 50 × 100                  |
| Bump dimensions                   | 29.9 × 98.5 (±3)     | 32.2 × 93.5 (±3)          |
| Wafer thickness (excluding bumps) | 381 (±25)            |                           |
|                                   | Fab 1 (mm)[1]        | Fab 2 (mm) <sup>[2]</sup> |
| Die size X                        | 12.45                | 12.41                     |
| Die size Y                        | 2.31                 | 2.27                      |

<sup>[1]</sup> Fabrication 1 identification starts with nnnnnn, where n represents a number between 0 and 9.

Table 4. Alignment marker position[1]

| Pad | <b>Χ (μm)</b> | Υ (μm) |
|-----|---------------|--------|
| 2   | 5995          | 1017   |
| 108 | -5904         | 1017   |

<sup>[1]</sup> For the position of each pad, see Table 5.

# 6.2 Pin description

Table 5. Bonding pad description

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| Symbol                   | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description                                               |
|--------------------------|-----|---------------|---------------|-----------------------------------------------------------|
| -                        | 1   | 6092.00       | 1030.00       | dummy_slanted                                             |
| -                        | 2   | 5995.00       | 1017.00       | alignment mark                                            |
| -                        | 3   | 5876.00       | 1030.00       | dummy                                                     |
| -                        | 4   | 5822.00       | 1030.00       | dummy                                                     |
| -                        | 5   | 5768.00       | 1030.00       | dummy                                                     |
| -                        | 6   | 5714.00       | 1030.00       | dummy                                                     |
| -                        | 7   | 5660.00       | 1030.00       | dummy                                                     |
| -                        | 8   | 5390.00       | 1030.00       | dummy                                                     |
| MF2                      | 9   | 5012.00       | 1030.00       | manufacturer device ID input                              |
| MF1                      | 10  | 4850.00       | 1030.00       | manufacturer device ID input                              |
| MF0                      | 11  | 4688.00       | 1030.00       | manufacturer device ID input                              |
| DS0                      | 12  | 4526.00       | 1030.00       | device recognition input                                  |
| OSC                      | 13  | 4364.00       | 1030.00       | oscillator input                                          |
| EXT                      | 14  | 4094.00       | 1030.00       | extended command set input                                |
| PS0                      | 15  | 3932.00       | 1030.00       | parallel/serial/l <sup>2</sup> C-bus data selection input |
| PS1                      | 16  | 3770.00       | 1030.00       | parallel/serial/l <sup>2</sup> C-bus data selection input |
| PS2                      | 17  | 3608.00       | 1030.00       | parallel/serial/l <sup>2</sup> C-bus data selection input |
| V <sub>SS(tie-off)</sub> | 18  | 3446.00       | 1030.00       | -                                                         |

<sup>[2]</sup> Fabrication 2 identification starts with AXnnnn, where X represents a letter and n represents a number between 0 and 9.

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| SDAHOUT         19         2960.00         1030.00         I²C-bus data input           SDAH         20         2420.00         1030.00         I²C-bus data input           SDAH         21         2366.00         1030.00         I²C-bus data input           SCLH/SCE         22         1826.00         1030.00         I²C-bus clock input or chip enable active LOW (6800 interface)           SCLH/SCE         23         1772.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         24         1664.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         25         1610.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         external reset input           REW/WR         29         962.00         1030.00         read or write active LOW input (6800 interface)           E/RD         30         800.00         1030.00         parallel data input/output (S800 interface)                                                                                                                                          | Symbol                   | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|---------------|---------------|------------------------------------------------------------------------|
| SDAH         20         2420.00         1030.00         IPC-bus data input           SDAH         21         2366.00         1030.00         IPC-bus clock input or chip enable active LOW (6800 interface)           SCLH/SCE         22         1826.00         1030.00         IPC-bus clock input or chip enable active LOW (6800 interface)           SCLH/SCE         23         1772.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         24         1664.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         25         1610.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         external reset input           P/C         28         1232.00         1030.00         read or write active LOW input (6800 interface)           D/C         28         1232.00         1030.00         read or write active LOW input (6800 interface)           VDOtete-dn         31         638.00         1030.00         parallel data input/output or IPC-bus slave address input           DB1         33         314.00         1030.00         pa                                                                                                             |                          |     |               |               |                                                                        |
| SDAH         21         2366.00         1030.00         I²C-bus clock input or chip enable active LOW (6800 interface)           SCLH/SCE         22         1826.00         1030.00         I²C-bus clock input or chip enable active LOW (6800 interface)           SCLH/SCE         23         1772.00         1030.00         I²C-bus clock input or chip enable active LOW (6800 interface)           VOTPPROG         24         1664.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         25         1610.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           NOTPPROG         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         read or write active LOW input (6800 interface)           E/RD         30         800.00         1030.00         parallel data input/output           BE/RD         31         638.00         1030.00         parallel data input/output (6800 interface)           VDD1ew-drift         31         638.00         1030.00         parallel data input/output or 12C-bus slave address input           DB2/SAO         34                                                                                              |                          |     |               |               | ·                                                                      |
| SCLH/SCE   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     |               |               | •                                                                      |
| VompPROG         24         1664.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VompPROG         25         1610.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VompPROG         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VompPROG         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           PG         28         1232.00         1030.00         data or command active LOW input (6800 interface)           E/RD         30         800.00         1030.00         read or write active LOW input (6800 interface)           E/RD         31         638.00         1030.00         parallel data input/output           DB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or serial data output           DB4         36         -172.00         1030.00         parallel data                                                                                                               |                          |     |               |               | I <sup>2</sup> C-bus clock input or chip enable active LOW (6800       |
| VOTPPROG         25         1610.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           VOTPPROG         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         data or command active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           E/RD         31         638.00         1030.00         parallel data input/output           BB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         −172.00         1030.00         parallel data input/output or I²C-bus slave address input           DB5/SD0         37         −334.00         1030.00                                                                                                                       | SCLH/SCE                 | 23  | 1772.00       | 1030.00       | ·                                                                      |
| VOTPPENOS         26         1556.00         1030.00         supply voltage for OTP (can be combined with SCLH/SCE)           RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         data or command active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           E/RD         31         638.00         1030.00         - clock enable or read active LOW input (6800 interface)           E/RD         31         638.00         1030.00         - clock enable or read active LOW input (6800 interface)           VDD(tile-off)         31         638.00         1030.00         parallel data input/output           DB0         32         476.00         1030.00         parallel data input/output put           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or Serial data output           DB5/SD0         37         -334.00         1030.00                                                                                                                   | V <sub>OTPPROG</sub>     | 24  | 1664.00       | 1030.00       | supply voltage for OTP (can be combined with SCLH/SCE)                 |
| RES         27         1448.00         1030.00         external reset input           D/C         28         1232.00         1030.00         data or command active LOW input (8800 interface)           R/W/WR         29         962.00         1030.00         read or write active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           VDD((ie-off)         31         638.00         1030.00         parallel data input/output           DB0         32         476.00         1030.00         parallel data input/output or P2C-bus slave address input           DB1         33         314.00         1030.00         parallel data input/output or I2C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or I2C-bus slave address input           DB3/SA1         35         -10.00         1030.00         parallel data input/output or I2C-bus slave address input           DB5/SDO         37         -334.00         1030.00         parallel data input/output or I2C-bus slave address input           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or I2C-bus slave address input           VDD1         40         -874.00                                                                                                | V <sub>OTPPROG</sub>     | 25  | 1610.00       | 1030.00       | supply voltage for OTP (can be combined with SCLH/SCE)                 |
| D/C         28         1232.00         1030.00         data or command active LOW input           R/W/WR         29         962.00         1030.00         read or write active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           V <sub>DD(tile-off)</sub> 31         638.00         1030.00         parallel data input/output           DB0         32         476.00         1030.00         parallel data input/output           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA1         35         −10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         −172.00         1030.00         parallel data input/output or I²C-bus slave address input           DB5/SDO         37         −334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         −550.00         1030.00         parallel data input/output or serial data output           DB7/SDATA         39         −712.00         1030.00         supply voltage (logic)           V <sub>DD1</sub> 41         −928.00         1030.00         supply volta                                                                                                           | V <sub>OTPPROG</sub>     | 26  | 1556.00       | 1030.00       | supply voltage for OTP (can be combined with SCLH/SCE)                 |
| R/W/WR         29         962.00         1030.00         read or write active LOW input (6800 interface)           E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           VDD((iii-off))         31         638.00         1030.00         -           DB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or I²C-bus slave address input           DB5/SD0         37         -334.00         1030.00         parallel data input/output or I²C-bus slave address input           DB5/SD0         37         -334.00         1030.00         parallel data input/output or I²C-bus slave address input           DB5/SD0         37         -334.00         <                                                                                                | RES                      | 27  | 1448.00       | 1030.00       | external reset input                                                   |
| E/RD         30         800.00         1030.00         clock enable or read active LOW input (6800 interface)           VDD(tie-off)         31         638.00         1030.00         -           DB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA1         35         -10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or serial data output           DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         38         -550.00         1030.00         parallel data input/output or serial data output           VDD1         40         -874.00         1030.00         parallel data input/output or serial data input           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic) </td <td>D/C</td> <td>28</td> <td>1232.00</td> <td>1030.00</td> <td>data or command active LOW input</td>               | D/C                      | 28  | 1232.00       | 1030.00       | data or command active LOW input                                       |
| VoD(tie-off)         31         638.00         1030.00         -           DB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output or I²C-bus slave address input           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA1         35         −10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         −172.00         1030.00         parallel data input/output or serial data output           DB5/SDO         37         −334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         −550.00         1030.00         parallel data input/output or serial data output           DB7/SDATA         39         −712.00         1030.00         parallel data input/output or serial data input           VpD1         40         −874.00         1030.00         parallel data input/output or serial data output           VpD1         41         −928.00         1030.00         parallel data input/output or serial data output           VpD1         41         −928.00         1030.00         parply v                                                                                                              | R/W/WR                   | 29  | 962.00        | 1030.00       | read or write active LOW input (6800 interface)                        |
| DB0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E/RD                     | 30  | 800.00        | 1030.00       | clock enable or read active LOW input (6800 interface)                 |
| DB0         32         476.00         1030.00         parallel data input/output           DB1         33         314.00         1030.00         parallel data input/output           DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA1         35         -10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or serial data output           DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial data output           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD2         46         -1144.00         1030.00         supply voltage (logic)           VDD2                                                                                                                                                    | V <sub>DD(tie-off)</sub> | 31  | 638.00        | 1030.00       | -                                                                      |
| DB2/SA0         34         152.00         1030.00         parallel data input/output or I²C-bus slave address input           DB3/SA1         35         -10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output or serial data output           DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VbD1         40         -874.00         1030.00         supply voltage (logic)           VbD1         41         -928.00         1030.00         supply voltage (logic)           VbD1         42         -982.00         1030.00         supply voltage (logic)           VbD1         43         -1036.00         1030.00         supply voltage (logic)           VbD1         44         -1090.00         1030.00         supply voltage (logic)           VbD2         46         -1198.00         1030.00         supply voltage (logic)           VbD2 <t< td=""><td></td><td>32</td><td>476.00</td><td>1030.00</td><td>parallel data input/output</td></t<>                                                 |                          | 32  | 476.00        | 1030.00       | parallel data input/output                                             |
| DB3/SA1         35         -10.00         1030.00         parallel data input/output or I²C-bus slave address input           DB4         36         -172.00         1030.00         parallel data input/output           DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00                                                                                                                                                         | DB1                      | 33  | 314.00        | 1030.00       | parallel data input/output                                             |
| DB4         36         -172.00         1030.00         parallel data input/output           DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD2         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1360.00         1030.00                                                                                                                                                                             | DB2/SA0                  | 34  | 152.00        | 1030.00       | parallel data input/output or I <sup>2</sup> C-bus slave address input |
| DB5/SDO         37         -334.00         1030.00         parallel data input/output or serial data output           DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage (logic)           VDD2         48         -1306.00         1030.00         supply voltage for the                                                                                                                                                                            | DB3/SA1                  | 35  | -10.00        | 1030.00       | parallel data input/output or I <sup>2</sup> C-bus slave address input |
| DB6/SCLK         38         -550.00         1030.00         parallel data input/output or serial clock input           DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00                                                                                                                                                                   | DB4                      | 36  | -172.00       | 1030.00       | parallel data input/output                                             |
| DB7/SDATA         39         -712.00         1030.00         parallel data input/output or serial data input           VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage (logic)           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00                                                                                                                                                                    | DB5/SDO                  | 37  | -334.00       | 1030.00       | parallel data input/output or serial data output                       |
| VDD1         40         -874.00         1030.00         supply voltage (logic)           VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         53                                                                                                                                                          | DB6/SCLK                 | 38  | -550.00       | 1030.00       | parallel data input/output or serial clock input                       |
| VDD1         41         -928.00         1030.00         supply voltage (logic)           VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         46         -1198.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         52         -1576.00         1030.00         supply voltage for the internal voltage multiplier <td>DB7/SDATA</td> <td>39</td> <td>-712.00</td> <td>1030.00</td> <td>parallel data input/output or serial data input</td> | DB7/SDATA                | 39  | -712.00       | 1030.00       | parallel data input/output or serial data input                        |
| VDD1         42         -982.00         1030.00         supply voltage (logic)           VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         53         -1576.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         54         -1630.00         1030.00         supply voltage for the internal voltage multiplier <td><math>V_{DD1}</math></td> <td>40</td> <td>-874.00</td> <td>1030.00</td> <td>supply voltage (logic)</td>              | $V_{DD1}$                | 40  | -874.00       | 1030.00       | supply voltage (logic)                                                 |
| VDD1         43         -1036.00         1030.00         supply voltage (logic)           VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         52         -1522.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         53         -1576.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         54         -1630.00         1030.00         supply voltage for the internal vo                                                                                                             | $V_{DD1}$                | 41  | -928.00       | 1030.00       | supply voltage (logic)                                                 |
| VDD1         44         -1090.00         1030.00         supply voltage (logic)           VDD1         45         -1144.00         1030.00         supply voltage (logic)           VDD2         46         -1198.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         47         -1252.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         48         -1306.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         49         -1360.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         50         -1414.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         51         -1468.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         52         -1522.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         53         -1576.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         54         -1630.00         1030.00         supply voltage for the internal voltage multiplier           VDD2         55         -1684.00         1030.00         supply                                                                                                             | $V_{DD1}$                | 42  | -982.00       | 1030.00       | supply voltage (logic)                                                 |
| VDD145-1144.001030.00supply voltage (logic)VDD246-1198.001030.00supply voltage for the internal voltage multiplierVDD247-1252.001030.00supply voltage for the internal voltage multiplierVDD248-1306.001030.00supply voltage for the internal voltage multiplierVDD249-1360.001030.00supply voltage for the internal voltage multiplierVDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $V_{DD1}$                | 43  | -1036.00      | 1030.00       | supply voltage (logic)                                                 |
| VDD246-1198.001030.00supply voltage for the internal voltage multiplierVDD247-1252.001030.00supply voltage for the internal voltage multiplierVDD248-1306.001030.00supply voltage for the internal voltage multiplierVDD249-1360.001030.00supply voltage for the internal voltage multiplierVDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{DD1}$                | 44  | -1090.00      | 1030.00       | supply voltage (logic)                                                 |
| V <sub>DD2</sub> 47 -1252.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 48 -1306.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 49 -1360.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 50 -1414.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 51 -1468.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 52 -1522.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 53 -1576.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 54 -1630.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 55 -1684.00 1030.00 supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{DD1}$                | 45  | -1144.00      | 1030.00       | supply voltage (logic)                                                 |
| VDD248-1306.001030.00supply voltage for the internal voltage multiplierVDD249-1360.001030.00supply voltage for the internal voltage multiplierVDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{DD2}$                | 46  | -1198.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD249-1360.001030.00supply voltage for the internal voltage multiplierVDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $V_{DD2}$                | 47  | -1252.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD249-1360.001030.00supply voltage for the internal voltage multiplierVDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 48  | -1306.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD250-1414.001030.00supply voltage for the internal voltage multiplierVDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 49  | -1360.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD251-1468.001030.00supply voltage for the internal voltage multiplierVDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 50  | -1414.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD252-1522.001030.00supply voltage for the internal voltage multiplierVDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | 51  | -1468.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| VDD253-1576.001030.00supply voltage for the internal voltage multiplierVDD254-1630.001030.00supply voltage for the internal voltage multiplierVDD255-1684.001030.00supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 52  | -1522.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| V <sub>DD2</sub> 54 -1630.00 1030.00 supply voltage for the internal voltage multiplier V <sub>DD2</sub> 55 -1684.00 1030.00 supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 53  | -1576.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |
| V <sub>DD2</sub> 55 –1684.00 1030.00 supply voltage for the internal voltage multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 54  |               | 1030.00       |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 55  |               |               |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>DD3</sub>         | 56  | -1738.00      | 1030.00       | supply voltage for the internal voltage multiplier                     |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| Symbol              | Pad | V (um)        | V (um)        | Description                                        |
|---------------------|-----|---------------|---------------|----------------------------------------------------|
| Symbol              |     | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description                                        |
| V <sub>DD3</sub>    | 57  | -1792.00      | 1030.00       | supply voltage for the internal voltage multiplier |
| V <sub>DD3</sub>    | 58  | -1846.00      | 1030.00       | supply voltage for the internal voltage multiplier |
| V <sub>DD3</sub>    | 59  | -1900.00      | 1030.00       | supply voltage for the internal voltage multiplier |
| V <sub>DD3</sub>    | 60  | -1954.00      | 1030.00       | supply voltage for the internal voltage multiplier |
| V <sub>SS1</sub>    | 61  | -2062.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 62  | -2116.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 63  | -2170.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 64  | -2224.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 65  | -2278.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 66  | -2332.00      | 1030.00       | ground                                             |
| V <sub>SS1</sub>    | 67  | -2386.00      | 1030.00       | ground                                             |
| $V_{SS1}$           | 68  | -2440.00      | 1030.00       | ground                                             |
| $V_{SS1}$           | 69  | -2494.00      | 1030.00       | ground                                             |
| $V_{SS1}$           | 70  | -2548.00      | 1030.00       | ground                                             |
| V <sub>SS2</sub>    | 71  | -2602.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 72  | -2656.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 73  | -2710.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 74  | -2764.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 75  | -2818.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 76  | -2872.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 77  | -2926.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 78  | -2980.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 79  | -3034.00      | 1030.00       | ground for voltage multiplier                      |
| V <sub>SS2</sub>    | 80  | -3088.00      | 1030.00       | ground for voltage multiplier                      |
| T5                  | 81  | -3250.00      | 1030.00       | test input 5                                       |
| T2                  | 82  | -3304.00      | 1030.00       | test input 2                                       |
| T1                  | 83  | -3466.00      | 1030.00       | test input 1                                       |
| T4                  | 84  | -3628.00      | 1030.00       | test input 4                                       |
| T3                  | 85  | -3790.00      | 1030.00       | test input 3                                       |
| V <sub>OS4</sub>    | 86  | -4060.00      | 1030.00       | V <sub>LCD</sub> offset input pad 4                |
| V <sub>OS3</sub>    | 87  | -4222.00      | 1030.00       | V <sub>LCD</sub> offset input pad 3                |
| V <sub>OS2</sub>    | 88  | -4384.00      | 1030.00       | V <sub>LCD</sub> offset input pad 2                |
| V <sub>OS1</sub>    | 89  | -4654.00      | 1030.00       | V <sub>LCD</sub> offset input pad 1                |
| V <sub>OS0</sub>    | 90  | -4816.00      | 1030.00       | V <sub>LCD</sub> offset input pad 0                |
| V <sub>LCDOUT</sub> | 91  | -4924.00      | 1030.00       | voltage multiplier output                          |
| V <sub>LCDOUT</sub> | 92  | -4978.00      | 1030.00       | voltage multiplier output                          |
| V <sub>LCDOUT</sub> | 93  | -5032.00      | 1030.00       | voltage multiplier output                          |
| V <sub>LCDOUT</sub> | 94  | -5086.00      | 1030.00       | voltage multiplier output                          |
| V <sub>LCDOUT</sub> | 95  | -5140.00      | 1030.00       | voltage multiplier output                          |
| - LODOUI            |     | 5.10.00       |               | 3 a b a b                                          |

**PCF8811 NXP Semiconductors** 

# 80 x 128 pixels matrix LCD driver

**Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| rigaro <u>-</u>       |     |               |               |                                                                          |
|-----------------------|-----|---------------|---------------|--------------------------------------------------------------------------|
| Symbol                | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description                                                              |
| V <sub>LCDOUT</sub>   | 96  | -5194.00      | 1030.00       | voltage multiplier output                                                |
| V <sub>LCDOUT</sub>   | 97  | -5248.00      | 1030.00       | voltage multiplier output                                                |
| V <sub>LCDOUT</sub>   | 98  | -5302.00      | 1030.00       | voltage multiplier output                                                |
| V <sub>LCDOUT</sub>   | 99  | -5356.00      | 1030.00       | voltage multiplier output                                                |
| V <sub>LCDSENSE</sub> | 100 | -5410.00      | 1030.00       | voltage multiplier regulation input                                      |
| V <sub>LCDIN</sub>    | 101 | -5464.00      | 1030.00       | LCD supply voltage                                                       |
| V <sub>LCDIN</sub>    | 102 | -5518.00      | 1030.00       | LCD supply voltage                                                       |
| $V_{LCDIN}$           | 103 | -5572.00      | 1030.00       | LCD supply voltage                                                       |
| $V_{LCDIN}$           | 104 | -5626.00      | 1030.00       | LCD supply voltage                                                       |
| $V_{LCDIN}$           | 105 | -5680.00      | 1030.00       | LCD supply voltage                                                       |
| $V_{LCDIN}$           | 106 | -5734.00      | 1030.00       | LCD supply voltage                                                       |
| $V_{LCDIN}$           | 107 | -5788.00      | 1030.00       | LCD supply voltage                                                       |
| -                     | 108 | -5904.00      | 1017.00       | alignment mark                                                           |
| -                     | 109 | -6004.00      | 1030.00       | dummy                                                                    |
| -                     | 110 | -6058.00      | 1030.00       | dummy                                                                    |
| -                     | 111 | -6112.00      | 1030.00       | dummy                                                                    |
| -                     | 112 | -6129.24      | -1032.50      | dummy                                                                    |
| -                     | 113 | -6077.40      | -1032.50      | dummy                                                                    |
| -                     | 114 | -6025.56      | -1032.50      | dummy                                                                    |
| R79                   | 115 | -5973.72      | -1032.50      | LCD row driver output (R79 is the icon row when the icon row is enabled) |
| R78                   | 116 | -5921.88      | -1032.50      | LCD row driver output                                                    |
| R77                   | 117 | -5870.04      | -1032.50      | LCD row driver output                                                    |
| R76                   | 118 | -5818.20      | -1032.50      | LCD row driver output                                                    |
| R75                   | 119 | -5766.36      | -1032.50      | LCD row driver output                                                    |
| R74                   | 120 | -5714.52      | -1032.50      | LCD row driver output                                                    |
| R73                   | 121 | -5662.68      | -1032.50      | LCD row driver output                                                    |
| R72                   | 122 | -5610.84      | -1032.50      | LCD row driver output                                                    |
| R71                   | 123 | -5559.00      | -1032.50      | LCD row driver output                                                    |
| R70                   | 124 | -5507.16      | -1032.50      | LCD row driver output                                                    |
| R69                   | 125 | -5455.32      | -1032.50      | LCD row driver output                                                    |
| R68                   | 126 | -5403.48      | -1032.50      | LCD row driver output                                                    |
| R67                   | 127 | -5351.64      | -1032.50      | LCD row driver output                                                    |
| R66                   | 128 | -5299.80      | -1032.50      | LCD row driver output                                                    |
| R65                   | 129 | -5247.96      | -1032.50      | LCD row driver output                                                    |
| R64                   | 130 | -5196.12      | -1032.50      | LCD row driver output                                                    |
| R63                   | 131 | -5144.28      | -1032.50      | LCD row driver output                                                    |
| R62                   | 132 | -5092.44      | -1032.50      | LCD row driver output                                                    |
| R61                   | 133 | -5040.60      | -1032.50      | LCD row driver output                                                    |
| R60                   | 134 | -4988.76      | -1032.50      | LCD row driver output                                                    |
| PCF8811_4             |     |               |               | © NXP B.V. 2008. All rights reserve                                      |
|                       |     |               |               |                                                                          |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| rigure z. |     |               |               |                          |
|-----------|-----|---------------|---------------|--------------------------|
| Symbol    | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description              |
| R59       | 135 | -4936.92      | -1032.50      | LCD row driver output    |
| R58       | 136 | -4885.08      | -1032.50      | LCD row driver output    |
| R57       | 137 | -4833.24      | -1032.50      | LCD row driver output    |
| R56       | 138 | -4781.40      | -1032.50      | LCD row driver output    |
| R55       | 139 | -4729.56      | -1032.50      | LCD row driver output    |
| R54       | 140 | -4677.72      | -1032.50      | LCD row driver output    |
| R53       | 141 | -4625.88      | -1032.50      | LCD row driver output    |
| R52       | 142 | -4574.04      | -1032.50      | LCD row driver output    |
| R51       | 143 | -4522.20      | -1032.50      | LCD row driver output    |
| R50       | 144 | -4470.36      | -1032.50      | LCD row driver output    |
| R49       | 145 | -4418.52      | -1032.50      | LCD row driver output    |
| R48       | 146 | -4366.68      | -1032.50      | LCD row driver output    |
| R47       | 147 | -4314.84      | -1032.50      | LCD row driver output    |
| R46       | 148 | -4263.00      | -1032.50      | LCD row driver output    |
| R45       | 149 | -4211.16      | -1032.50      | LCD row driver output    |
| R44       | 150 | -4159.32      | -1032.50      | LCD row driver output    |
| R43       | 151 | -4107.48      | -1032.50      | LCD row driver output    |
| R42       | 152 | -4055.64      | -1032.50      | LCD row driver output    |
| R41       | 153 | -4003.80      | -1032.50      | LCD row driver output    |
| R40       | 154 | -3951.96      | -1032.50      | LCD row driver output    |
| R80       | 155 | -3900.12      | -1032.50      | duplicate of R79         |
| C0        | 156 | -3640.92      | -1032.50      | LCD column driver output |
| C1        | 157 | -3589.08      | -1032.50      | LCD column driver output |
| C2        | 158 | -3537.24      | -1032.50      | LCD column driver output |
| C3        | 159 | -3485.40      | -1032.50      | LCD column driver output |
| C4        | 160 | -3433.56      | -1032.50      | LCD column driver output |
| C5        | 161 | -3381.72      | -1032.50      | LCD column driver output |
| C6        | 162 | -3329.88      | -1032.50      | LCD column driver output |
| C7        | 163 | -3278.04      | -1032.50      | LCD column driver output |
| C8        | 164 | -3226.20      | -1032.50      | LCD column driver output |
| C9        | 165 | -3174.36      | -1032.50      | LCD column driver output |
| C10       | 166 | -3122.52      | -1032.50      | LCD column driver output |
| C11       | 167 | -3070.68      | -1032.50      | LCD column driver output |
| C12       | 168 | -3018.84      | -1032.50      | LCD column driver output |
| C13       | 169 | -2967.00      | -1032.50      | LCD column driver output |
| C14       | 170 | -2915.16      | -1032.50      | LCD column driver output |
| C15       | 171 | -2863.32      | -1032.50      | LCD column driver output |
| C16       | 172 | -2811.48      | -1032.50      | LCD column driver output |
| C17       | 173 | -2759.64      | -1032.50      | LCD column driver output |
|           |     |               |               |                          |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| · · · · · · · · · · · · · · · · · · · |     |               |               |                          |
|---------------------------------------|-----|---------------|---------------|--------------------------|
| Symbol                                | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description              |
| C18                                   | 174 | -2707.80      | -1032.50      | LCD column driver output |
| C19                                   | 175 | -2655.96      | -1032.50      | LCD column driver output |
| C20                                   | 176 | -2604.12      | -1032.50      | LCD column driver output |
| C21                                   | 177 | -2552.28      | -1032.50      | LCD column driver output |
| C22                                   | 178 | -2500.44      | -1032.50      | LCD column driver output |
| C23                                   | 179 | -2448.60      | -1032.50      | LCD column driver output |
| C24                                   | 180 | -2396.76      | -1032.50      | LCD column driver output |
| C25                                   | 181 | -2344.92      | -1032.50      | LCD column driver output |
| C26                                   | 182 | -2293.08      | -1032.50      | LCD column driver output |
| C27                                   | 183 | -2241.24      | -1032.50      | LCD column driver output |
| C28                                   | 184 | -2189.40      | -1032.50      | LCD column driver output |
| C29                                   | 185 | -2137.56      | -1032.50      | LCD column driver output |
| C30                                   | 186 | -2085.72      | -1032.50      | LCD column driver output |
| C31                                   | 187 | -2033.88      | -1032.50      | LCD column driver output |
| C32                                   | 188 | -1878.36      | -1032.50      | LCD column driver output |
| C33                                   | 189 | -1826.52      | -1032.50      | LCD column driver output |
| C34                                   | 190 | -1774.68      | -1032.50      | LCD column driver output |
| C35                                   | 191 | -1722.84      | -1032.50      | LCD column driver output |
| C36                                   | 192 | -1671.00      | -1032.50      | LCD column driver output |
| C37                                   | 193 | -1619.16      | -1032.50      | LCD column driver output |
| C38                                   | 194 | -1567.32      | -1032.50      | LCD column driver output |
| C39                                   | 195 | -1515.48      | -1032.50      | LCD column driver output |
| C40                                   | 196 | -1463.64      | -1032.50      | LCD column driver output |
| C41                                   | 197 | -1411.80      | -1032.50      | LCD column driver output |
| C42                                   | 198 | -1359.16      | -1032.50      | LCD column driver output |
| C43                                   | 199 | -1308.12      | -1032.50      | LCD column driver output |
| C44                                   | 200 | -1256.28      | -1032.50      | LCD column driver output |
| C45                                   | 201 | -1204.44      | -1032.50      | LCD column driver output |
| C46                                   | 202 | -1152.60      | -1032.50      | LCD column driver output |
| C47                                   | 203 | -1100.76      | -1032.50      | LCD column driver output |
| C48                                   | 204 | -1048.92      | -1032.50      | LCD column driver output |
| C49                                   | 205 | -997.08       | -1032.50      | LCD column driver output |
| C50                                   | 206 | -945.24       | -1032.50      | LCD column driver output |
| C51                                   | 207 | -893.40       | -1032.50      | LCD column driver output |
| C52                                   | 208 | -841.56       | -1032.50      | LCD column driver output |
| C53                                   | 209 | -789.72       | -1032.50      | LCD column driver output |
| C54                                   | 210 | -737.88       | -1032.50      | LCD column driver output |
| C55                                   | 211 | -686.04       | -1032.50      | LCD column driver output |
| C56                                   | 212 | -634.20       | -1032.50      | LCD column driver output |
|                                       |     |               |               |                          |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| · · · · · · · · · · · · · · · · · · · |     |               |               |                          |
|---------------------------------------|-----|---------------|---------------|--------------------------|
| Symbol                                | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description              |
| C57                                   | 213 | -582.36       | -1032.50      | LCD column driver output |
| C58                                   | 214 | -530.52       | -1032.50      | LCD column driver output |
| C59                                   | 215 | -478.68       | -1032.50      | LCD column driver output |
| C60                                   | 216 | -426.84       | -1032.50      | LCD column driver output |
| C61                                   | 217 | -375.00       | -1032.50      | LCD column driver output |
| C62                                   | 218 | -323.16       | -1032.50      | LCD column driver output |
| C63                                   | 219 | -271.32       | -1032.50      | LCD column driver output |
| C64                                   | 220 | -115.80       | -1032.50      | LCD column driver output |
| C65                                   | 221 | -63.96        | -1032.50      | LCD column driver output |
| C66                                   | 222 | -12.12        | -1032.50      | LCD column driver output |
| C67                                   | 223 | 39.72         | -1032.50      | LCD column driver output |
| C68                                   | 224 | 91.56         | -1032.50      | LCD column driver output |
| C69                                   | 225 | 143.40        | -1032.50      | LCD column driver output |
| C70                                   | 226 | 195.24        | -1032.50      | LCD column driver output |
| C71                                   | 227 | 247.08        | -1032.50      | LCD column driver output |
| C72                                   | 228 | 298.92        | -1032.50      | LCD column driver output |
| C73                                   | 229 | 350.76        | -1032.50      | LCD column driver output |
| C74                                   | 230 | 402.60        | -1032.50      | LCD column driver output |
| C75                                   | 231 | 454.44        | -1032.50      | LCD column driver output |
| C76                                   | 232 | 506.28        | -1032.50      | LCD column driver output |
| C77                                   | 233 | 558.12        | -1032.50      | LCD column driver output |
| C78                                   | 234 | 609.96        | -1032.50      | LCD column driver output |
| C79                                   | 235 | 661.80        | -1032.50      | LCD column driver output |
| C80                                   | 236 | 713.64        | -1032.50      | LCD column driver output |
| C81                                   | 237 | 765.48        | -1032.50      | LCD column driver output |
| C82                                   | 238 | 817.32        | -1032.50      | LCD column driver output |
| C83                                   | 239 | 869.16        | -1032.50      | LCD column driver output |
| C84                                   | 240 | 921.00        | -1032.50      | LCD column driver output |
| C85                                   | 241 | 972.84        | -1032.50      | LCD column driver output |
| C86                                   | 242 | 1024.68       | -1032.50      | LCD column driver output |
| C87                                   | 243 | 1076.52       | -1032.50      | LCD column driver output |
| C88                                   | 244 | 1128.36       | -1032.50      | LCD column driver output |
| C89                                   | 245 | 1180.20       | -1032.50      | LCD column driver output |
| C90                                   | 246 | 1232.04       | -1032.50      | LCD column driver output |
| C91                                   | 247 | 1283.88       | -1032.50      | LCD column driver output |
| C92                                   | 248 | 1335.72       | -1032.50      | LCD column driver output |
| C93                                   | 249 | 1387.56       | -1032.50      | LCD column driver output |
| C94                                   | 250 | 1439.40       | -1032.50      | LCD column driver output |
| C95                                   | 251 | 1491.24       | -1032.50      | LCD column driver output |
|                                       |     |               |               |                          |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| ga. c <u>_</u> . |     |               |               |                          |
|------------------|-----|---------------|---------------|--------------------------|
| Symbol           | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description              |
| C96              | 252 | 1646.76       | -1032.50      | LCD column driver output |
| C97              | 253 | 1698.60       | -1032.50      | LCD column driver output |
| C98              | 254 | 1750.44       | -1032.50      | LCD column driver output |
| C99              | 255 | 1802.28       | -1032.50      | LCD column driver output |
| C100             | 256 | 1854.12       | -1032.50      | LCD column driver output |
| C101             | 257 | 1905.96       | -1032.50      | LCD column driver output |
| C102             | 258 | 1957.80       | -1032.50      | LCD column driver output |
| C103             | 259 | 2009.64       | -1032.50      | LCD column driver output |
| C104             | 260 | 2061.48       | -1032.50      | LCD column driver output |
| C105             | 261 | 2113.32       | -1032.50      | LCD column driver output |
| C106             | 262 | 2165.16       | -1032.50      | LCD column driver output |
| C107             | 263 | 2217.00       | -1032.50      | LCD column driver output |
| C108             | 264 | 2268.84       | -1032.50      | LCD column driver output |
| C109             | 265 | 2320.68       | -1032.50      | LCD column driver output |
| C110             | 266 | 2372.52       | -1032.50      | LCD column driver output |
| C111             | 267 | 2424.36       | -1032.50      | LCD column driver output |
| C112             | 268 | 2476.20       | -1032.50      | LCD column driver output |
| C113             | 269 | 2528.04       | -1032.50      | LCD column driver output |
| C114             | 270 | 2579.88       | -1032.50      | LCD column driver output |
| C115             | 271 | 2631.72       | -1032.50      | LCD column driver output |
| C116             | 272 | 2683.56       | -1032.50      | LCD column driver output |
| C117             | 273 | 2735.40       | -1032.50      | LCD column driver output |
| C118             | 274 | 2787.24       | -1032.50      | LCD column driver output |
| C119             | 275 | 2839.08       | -1032.50      | LCD column driver output |
| C120             | 276 | 2890.92       | -1032.50      | LCD column driver output |
| C121             | 277 | 2942.76       | -1032.50      | LCD column driver output |
| C122             | 278 | 2994.60       | -1032.50      | LCD column driver output |
| C123             | 279 | 3046.44       | -1032.50      | LCD column driver output |
| C124             | 280 | 3098.28       | -1032.50      | LCD column driver output |
| C125             | 281 | 3150.12       | -1032.50      | LCD column driver output |
| C126             | 282 | 3201.96       | -1032.50      | LCD column driver output |
| C127             | 283 | 3253.80       | -1032.50      | LCD column driver output |
| R0               | 284 | 3461.16       | -1032.50      | LCD row driver output    |
| R1               | 285 | 3513.00       | -1032.50      | LCD row driver output    |
| R2               | 286 | 3564.84       | -1032.50      | LCD row driver output    |
| R3               | 287 | 3616.68       | -1032.50      | LCD row driver output    |
| R4               | 288 | 3668.52       | -1032.50      | LCD row driver output    |
| R5               | 289 | 3720.36       | -1032.50      | LCD row driver output    |
| R6               | 290 | 3772.20       | -1032.50      | LCD row driver output    |
|                  |     |               |               |                          |

**Table 5. Bonding pad description** ...continued All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| rigure z. |     |               |               |                       |
|-----------|-----|---------------|---------------|-----------------------|
| Symbol    | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description           |
| R7        | 291 | 3824.04       | -1032.50      | LCD row driver output |
| R8        | 292 | 3875.88       | -1032.50      | LCD row driver output |
| R9        | 293 | 3927.72       | -1032.50      | LCD row driver output |
| R10       | 294 | 3979.56       | -1032.50      | LCD row driver output |
| R11       | 295 | 4031.40       | -1032.50      | LCD row driver output |
| R12       | 296 | 4083.24       | -1032.50      | LCD row driver output |
| R13       | 297 | 4135.08       | -1032.50      | LCD row driver output |
| R14       | 298 | 4186.92       | -1032.50      | LCD row driver output |
| R15       | 299 | 4238.76       | -1032.50      | LCD row driver output |
| R16       | 300 | 4290.60       | -1032.50      | LCD row driver output |
| R17       | 301 | 4342.44       | -1032.50      | LCD row driver output |
| R18       | 302 | 4394.28       | -1032.50      | LCD row driver output |
| R19       | 303 | 4446.12       | -1032.50      | LCD row driver output |
| R20       | 304 | 4497.96       | -1032.50      | LCD row driver output |
| R21       | 305 | 4549.80       | -1032.50      | LCD row driver output |
| R22       | 306 | 4601.64       | -1032.50      | LCD row driver output |
| R23       | 307 | 4653.48       | -1032.50      | LCD row driver output |
| R24       | 308 | 4705.32       | -1032.50      | LCD row driver output |
| R25       | 309 | 4757.16       | -1032.50      | LCD row driver output |
| R26       | 310 | 4809.00       | -1032.50      | LCD row driver output |
| R27       | 311 | 4860.84       | -1032.50      | LCD row driver output |
| R28       | 312 | 4912.68       | -1032.50      | LCD row driver output |
| R29       | 313 | 4964.52       | -1032.50      | LCD row driver output |
| R30       | 314 | 5016.36       | -1032.50      | LCD row driver output |
| R31       | 315 | 5068.20       | -1032.50      | LCD row driver output |
| R32       | 316 | 5120.04       | -1032.50      | LCD row driver output |
| R33       | 317 | 5171.88       | -1032.50      | LCD row driver output |
| R34       | 318 | 5223.72       | -1032.50      | LCD row driver output |
| R35       | 319 | 5275.56       | -1032.50      | LCD row driver output |
| R36       | 320 | 5327.40       | -1032.50      | LCD row driver output |
| R37       | 321 | 5379.24       | -1032.50      | LCD row driver output |
| R38       | 322 | 5431.08       | -1032.50      | LCD row driver output |
| R39       | 323 | 5482.92       | -1032.50      | LCD row driver output |
| -         | 324 | 5638.44       | -1032.50      | dummy                 |
| -         | 325 | 5690.28       | -1032.50      | dummy                 |
| -         | 326 | 5742.12       | -1032.50      | dummy                 |
| -         | 327 | 5793.96       | -1032.50      | dummy                 |
| -         | 328 | 5845.80       | -1032.50      | dummy                 |
| -         | 329 | 5897.64       | -1032.50      | dummy                 |
|           |     |               |               |                       |

**NXP Semiconductors** 

80 x 128 pixels matrix LCD driver

Bonding pad description ... continued

All x/y coordinates represent the position of the center of each pad with respect to the center (x/y = 0) of the chip; see Figure 2.

| Symbol | Pad | <b>Χ (μm)</b> | <b>Υ (μm)</b> | Description |
|--------|-----|---------------|---------------|-------------|
| -      | 330 | 5949.48       | -1032.50      | dummy       |
| -      | 331 | 6001.32       | -1032.50      | dummy       |
| -      | 332 | 6053.16       | -1032.50      | dummy       |
| -      | 333 | 6105.00       | -1032.50      | dummy       |

#### **Functional description 7**.

#### 7.1 Pad functions

#### 7.1.1 R0 to R79: row driver outputs

These pads output the display row signals.

#### 7.1.2 C0 to C127: column driver signals

These pads output the display column signals.

# 7.1.3 $V_{SS1}$ and $V_{SS2}$ : negative power supply rails

- V<sub>SS2</sub> for voltage multiplier
- These 2 supply rails must be connected together

#### 7.1.4 $V_{DD1}$ to $V_{DD3}$ : positive power supply rails

- V<sub>DD2</sub> and V<sub>DD3</sub> are the supply voltages for the internal voltage multiplier
- V<sub>DD2</sub> and V<sub>DD3</sub> have the same voltage and may be connected together outside of the chip; see Section 17
- V<sub>DD1</sub> is used as supply for the rest of the chip
- V<sub>DD1</sub> can be connected together with V<sub>DD2</sub> and V<sub>DD3</sub>
- If the internal voltage multiplier is not used then pads V<sub>DD2</sub> and V<sub>DD3</sub> must be connected to V<sub>DD1</sub>; see Section 17
- In the case that V<sub>DD1</sub>, V<sub>DD2</sub> and V<sub>DD3</sub> are connected together, care must be taken with respect to the supply voltage range; see Section 14

# 7.1.5 V<sub>OTPPROG</sub>: OTP power supply

Supply voltage for the OTP programming; see Section 18. VOTPPROG can be combined with the SCLH/SCE pad in order to reduce the external connections.

#### 7.1.6 V<sub>LCDOUT</sub>, V<sub>LCDIN</sub>, and V<sub>LCDSENSE</sub>: LCD power supply

Positive power supply for the liquid crystal display.

- If the internal V<sub>LCD</sub> multiplier is used, then all three inputs must be connected together
- If V<sub>LCD</sub> multiplier is disabled and an external voltage is supplied to V<sub>LCDIN</sub>, then V<sub>LCDOUT</sub> must be left open-circuit and V<sub>LCDSENSE</sub> must be connected to V<sub>LCDIN</sub>
- V<sub>DD2</sub> and V<sub>DD3</sub> should be applied according to the specified voltage range

#### 80 x 128 pixels matrix LCD driver

 If the PCF8811 is in Power-save mode, the external LCD supply voltage can be switched off

#### 7.1.7 T1 to T5: test pads

T1, T2 and T5 must be connected to  $V_{SS}$ . T3 and T4 must be left open-circuit. These test pads are not accessible to the user.

#### 7.1.8 MF2 to MF0

Manufacturer device ID pads. (Manufacturer ID 100 = NXP Semiconductors).

#### 7.1.9 DS0

Device recognition pad; see Table 15.

#### 7.1.10 V<sub>OS4</sub> to V<sub>OS0</sub>

These 5 input pads enable the calibration of the offset of the programmed  $V_{LCD}$ ; see Equation 4 and Equation 5 in Section 12.10.

 $V_{OS4}$  to  $V_{OS0}$  must be connected to  $V_{DD1}$  or  $V_{SS1}$ .

#### 7.1.11 EXT: extended command set

Input to select the basic command set or the extended command set. Must be connected on the module to have only one command set enabled; see Table 6.

Table 6. Command set selection

| Pad | Level                    | Description          |
|-----|--------------------------|----------------------|
| EXT | LOW (V <sub>SS1</sub> )  | basic command set    |
|     | HIGH (V <sub>DD1</sub> ) | extended command set |

Remark: NXP Semiconductors recommends that the extended command set is used.

#### 7.1.12 PS0, PS1 and PS2

Parallel/serial/I<sup>2</sup>C-bus interface selection; see Table 7.

Table 7. Interface selection

| PS[2:0]    | Interface                                 |
|------------|-------------------------------------------|
| 000        | 3-line SPI                                |
| 001        | 4-line SPI                                |
| 010        | no operation                              |
| 011        | 6800 parallel interface                   |
| 100 or 110 | high speed I <sup>2</sup> C-bus interface |
| 101 or 111 | 3-line serial interface                   |

# 7.1.13 D/C

Input to select either data or command input. Not used in the 3-line serial interface, 3-line SPI and  $I^2C$ -bus interface and must be connected to  $V_{DD1}$  or  $V_{SS1}$ .

© NXP B.V. 2008. All rights reserved.

80 x 128 pixels matrix LCD driver

#### 7.1.14 R/W/WR

Input to select read or write mode when the 6800 parallel interface is selected. Not used in the serial and  $I^2C$ -bus mode and must be connected to  $V_{DD1}$  or  $V_{SS1}$ .

#### 7.1.15 E/RD

E is the clock enable input for the 6800 parallel bus. Not used in the serial or  $I^2C$ -bus interface and must be connected to  $V_{DD1}$  or  $V_{SS1}$ .

#### 7.1.16 SCLH/SCE

Input to select the chip and so allowing data or commands to be clocked in or input for serial clock when the I<sup>2</sup>C-bus interface is selected.

#### 7.1.17 SDAH

I<sup>2</sup>C-bus serial data input. When not used, it must be connected to V<sub>DD1</sub> and V<sub>SS1</sub>.

#### **7.1.18 SDAHOUT**

SDAHOUT is the serial data acknowledge output for the I<sup>2</sup>C-bus interface.

- By connecting SDAHOUT to SDAH externally, the SDAH line becomes fully I<sup>2</sup>C-bus compatible
- The acknowledge output is separated from the serial data line due to the following reasons:
  - In COG applications where the track resistance from the SDAHOUT pad to the system SDAH line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance
  - It is possible that during the acknowledge cycle the PCF8811 will not be able to create a valid LOW level
  - By splitting the SDAH input from the SDAHOUT output the device could be used in a mode that ignores the acknowledge bit
  - In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDAHOUT pad to the system SDAH line to guarantee a valid LOW level
- When not used it must be connected to V<sub>DD1</sub> or V<sub>SS1</sub>.

# 7.1.19 DB7 to DB0

These input/output lines are used by several interfaces as described below. When not used in the serial interface or the  $I^2C$ -bus interface they must be connected to  $V_{DD1}$  or  $V_{SS1}$ .

#### 7.1.19.1 DB7 to DB0 (parallel interface)

8-bit bidirectional bus. DB7 is the MSB.

#### 7.1.19.2 DB7, DB6 and DB5 (serial interface)

- DB7 is used for serial input data (SDATA) when the serial interface is selected
- DB6 (SCLK) is used for the serial input clock when the serial interface is selected
- DB5 is used as the serial output of the serial interface (SDO)

80 x 128 pixels matrix LCD driver

## 7.1.19.3 DB3 and DB2 (I<sup>2</sup>C-bus interface)

DB3 and DB2 are respectively the SA1 and SA0 inputs when the I<sup>2</sup>C-bus interface is selected and can be used so that up to four PCF8811s can be distinguished on one I<sup>2</sup>C-bus interface.

#### 7.1.20 OSC: oscillator

- When the on-chip oscillator is used this input must be connected to V<sub>DD1</sub>
- If an external clock signal is used, it is connected to this input
- If the oscillator and an external clock are both inhibited by connecting the OSC pad to V<sub>SS1</sub>, the display is not clocked and may be left in a Direct Current (DC) state. To avoid a DC on display, the chip should always be put into Power-down mode before stopping the clock

#### 7.1.21 **RES**: reset

This signal will reset the device and must be applied to properly initialize the chip. The signal is active LOW.

# 7.2 Block diagram functions

See Figure 1 for the block diagram layout.

#### 7.2.1 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required, and the OSC input must be connected to  $V_{DD1}$ . An external clock signal, if used, is connected to this input.

#### 7.2.2 Address counter

The address counter assigns addresses to the display data RAM for writing. The X address X[6:0] and the Y address Y[3:0] are set separately.

#### 7.2.3 Display data RAM

The PCF8811 contains an  $80 \times 128$  bit static RAM which stores the display data.

- The RAM is divided into 10 banks of 128 bytes ( $10 \times 8 \times 128$  bit)
- The icon row (when enabled) is always row 79 and located in bank 9
- During RAM access, data is transferred to the RAM via the parallel interface, serial interface or I<sup>2</sup>C-bus interface
- There is a direct correspondence between the X address and the column output number

#### 7.2.4 Timing generator

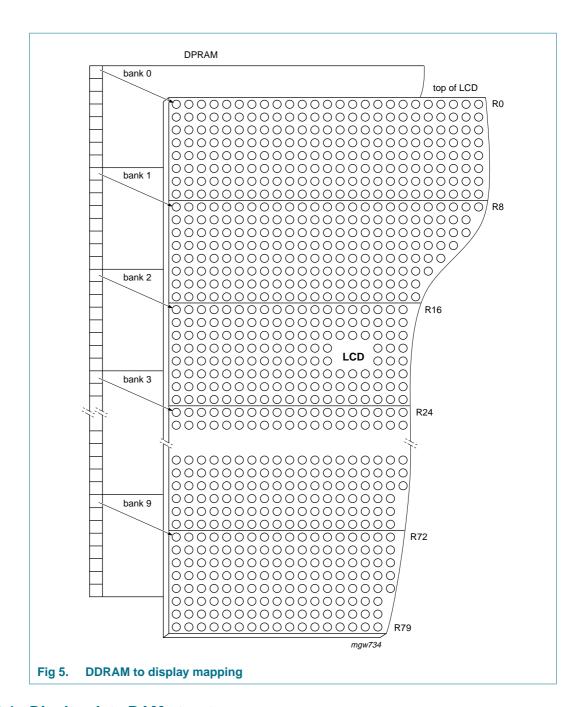
The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data bus.

80 x 128 pixels matrix LCD driver

#### 7.2.5 Display address counter

The display is generated by reading out the RAM content for 2, 4 or 8 rows simultaneously, depending on the current selected display size. This content is processed with the corresponding set of 2, 4 or 8 orthogonal functions and so generates the signals for switching the pixels in the display on or off according to the RAM content. The value p defines the number of rows which are simultaneously selected. It is possible to set the p value for the display sizes 64 and 80 manually to p = 4; see Table 10.

The display status (all dots on/off and normal/inverse video) is set by the bits DON, DAL and E in the command display control; see Table 11.


#### 7.2.6 LCD row and column drivers

The PCF8811 contains 80 row and 128 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed.

# 8. Addressing

Data is written in bytes to the RAM matrix of the PCF8811 as shown in <u>Figure 5</u>. The display RAM has a matrix of  $80 \times 128$  bits. The columns are addressed by the address pointer. The address ranges are: X = 0 to 127 (111 1111), Y = 0 to 9 (1001). The Y address represents the bank number. The effective X and Y addresses are programmed in such an order to use the PCF8811 with different display sizes, without additional loading of the microprocessor. Addresses outside these ranges are not allowed. The icon row when enabled is always row 79 and therefore located in bank 9.

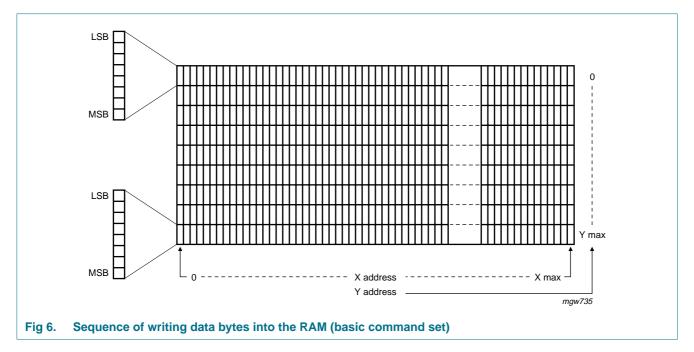
80 x 128 pixels matrix LCD driver



## 8.1 Display data RAM structure

The mode for storing data into the data RAM depends on the selected command set.

#### 8.1.1 Basic command set


After a write operation the column address counter (X address) auto-increments by one, and wraps to zero after the last column is written. The number of columns (X address) after which the wrap around must occur can be programmed.

#### 80 x 128 pixels matrix LCD driver

The Y address counter does not auto-increment in the basic command set. The counter stops when a complete bank has been written to. In this case the Y address counter must be set; for Y address, see Table 10. To write the next bank, see Figure 6.

When only a part of the RAM is used, both X (X<sub>max</sub>) and Y (Y<sub>max</sub>) addresses can be set.

The data order in the basic command set is as defined in Figure 6.



#### 8.1.2 Extended command set

#### 8.1.2.1 Horizontal/vertical addressing

Two different address modes are possible with the extended command set: horizontal address mode and vertical address mode.

In the horizontal address mode (V = 0) the X address increments after each byte. After the last X address, X wraps around to 0 and Y increments to address the next row; see <u>Figure 7</u>. The number of columns (last X address) after which the wrap around must occur can be programmed. In <u>Figure 7</u> it can be seen that the X address is programmed as 127, and the Y address is programmed as 9. With  $X_{max}$  and  $Y_{max}$  the X and Y addresses can be programmed while the whole RAM is not being used.

In the vertical addressing mode (V = 1) the Y address increments after each byte. After the last Y address (Y = 9), Y wraps around to 0 and X increments to address the next column; see <u>Figure 8</u>. The last Y address, after which Y wraps to 0, can be programmed. In <u>Figure 8</u> it can be seen that the X address is programmed as 127, and the Y address is programmed as 9. With  $X_{max}$  and  $Y_{max}$  the X and Y addresses can be programmed while the whole RAM is not being used.

After the very last address, the address pointers wrap around to address X = 0 and Y = 0 in both horizontal and vertical addressing modes.

80 x 128 pixels matrix LCD driver

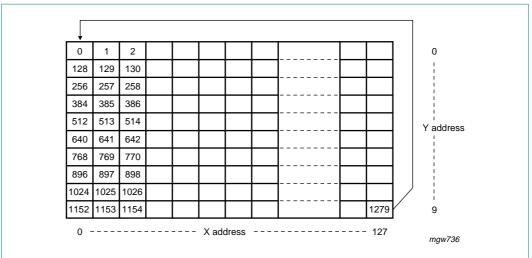
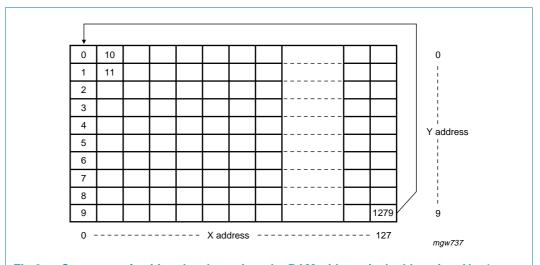
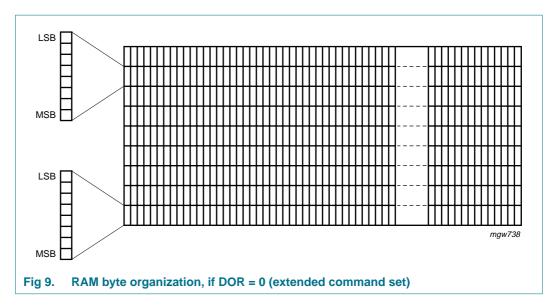
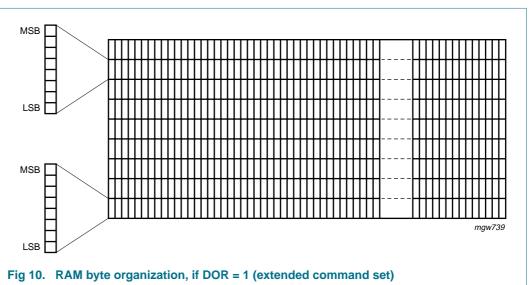



Fig 7. Sequence of writing data bytes into the RAM with horizontal addressing; V = 0 (extended command set)

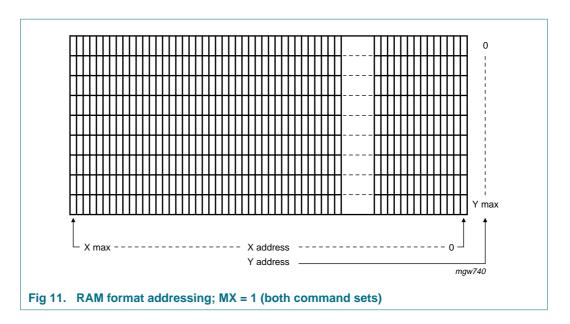



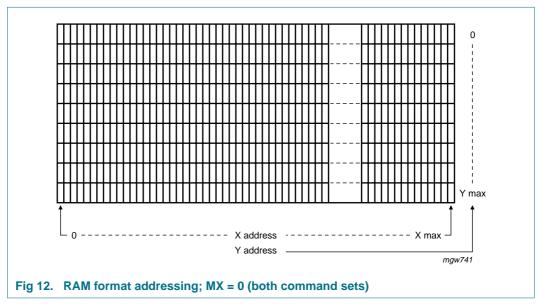


Fig 8. Sequence of writing data bytes into the RAM with vertical addressing; V = 1 (extended command set)

#### 8.1.2.2 Data order

The data order bit (DOR) defines the bit order (LSB or MSB on top) for writing into the RAM; see <u>Figure 9</u> and <u>Figure 10</u>. This feature is only available in the extended command set.

80 x 128 pixels matrix LCD driver

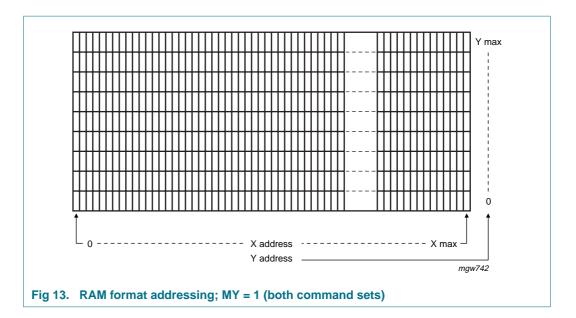


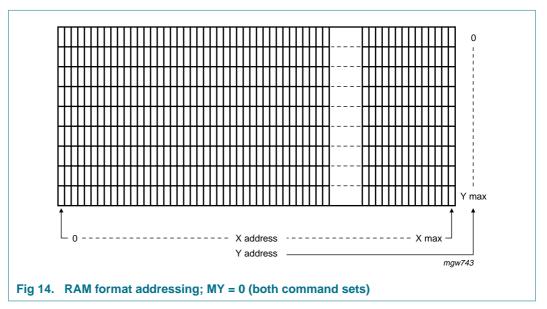




#### 8.1.2.3 Features available in both command sets

**Mirror X (MX):** The MX bit allows horizontal mirroring: when MX = 1, the X address space is mirrored; the address X = 0 is then located at the right side  $(X_{max})$  of the display; see <u>Figure 11</u>. When MX = 0, the mirroring is disabled and the address X = 0 is located at the left side (column 0) of the display; see <u>Figure 12</u>.

80 x 128 pixels matrix LCD driver




**Mirror Y (MY):** The MY bit allows vertical mirroring: when MY = 1, the Y address space is mirrored; the address Y = 0 is then located at the bottom of the display; see <u>Figure 13</u>. When MY = 0, the mirroring is disabled and the address Y = 0 is located at top of the display; see <u>Figure 14</u>.

The icon row, when enabled, is always located in bank 9 and row 79.

80 x 128 pixels matrix LCD driver





# 9. Parallel interface

The parallel interface, which can be selected, is the 6800 series 8-bit bidirectional interface for communication between the microcontroller and the LCD driver chip. The selection of this interface is achieved with pads PS[2:0]; see <a href="Section 7.1.12">Section 7.1.12</a>.

# 9.1 6800 series parallel interface

The interface functions of the 6800 series parallel interface are given in Table 8.

#### 80 x 128 pixels matrix LCD driver

Table 8. 6800 series parallel interface functions

| D/C | R/W/WR | Operation            |
|-----|--------|----------------------|
| 0   | 0      | command data write   |
| 0   | 1      | read status register |
| 1   | 0      | display data write   |
| 1   | 1      | none                 |

The parallel interface timing diagram for the 6800 series is given in Section 16.1, Figure 39 and Figure 40. The timing diagrams differ because in Figure 39 the clock is connected to the enable (E) input. In Figure 40 the clock is connected to the chip enable input (SCE) and the enable input (E) is tied HIGH.

# 10. Serial interfacing (SPI and serial interface)

Communication with the microcontroller can also occur via a clock-synchronized Serial Peripheral Interface (SPI). It is possible to select between either a 3-line (SPI or serial interface) or a 4-line serial peripheral interface. Selection is achieved via PS[2:0]; see Section 7.1.12).

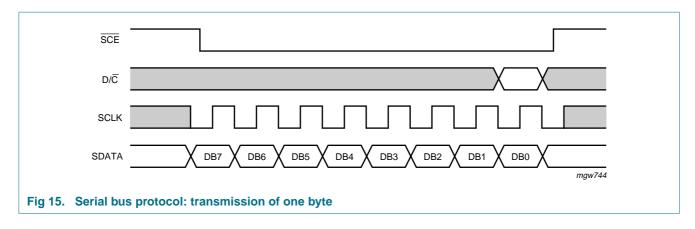
# 10.1 Serial peripheral interface lines

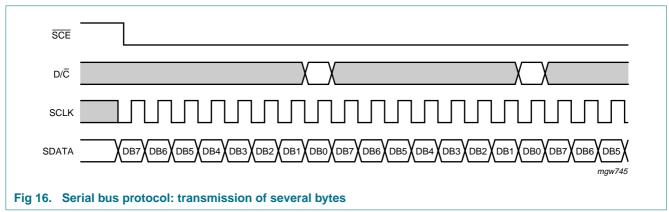
The serial peripheral interface is a 3-line or 4-line interface for communication between the microcontroller and the LCD driver chip. The 3 lines are:

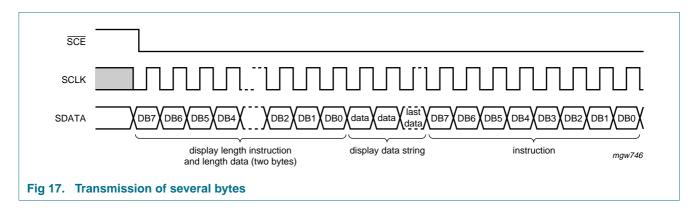
- SCE (chip enable)
- SCLK (serial clock)
- SDATA (serial data)

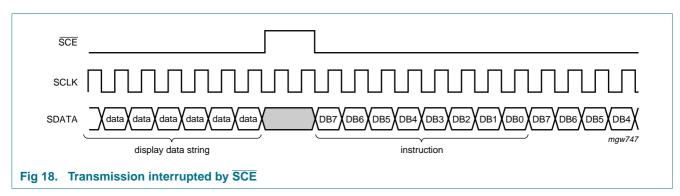
For the 4-line serial peripheral interface a separate  $D/\overline{C}$  line is added.

The PCF8811 is connected to the serial data I/O (SDA) of the microcontroller by connecting the two pads SDATA (data input) and SDO (data output) together.


#### **10.1.1** Write mode


The display data/command indication may be controlled either via software or the  $D/\overline{C}$  select pad. When the  $D/\overline{C}$  pad is used, display data is transmitted when  $D/\overline{C}$  is HIGH, and command data is transmitted when  $D/\overline{C}$  is LOW; see Figure 15 and Figure 16. When pad  $D/\overline{C}$  is not used, the display data length instruction is used to indicate that a specific number of display data bytes (1 to 255) are to be transmitted; see Figure 17. The next byte after the display data string is handled as an instruction command.


When the 3-line SPI interface is used, the display data/command is controlled by software.


If SCE is pulled HIGH during a serial display data stream, the interrupted byte is invalid data but all previously transmitted data is valid. The next byte received will be handled as an instruction command; see Figure 18.

80 x 128 pixels matrix LCD driver



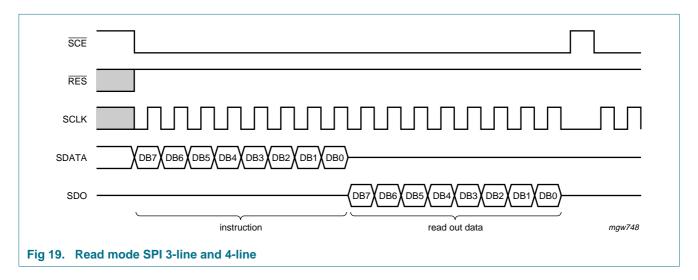






PCF8811\_4 © NXP B.V. 2008. All rights reserved.

80 x 128 pixels matrix LCD driver


## 10.1.2 Read mode (only extended command set)

The read mode of the interface means that the microcontroller reads data from the PCF8811. To do so, the microcontroller first has to send a command (the read status command) and then the PCF8811 will respond by transmitting data on the SDO line. After that,  $\overline{\text{SCE}}$  is required to go HIGH; see Figure 19.

The PCF8811 samples the SDATA data on rising SCLK edges, but shifts SDO data on falling SCLK edges. So, the microcontroller is supposed to read SDO data on rising SCLK edges.

After the read status command has been sent, the SDATA line must be set to 3-state not later then the falling SCLK edge of the last bit; see Figure 19.

Serial interface timing diagrams are shown in Section 16.2.



#### 10.2 Serial interface (3-line)

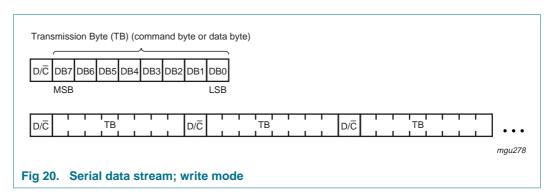
The serial interface is also a 3-line bidirectional interface for communication between the microcontroller and the LCD driver chip. The 3 lines are:

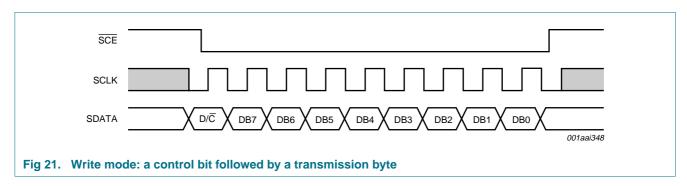
- SCE (chip enable)
- SCLK (serial clock)
- SDATA (serial data)

The PCF8811 is connected to the SDA of the microcontroller by two lines: SDATA (data input) and SDO (data output) which are connected together.

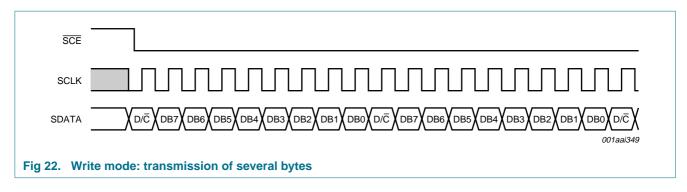
#### 10.2.1 Write mode

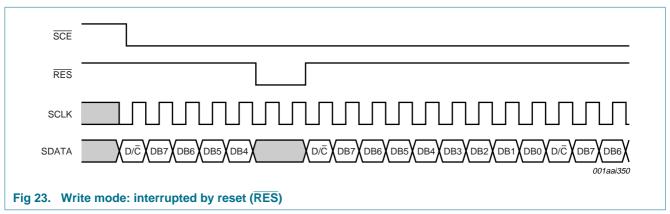
The write mode of the interface means that the microcontroller writes commands and data to the PCF8811. Each data packet contains a control bit  $(D/\overline{C})$  and a transmission byte. If  $D/\overline{C}$  is LOW, the following byte is interpreted as a command byte. The instruction set is shown in Table 10. If  $D/\overline{C}$  is HIGH, the following byte is stored in the display data RAM. After every data byte the address counter is incremented automatically. Figure 20 shows the general format of the write mode and the definition of the transmission byte.


PCF8811\_4 © NXP B.V. 2008. All rights reserved.


#### 80 x 128 pixels matrix LCD driver

Any instruction can be sent in any order to the PCF8811; the MSB is transmitted first. The serial interface is initialized when  $\overline{SCE}$  is HIGH. In this state, SCLK clock pulses have no effect and no power is consumed by the serial interface. A falling edge on  $\overline{SCE}$  enables the serial interface and indicates the start of data transmission.


Figure 21, Figure 22 and Figure 23 show the protocol of the write mode:


- when SCE is HIGH, SCLK clocks are ignored; during the HIGH time of SCE the serial interface is initialized
- SCLK must be LOW on the falling SCE edge; see Figure 41
- SDATA is sampled on the rising edge of SCLK
- D/ $\overline{C}$  indicates, whether the byte is a command (D/ $\overline{C}$  = 0) or RAM data (D/ $\overline{C}$  = 1); it is sampled on the first rising SCLK edge
- If SCE stays LOW after the last bit of a data/command byte, the serial interface receives the D/C bit of the next byte on the next rising edge of SCLK; see Figure 22
- A reset pulse RES interrupts the transmission. The data being written into the RAM may be corrupted. The registers are cleared. If SCE is LOW after the rising edge of RES, the serial interface is ready to receive the D/C bit of a data/command byte; see Figure 23.



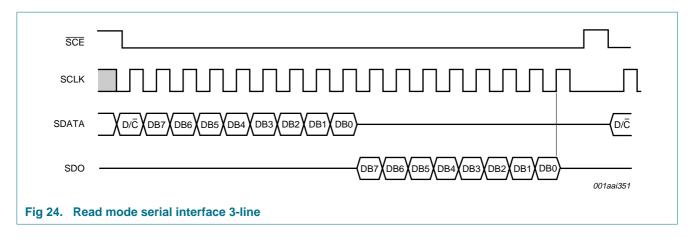


80 x 128 pixels matrix LCD driver





#### 10.2.2 Read mode (only extended command set)


The read mode of the interface means that the microcontroller reads data from the PCF8811. To do so, the microcontroller first has to send a command (the read status command) and then the following byte is transmitted in the opposite direction using SDO; see Figure 24. After that, SCE is required to go HIGH before a new command is sent.

The PCF8811 samples the SDATA data on the rising SCLK edges, but shifts SDO data on the falling SCLK edges. Thus the microcontroller is supposed to read SDO data on rising SCLK edges.

After the read status command has been sent, the SDATA line must be set to 3-state not later then the falling SCLK edge of the last bit; see Figure 24.

The 8<sup>th</sup> read bit is shorter than the others because it is terminated by the rising SCLK edge; see Figure 44. The last rising SCLK edge sets SDO to 3-state after the delay time  $t_A$ .

80 x 128 pixels matrix LCD driver

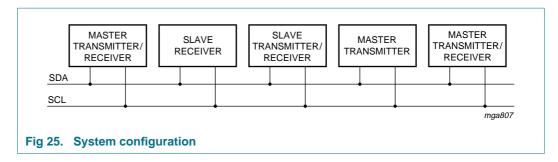


# 11. I<sup>2</sup>C-bus interface

# 11.1 Characteristics of the I<sup>2</sup>C-bus (Hs-mode)

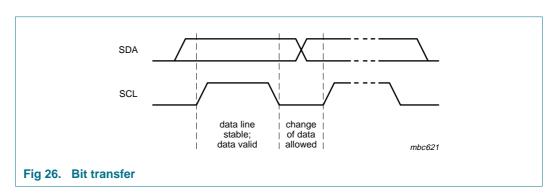
The I<sup>2</sup>C-bus Hs-mode is for bidirectional, two-line communication between different ICs or modules with speeds of up to 3.4 MHz. The only difference between Hs-mode slave devices and F/S-mode slave devices is the speed at which they operate. Because of this the buffers on the SCLH and SDAH have open-drain outputs. This is the same for I<sup>2</sup>C-bus master devices which have an open-drain SDAH output and a combination of an open-drain, pull-down and current source pull-up circuits on the SCLH output. Only the current source of one master is enabled at any one time, and only during Hs-mode. Both lines must be connected to a positive supply via a pull-up resistor.

Data transfer may be initiated only when the bus is not busy.


#### 11.1.1 System configuration

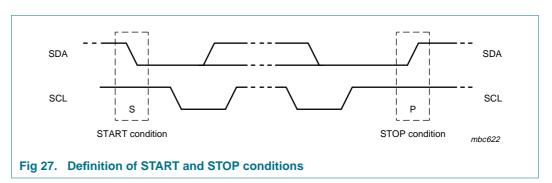
The system configuration is shown in Figure 25.

Definitions of the I<sup>2</sup>C-bus terminology:


- transmitter: the device which sends the data to the bus
- receiver: the device which receives the data from the bus
- master: the device which initiates a transfer, generates clock signals and terminates a transfer
- slave: the device addressed by a master
- multi-master: more than one master can attempt to control the bus at the same time without corrupting the message
- **arbitration:** procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- synchronization: procedure to synchronize the clock signals of two or more devices

80 x 128 pixels matrix LCD driver



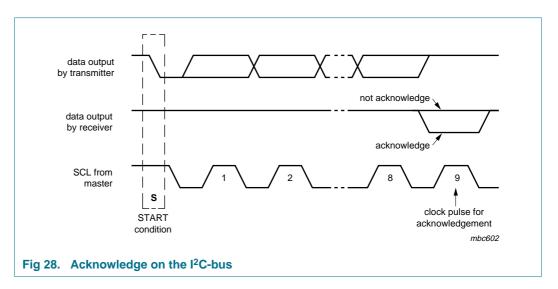

#### 11.1.2 Bit transfer

One data bit is transferred during each clock pulse; see <u>Figure 26</u>. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.



#### 11.1.3 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are shown in Figure 27.



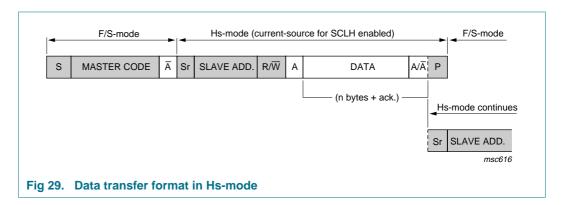

#### 11.1.4 Acknowledge

Each byte of eight bits is followed by an acknowledge bit; see <a href="Figure 28">Figure 28</a>. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge-related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period

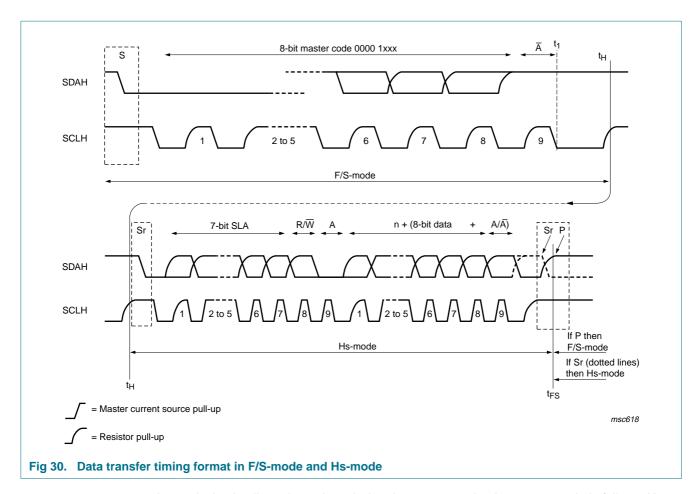
80 x 128 pixels matrix LCD driver

of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.




# 11.2 I<sup>2</sup>C-bus Hs-mode protocol

The PCF8811 is a slave receiver/transmitter. If data is to be read from the device, the SDAH pad must be connected, otherwise the SDAH pad is unused.


Hs-mode can only commence after the following conditions:

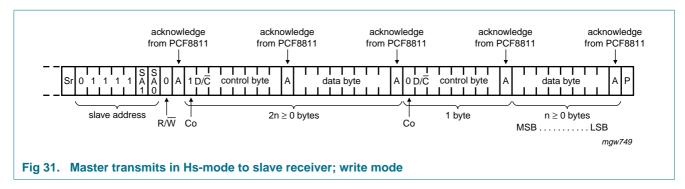
- START condition (S)
- 8-bit master code (0000 1xxx)
- Not-acknowledge bit (A)

The master code has two functions: it allows arbitration and synchronization between competing masters at F/S-mode speeds, resulting in one winner. The master code also indicates the beginning of an Hs-mode transfer. These conditions are shown in <u>Figure 29</u> and <u>Figure 30</u>.



80 x 128 pixels matrix LCD driver




As no device is allowed to acknowledge the master code, the master code is followed by a not-acknowledge  $(\overline{A})$ . After this  $\overline{A}$  bit, and the SCLH line pulled up to a HIGH level, the active master switches to Hs-mode and enables at  $t_H$  the current-source pull-up circuit for the SCLH signal; see Figure 30.

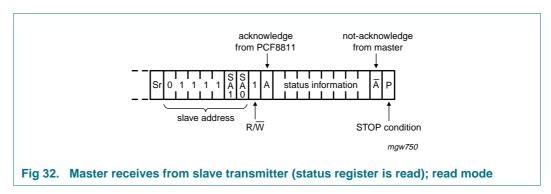
The active master will then send a repeated START condition (Sr) followed by a 7-bit slave address (SLA) with a  $R/\overline{W}$  bit, and receives an acknowledge bit (A) from the selected slave.

After each acknowledge bit (A) or not-acknowledge bit  $(\overline{A})$  the active master disables its current source pull-up circuit. The active master re-enables its current source again when all devices have been released and the SCLH signal reaches a HIGH level. The rising of the SCLH signal is done by a pull-up resistor and therefore is slower, the last part of the SCLH rise time is speeded up because the current source is enabled. Data transfer only switches back to F/S-mode after a STOP condition (P).

A write sequence after the Hs-mode is selected is shown in <u>Figure 31</u>. The sequence is initiated with a START condition (S) from the I<sup>2</sup>C-bus master which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, the remainder will ignore the I<sup>2</sup>C-bus transfer.

80 x 128 pixels matrix LCD driver




After the acknowledgement cycle of a write  $(\overline{W})$ , one or more command words will follow which define the status of the addressed slaves. A command word consists of a control byte, which defines continuation bit Co and  $D/\overline{C}$ , plus a data byte; see Figure 31 and Table 9.

The last control byte is initiated by bit Co (a cleared MSB). The control and data bytes are also acknowledged by all addressed slaves on the bus.

Table 9. Co and  $D/\overline{C}$  definitions

| Bit | Logic state | R/W | Action                                                                                                                                             |
|-----|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Co  | 0           | N/Ā | last control byte to be sent; only a stream of data bytes are allowed to follow; this stream may only be terminated by a STOP or RESTART condition |
|     | 1           | N/Ā | another control byte will follow the data byte unless a STOP or RESTART condition is received                                                      |
| D/C | 0           | 0   | data byte will be decoded and used to set-up the device                                                                                            |
|     |             | 1   | data byte will return the status byte                                                                                                              |
|     | 1           | 0   | data byte will be stored in the display RAM                                                                                                        |
|     |             | 1   | RAM read back is not supported                                                                                                                     |

A read sequence is shown in Figure 32 and again this sequence follows after the Hs-mode is selected. The PCF8811 will immediately start to output the requested data until a not-acknowledge is transmitted by the master. Before the read access, the user has to set the  $D/\overline{C}$  bit to the appropriate value by a preceding write access. The write access must be terminated by a RESTART condition so that the Hs-mode is not disabled.



After the last control byte, depending on the  $D/\overline{C}$  bit setting, either a series of display data bytes or command data bytes may follow. If the  $D/\overline{C}$  bit was set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer.

80 x 128 pixels matrix LCD driver

The data pointer is automatically updated and the data is directed to the intended PCF8811 device. If the  $D/\overline{C}$  bit of the last control byte was set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgement after each byte is made only by the addressed PCF8811. At the end of the transmission the  $I^2C$ -bus master issues a STOP condition (P) and switches back to the F/S-mode, however, to reduce the overhead of the master code, it is possible that a master can link a number of Hs-mode transfers, separated by repeated START conditions (Sr).

#### 11.3 Command decoder

The command decoder identifies command words that are received on the I<sup>2</sup>C-bus:

- pairs of bytes: information in second byte, first byte determines whether information is display or instruction data
- Stream of information bytes after Co = 0: display or instruction data depending on last D/C

The most significant bit of a control byte is the continuation bit Co. If this bit is at logic 1, it indicates that only one data byte, either command or RAM data, will follow. If this bit is at logic 0, it indicates that a series of data bytes, either command or RAM data, may follow. The DB6 bit of a control byte is the RAM data/ $\overline{\text{command}}$  bit D/ $\overline{\text{C}}$ . When this bit is at logic 1, it indicates that a RAM data byte will be transferred next. If the bit is at logic 0, it indicates that a command byte will be transferred next.

# 12. Instructions

The PCF8811 interfaces via an 8-bit parallel interface, two different 3-line serial interfaces, a 4-wire serial interface or an I<sup>2</sup>C-bus interface. Processing of the instructions does not require the display clock.

Data accesses to the PCF8811 can be broken down into two areas: those that define the operating mode of the device, and those that fill the display RAM.

In the case of the parallel and 4-wire SPI interfaces, the distinction is the  $D/\overline{C}$  pad. When the  $D/\overline{C}$  pad is at logic 0, the chip will respond to instructions as defined in <u>Table 10</u>. When the  $D/\overline{C}$  bit is at logic 1, the chip will send data to the RAM.

When the 3-wire SPI, the 3-wire serial interface or the  $I^2C$ -bus interface is used, the distinction between instructions which define the operating mode of the device and those that fill the display RAM, is made respectively by the display data length instruction (3-line SPI) or by the  $D/\overline{C}$  bit in the data stream (3-line serial interface and  $I^2C$ -bus interface).

There are 4 types of instructions. Those which:

- 1. Define the PCF8811 functions, such as display configuration etc.
- 2. Set internal RAM addresses
- 3. Perform data transfer with internal RAM
- 4. Others.

In normal use, category 3 instructions are used most frequently.

80 x 128 pixels matrix LCD driver

A basic and an extended instruction set is available. If the EXT pad is set LOW the basic command set is used. If the EXT pad is set HIGH the extended command set is used.

Both command sets are detailed in Table 10.

| Table 10. Inst | truction set[1 |  |
|----------------|----------------|--|
|----------------|----------------|--|

| Instruction Pad Command byte |        |     |        |        |                   |                   | Description       |                   |                   |                   |                   |                                                  |
|------------------------------|--------|-----|--------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------------------------|
|                              | EXT[2] | D/C | R/W/WR | DB7[3] | DB6               | DB5               | DB4               | DB3               | DB2               | DB1               | DB0               | _                                                |
| NOP                          | X      | 0   | 0      | 0      | 1                 | 0                 | 0                 | 1                 | 1                 | Χ                 | Χ                 | no operation                                     |
|                              | X      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 0                 | 1                 | 0                 | 0                 |                                                  |
| Reset                        | Х      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 0                 | 0                 | 1                 | 0                 | soft reset                                       |
| Vrite data                   | Χ      | 1   | 0      | D7     | D6                | D5                | D4                | D3                | D2                | D1                | D0                | write data to display RAM                        |
| Display data length          | Χ      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 1                 | 0                 | 0                 | 0                 | only used in 3-line SPI                          |
|                              | X      | 0   | 0      | D7     | D6                | D5                | D4                | D3                | D2                | D1                | D0                |                                                  |
| Status read                  | Х      | 0   | 1      | BUSY   | DON               | RES               | MF2               | MF1               | MF0               | DS1               | DS0               | read status byte                                 |
|                              | X      | 0   | Х      | 1      | 1                 | 0                 | 1                 | 1                 | 0                 | 1                 | Χ                 | read status byte                                 |
| Display control              | Х      | 0   | 0      | 1      | 0                 | 1                 | 0                 | 1                 | 1                 | 1                 | DON               | display on or off                                |
|                              | X      | 0   | 0      | 1      | 0                 | 1                 | 0                 | 0                 | 1                 | 1                 | Е                 | normal or reverse mode                           |
|                              | X      | 0   | 0      | 1      | 0                 | 1                 | 0                 | 0                 | 1                 | 0                 | DAL               | all pixels on or off                             |
|                              | X      | 0   | 0      | 1      | 0                 | 1                 | 0                 | 0                 | 0                 | 0                 | MX                | mirror X                                         |
|                              | X      | 0   | 0      | 1      | 1                 | 0                 | 0                 | MY                | Χ                 | Χ                 | Χ                 | mirror Y                                         |
|                              | 1      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 1                 | 1                 | 1                 | IC                | icon enable or disable[4]                        |
|                              | 1      | 0   | 0      | 1      | 0                 | 1                 | 0                 | 0                 | 0                 | 1                 | V                 | vertical or horizontal addressing[4]             |
|                              | 1      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 1                 | 0                 | 1                 | DOR               | data order[4]                                    |
|                              | 1      | 0   | 0      | 1      | 1                 | 1                 | 0                 | 1                 | 1                 | 0                 | BRS               | bottom row swap[4]                               |
| Address commands             | Х      | 0   | 0      | 1      | 0                 | 1                 | 1                 | $Y_3$             | $Y_2$             | Y <sub>1</sub>    | $Y_0$             | set Y address; $0 \le Y \le 9$                   |
|                              | X      | 0   | 0      | 0      | 0                 | 0                 | 1                 | 0                 | $X_6$             | $X_5$             | $X_4$             | set X address; $0 \le X \le 127$                 |
|                              | X      | 0   | 0      | 0      | 0                 | 0                 | 0                 | $X_3$             | $X_2$             | $X_1$             | $X_0$             |                                                  |
|                              | X      | 0   | 0      | 0      | 0                 | 0                 | 1                 | 1                 | 0                 | 0                 | 1                 | set $Y_{max}$ ; $0 \le Y \le 9$                  |
|                              |        | 0   | 0      | Χ      | Χ                 | Χ                 | Χ                 | Y <sub>max3</sub> | Y <sub>max2</sub> | $Y_{\text{max1}}$ | Y <sub>max0</sub> |                                                  |
|                              | X      | 0   | 0      | 0      | 0                 | 0                 | 1                 | 1                 | 0                 | 0                 | 0                 | set $X_{max}$ ; $0 \le X \le 127$                |
|                              |        |     |        | X      | Y <sub>max6</sub> | Y <sub>max5</sub> | Y <sub>max4</sub> | Y <sub>max3</sub> | Y <sub>max2</sub> | $Y_{max1}$        | Y <sub>max0</sub> |                                                  |
| Set initial display line     | Х      | 0   | 0      | 0      | 1                 | 0                 | 0                 | 0                 | 0                 | Χ                 | Χ                 | set initial display line; $0 \le L \le 79^{[5]}$ |
|                              | X      | 0   | 0      | Χ      | L <sub>6</sub>    | L <sub>5</sub>    | L <sub>4</sub>    | L <sub>3</sub>    | L <sub>2</sub>    | L <sub>1</sub>    | L <sub>0</sub>    |                                                  |
| Set initial row              | Х      | 0   | 0      | 0      | 1                 | 0                 | 0                 | 0                 | 1                 | Χ                 | Χ                 | set start row; $0 \le C \le 79^{[6]}$            |
|                              | X      | 0   | 0      | Χ      | C <sub>6</sub>    | C <sub>5</sub>    | C <sub>4</sub>    | $C_3$             | $C_2$             | C <sub>1</sub>    | $C_0$             |                                                  |
| Set partial display          | Х      | 0   | 0      | 0      | 1                 | 0                 | 0                 | 1                 | 0                 | Х                 | Х                 | set partial display 1:16 to 1:80                 |

NXP

Semiconductors

Table 10. Instruction set[1] ...continued

| Instruction Pad         |        |     | Comma  | ind byt   | е         |           | Description |           |                 |                 |                   |                                                                      |
|-------------------------|--------|-----|--------|-----------|-----------|-----------|-------------|-----------|-----------------|-----------------|-------------------|----------------------------------------------------------------------|
|                         | EXT[2] | D/C | R/W/WR | DB7[3]    | DB6       | DB5       | DB4         | DB3       | DB2             | DB1             | DB0               |                                                                      |
| V <sub>OP</sub> setting | 0      | 0   | 0      | 1         | 0         | 0         | 0           | 0         | 0               | 0               | 1                 | set V <sub>OP</sub> [7][8]                                           |
|                         | 0      | 0   | 0      | X         | Χ         | $V_{PR5}$ | $V_{PR4}$   | $V_{PR3}$ | $V_{PR2}$       | $V_{PR1}$       | $V_{PR0}$         |                                                                      |
|                         | 0      | 0   | 0      | 0         | 0         | 1         | 0           | 0         | $V_{OFF2}$      | $V_{OFF1}$      | V <sub>OFF0</sub> | offset for V <sub>OP</sub> [7][8]                                    |
|                         | 1      | 0   | 0      | 1         | 0         | 0         | 0           | 0         | 0               | 0               | 1                 | set V <sub>OP</sub> [4]                                              |
|                         | 1      | 0   | 0      | $V_{PR7}$ | $V_{PR6}$ | $V_{PR5}$ | $V_{PR4}$   | $V_{PR3}$ | $V_{PR2}$       | $V_{PR1}$       | $V_{PR0}$         |                                                                      |
| Power control           | X      | 0   | 0      | 0         | 0         | 1         | 0           | 1         | PC <sub>1</sub> | $PC_0$          | 1                 | switch HVgen on/off                                                  |
| HVgen stages            | 0      | 0   | 0      | 0         | 1         | 1         | 0           | 0         | 1               | S <sub>1</sub>  | $S_0$             | set multiplication factor                                            |
|                         | 1      | 0   | 0      | 0         | 1         | 1         | 0           | 0         | $S_2$           | S <sub>1</sub>  | $S_0$             | set multiplication factor[4]                                         |
| FR                      | 1      | 0   | 0      | 0         | 0         | 0         | 1           | 1         | 1               | FR <sub>1</sub> | $FR_0$            | set frame rate frequency[4]                                          |
| TC[9]                   | 1      | 0   | 0      | 0         | 0         | 1         | 1           | 1         | $TC_2$          | TC <sub>1</sub> | $TC_0$            | set temperature coefficient[4]                                       |
| Bias system             | 0      | 0   | 0      | 0         | 1         | 0         | 1           | 0         | $BS_2$          | BS <sub>1</sub> | $BS_0$            | set bias system[10]                                                  |
| Manual p value (p = 4)  | 1      | 0   | 0      | 0         | 0         | 0         | 1           | 1         | 0               | 1               | MP                | set manual p value[4][11]                                            |
| Power-save on           | Х      | 0   | 0      | 1         | 0         | 1         | 0           | 1         | 0               | 0               | 1                 | Power-save mode                                                      |
| Power-save off          | Х      | 0   | 0      | 1         | 1         | 1         | 0           | 0         | 0               | 0               | 1                 | exit Power-save mode                                                 |
| Internal oscillator     | Х      | 0   | 0      | 1         | 0         | 1         | 0           | 1         | 0               | 1               | os                | switch internal oscillator on/off                                    |
| Internal oscillator     | 1      | 0   | 0      | 1         | 1         | 1         | 0           | 0         | 1               | 1               | EC                | enable or disable the internal or external oscillator <sup>[4]</sup> |
| Enter CALMM mode        | Х      | 0   | 0      | 1         | 0         | 0         | 0           | 0         | 0               | 1               | 0                 | enter CALMM mode                                                     |
| Reserved                | Х      | 0   | 0      | 0         | 0         | 1         | 0           | 1         | Χ               | Χ               | 0                 | reserved                                                             |
| Reserved                | X      | 0   | 0      | 0         | 1         | 1         | 1           | Χ         | Χ               | Χ               | Χ                 | reserved                                                             |
| Test                    | Χ      | 0   | 0      | 1         | 1         | 1         | 1           | Х         | Х               | Х               | Х                 | do not use; reserved for testing                                     |

- [1] X = value without meaning.
- [2] NXP Semiconductors recommends that the extended command set be used.
- [3] D7 = MSB.
- [4] Commands only available with the extended command set, EXT = 1. If EXT = 0 these commands have no effect.
- [5] When the icon mode is enabled the set initial display line  $0 \le L \le 78$ .
- [6] When the icon mode is enabled the set initial row line  $0 \le C \le 78$ .
- [7] Commands only used for the basic command set EXT = 0. If EXT = 1 these commands have no effect. It must be checked, when setting V<sub>OP</sub> in the basic command set that it is followed by another command.
- [8] The programming of  $V_{OP}$  in the basic command set must be done in the following order:
  - a)  $V_{PR}[5:0]$

39 of 81

80 x 128 pixels matrix LCD driver

- b) V<sub>OFF</sub>[2:0]
- c) must be followed by another command.
- [9] One fixed TC is set automatically if the basic command set is used.
- [10] Bias system settings which can be received when the chip is used as a replacement for the Alt-Pleshko driving method (NOP).
- [11] Only for multiplex rates 1:64 and 1:80. The number of simultaneous rows can be set manually to p = 4; see Table 18.

#### 12.1 Instruction set commands

## 12.1.1 Common instructions of the basic and extended command set

Table 11. Common commands

| Bit                   | Logic 0                                                                           | Logic 1                           |            | Reset state                     |
|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------|------------|---------------------------------|
| DON                   | display off                                                                       | display on                        |            | 0                               |
| E                     | normal display                                                                    | inverse video mode                |            | 0                               |
| DAL                   | normal display                                                                    | all pixels on                     |            | 0                               |
| MX                    | no X mirroring                                                                    | X mirroring                       |            | 0                               |
| MY                    | no Y mirroring                                                                    | Y mirroring                       |            | 0                               |
| OC                    | stop frame frequency calibration                                                  | start frame frequency calibration |            | 0                               |
| os                    | internal oscillator off                                                           | start internal oscillator         |            | 0                               |
| X[6:0]                | set X address (column) t                                                          | for writing in the RAM            |            | 000 0000                        |
| Y[3:0]                | set Y address (bank) for                                                          | writing in the RAM                |            | 0000                            |
| X <sub>max[6:0]</sub> | set wrap around X addre                                                           | ess (column)                      |            | 111 1111                        |
| $Y_{max[3:0]}$        | set wrap around Y addre                                                           | ess (bank)                        |            | 1001                            |
| L[6:0]                | sets line address of the c<br>cannot access the icon c<br>icon row is enabled     |                                   |            | 000 0000                        |
| C[6:0]                | sets the initial row 0 of the<br>cannot access the icon of<br>icon row is enabled | • •                               |            | 000 0000                        |
| P[6:0]                | partial display mode 1:10                                                         | 6 to 1:80                         | <u>[1]</u> | 101 0000 (1:80)/100 0000 (1:64) |
| PC[1:0]               | switch HV multiplier on/o                                                         | off                               |            | 00                              |
| S[1:0]                | charge pump multiplicati                                                          | on factor                         |            | 00                              |
| · ·                   |                                                                                   |                                   |            |                                 |

<sup>[1]</sup> Partial displays can be selected in steps of 8, when the icon mode is not selected. When the icon mode is selected, partial displays can be selected in steps of 16. For example, without icons the available partial display sizes are 8, 16, 24, 32, 40, 48, 56, 64 or 72 lines. With icons there are 16, 32, 48 or 64 lines possible.

Table 12. Power control register

| PC[1:0] | Description |
|---------|-------------|
| 00      | HVgen off   |
| x1      | HVgen on    |
| 1x      | HVgen on    |

## 80 x 128 pixels matrix LCD driver

Table 13. Power-save mode (PSM), OS, DON, DAL and E combinations[1]

| PSM | os | DON | DAL | E | Description                                                                           |
|-----|----|-----|-----|---|---------------------------------------------------------------------------------------|
| 0   | 0  | Χ   | Χ   | Χ | oscillator off; HVgen disabled                                                        |
| 0   | 1  | X   | 0   | Χ | oscillator on; HVgen disabled                                                         |
| 0   | 1  | 0   | 1   | X | display off; pads Rn/Cn at $V_{SS}$ ; oscillator off; HVgen disabled <sup>[2]</sup>   |
| 0   | 1  | 1   | 0   | 0 | normal display mode                                                                   |
| 0   | 1  | 1   | 0   | 1 | inverse display mode                                                                  |
| 0   | 1  | 1   | 1   | Χ | all pixels on <sup>[3]</sup>                                                          |
| 1   | X  | X   | Χ   | X | Power-save mode: display off; pads Rn/Cn at $V_{SS}$ ; oscillator off; HVgen disabled |

<sup>[1]</sup> X =value without meaning.

Table 14. Read status byte

| Bit     | Description                                         |
|---------|-----------------------------------------------------|
| BUSY    | if BUSY = 0 the chip is able to accept new commands |
| DON     | same bit as in <u>Table 13</u>                      |
| RES     | if RES = 1 a reset is in progress                   |
| MF[2:0] | device manufacturer ID                              |
| DS0     | device recognition; see Table 15                    |

Table 15. Device recognition[1]

| DS0 | Description   |
|-----|---------------|
| 0   | 64 row driver |
| 1   | 80 row driver |

<sup>[1]</sup> This is the only default setting after reset; another setting can be selected with the 'set partial display mode' command.

Table 16. Multiplication settings

| S[1:0] | Description            |
|--------|------------------------|
| 00     | 4 × voltage multiplier |
| 01     | 5 × voltage multiplier |
| 10     | 6 × voltage multiplier |
| 11     | 7 × voltage multiplier |

## 12.1.2 Specific commands of the basic command set

Table 17. Specific basic commands

| Bit                    | Description                                              | Reset state |
|------------------------|----------------------------------------------------------|-------------|
| V <sub>PR</sub> [5:0]  | programming value of V <sub>LCD</sub>                    | 00 0000     |
| V <sub>OFF</sub> [2:0] | offset for the programming value of $V_{\text{\sc lCD}}$ | 000         |

<sup>[2]</sup> Bit DON can only be addressed after bit DAL is activated.

<sup>[3]</sup> Bit DAL has priority over bit E.

## 80 x 128 pixels matrix LCD driver

# 12.1.3 Specific commands of the extended command set

Table 18. Specific extended commands

| Bit                         | Logic 0                                   | Logic 1                                               | Reset state |
|-----------------------------|-------------------------------------------|-------------------------------------------------------|-------------|
| $V_{PR}[7:6] + V_{PR}[5:0]$ | programming value of V                    | •                                                     | 000 0000    |
| FR[1:0]                     | frame rate frequency                      |                                                       | 11          |
| TC[2:0]                     | temperature coefficient                   |                                                       | 010         |
| S[2:0]                      | charge pump multiplicat                   | 100                                                   |             |
| V                           | horizontal addressing                     | vertical addressing                                   | 0           |
| DOR                         | LSB at top                                | MSB at top                                            | 0           |
| IC                          | no icon row (multiplex rate 1:16 to 1:80) | icon row (multiplex rate 1:16 to 1:80)                | 0           |
| BRS                         | bottom rows are not mirrored              | bottom rows are mirrored                              | 0           |
| MP[1]                       | multiplex rate driven p value (automatic) | p = 4 selected for<br>multiplex rate 1:64 and<br>1:80 | 0           |
| EC                          | use internal oscillator                   | use external oscillator                               | 0           |

<sup>[1]</sup> NXP Semiconductors recommends to use the p = 4 setting.

Table 19. Frame rate frequency

| FR[1:0] | Frame rate frequency |
|---------|----------------------|
| 00      | 30 Hz                |
| 01      | 40 Hz                |
| 10      | 50 Hz                |
| 11      | 60 Hz                |

### Table 20. Temperature coefficient[1]

| TC[2:0] | Temperature coefficient |
|---------|-------------------------|
| 000     | 0                       |
| 001     | 1                       |
| 010     | 2                       |
| 011     | 3                       |
| 100     | 4                       |
| 101     | 5                       |
| 110     | 6                       |
| 111     | 7                       |

<sup>[1]</sup> For further information about temperature coefficient, see  $\underline{\text{Table 30}}$ .

Table 21. Multiplication settings

| S[2:0] | Description            |
|--------|------------------------|
| 000    | 2 × voltage multiplier |
| 001    | 3 × voltage multiplier |
| 010    | 4 × voltage multiplier |

© NXP B.V. 2008. All rights reserved.

#### 80 x 128 pixels matrix LCD driver

Table 21. Multiplication settings ...continued

| S[2:0] | Description            |
|--------|------------------------|
| 011    | 5 × voltage multiplier |
| 100    | 4 × voltage multiplier |
| 101    | 5 × voltage multiplier |
| 110    | 6 × voltage multiplier |
| 111    | 7 × voltage multiplier |

#### 12.2 Initialization

Reset is accomplished by applying an external reset pulse (active LOW) at pad  $\overline{\text{RES}}$ . When reset occurs within the specified time, all internal registers are reset, however the RAM is still undefined. The state after reset is described in Section 12.3. Pad  $\overline{\text{RES}}$  must be  $\leq 0.3 \text{ V}_{DD1}$  when  $\text{V}_{DD1}$  reaches  $\text{V}_{DD(min)}$  (or higher) within a maximum time  $t_{VHRL}$  after  $t_{VDD1}$  goes HIGH; see Figure 47.

A reset can also be achieved by sending a reset command. This command can be used during normal operation but not to initialize the chip after power-on.

#### 12.3 Reset function

#### 12.3.1 Basic command set

After reset the LCD driver has the following state:

- Display setting E = 0 and DAL = 0
- Address commands X[6:0] = 0 and Y[3:0] = 0
- V<sub>I CD</sub> is equal to 0, the HV multiplier is switched off (PC[1:0] = 00)
- No offset of the programming range (V<sub>OFF</sub>[2:0] = 0)
- HV multiplier programming (V<sub>PR</sub>[5:0] = 0)
- 4 × voltage multiplier (S[1:0] = 00)
- After power-on, RAM data is undefined, the reset signal does not change the content of the RAM
- All LCD outputs at V<sub>SS</sub> (display off)
- Initial display line set to line 0 (L[6:0] = 0)
- Initial row set to row 0 (C[6:0] = 0)
- Full display selected (P[6:0] = multiplex rate 1:80 or 1:64)
- Display is not mirrored (MX = 0; MY = 0)
- Internal oscillator is off
- · Power-save mode is on
- No frame calibration is running

#### 12.3.2 Extended command set

After reset the LCD driver has the following state:

• Display settings E = 0 and DAL = 0

#### 80 x 128 pixels matrix LCD driver

- Icons disabled (IC = 0)
- Address counter X[6:0] = 0 and Y[3:0] = 0
- Temperature control mode TC2 (TC[2:0] = 010)
- V<sub>I CD</sub> is equal to 0 V; the HV multiplier is switched off (PC[1:0] = 0)
- HV multiplier programming (V<sub>PR</sub>[7:0] = 0)
- 4 × voltage multiplier (S[2:0] = 100)
- Frame-rate frequency (FR[1:0] = 11)
- After power-on, RAM data is undefined, the reset signal does not change the content of the RAM
- All LCD outputs at V<sub>SS</sub> (display off)
- Full display selected (P[6:0] = multiplex rate 1:80 or 1:64)
- Initial display line set to line 0 (L[6:0] = 0)
- Initial row set to row 0 (C[6:0] = 0)
- Display is not mirrored (MX = 0; MY = 0)
- · Internal oscillator is off
- Power-save mode is on
- Horizontal addressing enabled (V = 0)
- No data order swap (DOR = 0)
- No bottom row swap (BRS = 0)
- Internal oscillator enabled (EC = 0)
- No frame calibration running (OC = 0)

## 12.4 Power-save mode

In the Power-save mode the LCD driver has the following state:

- All LCD outputs at V<sub>SS</sub> (display off)
- Bias generator and V<sub>LCD</sub> generator switched off; external V<sub>LCD</sub> can be disconnected
- Oscillator off (external clock possible)
- RAM contents not cleared; RAM data can be written
- V<sub>LCD</sub> discharged to V<sub>SS</sub> in Power-down mode

There are two ways to put the chip into Power-save mode:

- The display must be off (DON = 0) and all the pixels on (DAL = 1)
- The Power-save mode command is activated

#### 12.5 Display control

The bits DON, E and DAL select the display mode; see <u>Table 13</u>.

## 12.5.1 Bit MX

When MX = 0 the display RAM is written from left to right (X = 0 is on the left side and  $X = X_{max}$  is on the right side of the display).

#### 80 x 128 pixels matrix LCD driver

When MX = 1 the display RAM is written from right to left (X = 0 is on the right side and  $X = X_{max}$  is on the left side of the display).

The MX bit has an impact on the way the RAM is written to. So if a horizontal mirroring of the display is desired, the RAM must first be rewritten, after changing the MX bit.

#### 12.5.2 Bit MY

When MY = 1, the display is mirrored vertically. A change to this bit has an immediate effect on the display.

#### 12.6 Set Y address of RAM

Y[3:0] defines the Y address of the display RAM.

Table 22. RAM X/Y address range

| V4 |                                           |                                         |                                                                                                                                                                                                                                  |
|----|-------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y1 | Y0                                        | Content                                 | Allowed X range                                                                                                                                                                                                                  |
| 0  | 0                                         | bank 0 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 0  | 1                                         | bank 1 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 1  | 0                                         | bank 2 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 1  | 1                                         | bank 3 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 0  | 0                                         | bank 4 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 0  | 1                                         | bank 5 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 1  | 0                                         | bank 6 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 1  | 1                                         | bank 7 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 0  | 0                                         | bank 8 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
| 0  | 1                                         | bank 9 (display RAM)                    | 0 to 127                                                                                                                                                                                                                         |
|    | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>1 | 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 bank 0 (display RAM) 0 1 bank 1 (display RAM) 1 0 bank 2 (display RAM) 1 1 bank 3 (display RAM) 0 0 bank 4 (display RAM) 0 1 bank 5 (display RAM) 1 0 bank 6 (display RAM) 1 1 bank 7 (display RAM) 0 0 bank 8 (display RAM) |

When the icon row (row 79) is enabled it will always be in bank 9 independent of the multiplex rate which is programmed.

#### 12.7 Set X address of RAM

The X address points to the columns. The range of X is 0 to 127 (7Fh).

## 12.8 Set display start line

L[6:0] (see <u>Table 11</u>) is used to select the display line address of the display RAM to be displayed on the initial row, row 0. The selection of L[6:0] is limited to steps of 8. When the icon row is selected, the selection of L[6:0] is limited to steps of 16. When a partial mode is selected, the selection of L[6:0] is also limited in steps. In addition, the selection of L[6:0] = 72 is not allowed when the icon row is enabled or disabled.

The initial row can, in turn, be set by C[6:0]; see <u>Table 11</u>. Row 0 cannot be set to icon row 79 when enabled.

An example of the mapping from the RAM content to the display is shown in <u>Figure 33</u>. The content of the RAM is not modified. This feature allows, for instance, screen scrolling without rewriting the RAM.

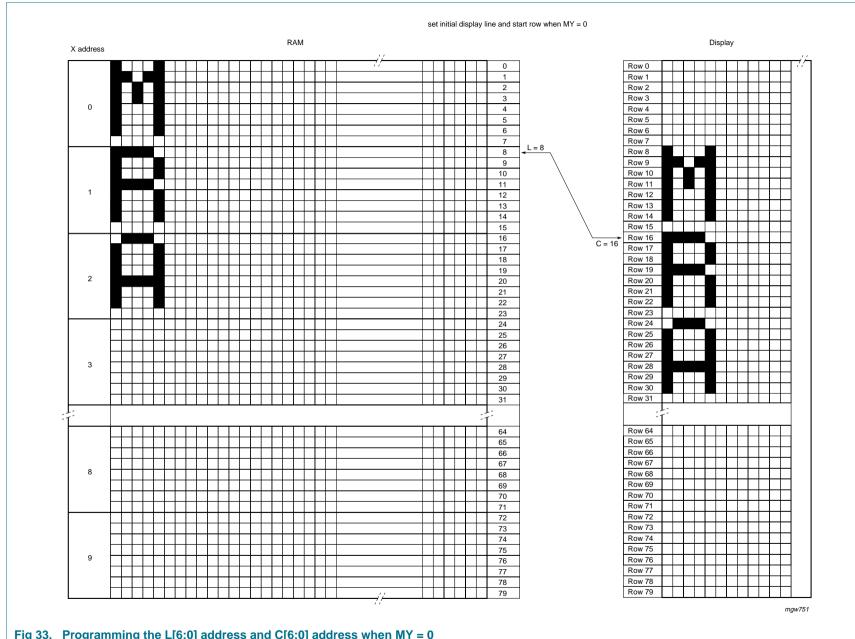
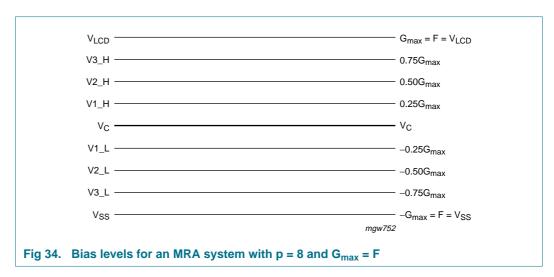



Fig 33. Programming the L[6:0] address and C[6:0] address when MY = 0

Product data sheet

Rev.

04


27

June 2008

80 x 128 pixels matrix LCD driver

#### 12.9 Bias levels

The bias levels for a MRA (Multiple Row Addressing) driving method with p=8 are given in Figure 34 when  $G_{max}$  and F have the same value. The value p defines the number of rows which are simultaneously selected.



The row voltage F depends on the multiplex rate selected (number of rows N), the threshold voltage of the liquid  $(V_{TH})$ , the number of simultaneously selected rows (p) and the multiplexibility (m):

$$F = \frac{1}{\sqrt{p}} \times V_{TH} \times \sqrt{\frac{N}{2}} \times \frac{\sqrt{m} \pm \sqrt{m-N}}{\sqrt{m} - 1}$$
 (1)

The column voltages are situated around the common level  $V_C$ . The column voltage levels are equidistant from each other. In <u>Table 23</u> the column voltage levels are given as a function of F.

Table 23. Bias levels for MRA driving method

| Symbol        | Bias voltages                                  | DC shifted bias voltages                                                        |
|---------------|------------------------------------------------|---------------------------------------------------------------------------------|
| $F = G_{max}$ |                                                |                                                                                 |
| $V_{LCD}$     | F                                              | $V_{LCD}$                                                                       |
| V3_H          | $(p-2) \times \frac{F}{\sqrt{m} - \sqrt{m-N}}$ | $\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-2)}{\sqrt{m} - \sqrt{m-N}}\right)$ |
| V2_H          | $(p-4) \times \frac{F}{\sqrt{m}-\sqrt{m-N}}$   | $\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-4)}{\sqrt{m} - \sqrt{m-N}}\right)$ |
| V1_H          | $(p-6) \times \frac{F}{\sqrt{m}-\sqrt{m-N}}$   | $\frac{V_{LCD}}{2} \times \left(1 + \frac{(p-6)}{\sqrt{m} - \sqrt{m-N}}\right)$ |
| $V_{C}$       | 0                                              | ½V <sub>LCD</sub>                                                               |
| V1_L          | $-(p-6)\times\frac{F}{\sqrt{m}-\sqrt{m-N}}$    | $\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-6)}{\sqrt{m} - \sqrt{m-N}}\right)$ |
| V2_L          | $-(p-4)\times\frac{F}{\sqrt{m}-\sqrt{m-N}}$    | $\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-4)}{\sqrt{m} - \sqrt{m-N}}\right)$ |

80 x 128 pixels matrix LCD driver

Table 23. Bias levels for MRA driving method ...continued

| Symbol          | Bias voltages                               | DC shifted bias voltages                                                        |
|-----------------|---------------------------------------------|---------------------------------------------------------------------------------|
| V3_L            | $-(p-2)\times\frac{F}{\sqrt{m}-\sqrt{m-N}}$ | $\frac{V_{LCD}}{2} \times \left(1 - \frac{(p-2)}{\sqrt{m} - \sqrt{m-N}}\right)$ |
| V <sub>SS</sub> | _F                                          | V <sub>SS</sub>                                                                 |

The row voltages (F) are not necessarily larger then the column voltages. This depends on the number of rows which are selected, the multiplexibility and the value of p. However, the PCF8811 is designed in such a way that the maximum column voltages are always equal to the row voltages. In Table 24 the  $V_{LCD}$  and the different bias levels are given for the PCF8811. The  $V_{LCD}$  voltage is defined as:

$$V_{LCD} = 2F \tag{2}$$

Where F is defined in Equation 1.

The bias system settings for different display modes are given in  $\underline{\text{Table 24}}$ . All bias levels can be calculated by using the third column of  $\underline{\text{Table 23}}$  and the variables given in  $\underline{\text{Table 24}}$ . Programming of the bias levels is not necessary in the PCF8811. The selection of the appropriate bias level voltages for each display mode is done automatically. Only the appropriate  $V_{LCD}$  voltage must be programmed according to  $\underline{\text{Equation 1}}$  and  $\underline{\text{Equation 2}}$  for the display modes listed in  $\underline{\text{Table 24}}$ .

Table 24. Relationship between multiplex rates and bias setting variables without icon row

| Multiplex rate | Variable |    |   |  |  |  |  |  |  |
|----------------|----------|----|---|--|--|--|--|--|--|
|                | N        | m  | р |  |  |  |  |  |  |
| 1:16           | 16       | 25 | 2 |  |  |  |  |  |  |
| 1:24           | 24       | 49 | 2 |  |  |  |  |  |  |
| 1:32           | 32       | 81 | 2 |  |  |  |  |  |  |
| 1:40           | 40       | 49 | 4 |  |  |  |  |  |  |
| 1:48           | 48       | 64 | 4 |  |  |  |  |  |  |
| 1:56           | 56       | 81 | 4 |  |  |  |  |  |  |
| 1:64           | 64       | 64 | 8 |  |  |  |  |  |  |
| 1:72           | 72       | 81 | 8 |  |  |  |  |  |  |
| 1:80           | 80       | 81 | 8 |  |  |  |  |  |  |

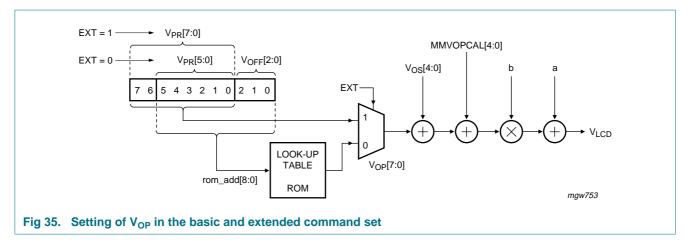
The variables for calculating  $V_{LCD}$ , when the icon row is enabled, are given in <u>Table 25</u>. The icon row can only be addressed in the extended command set.

The PCF8811 allows the value of p for certain multiplex rates to be chosen manually. This is only possible for the multiplex rates 1:64 and 1:80. If other multiplex rates are chosen the PCF8811 determines the optimum value of p. By setting the value of p manually a compromise can be made between contrast and power consumption with certain liquids for the high multiplex rates 1:64 and 1:80. However, care must be taken that the liquid which is chosen ensures that the row voltages (F) and the maximum column voltages are equal.

80 x 128 pixels matrix LCD driver

| (only extended command set) |          |    |   |  |  |  |  |  |  |  |
|-----------------------------|----------|----|---|--|--|--|--|--|--|--|
| Multiplex rate              | Variable |    |   |  |  |  |  |  |  |  |
|                             | N        | m  | р |  |  |  |  |  |  |  |
| 1:16                        | 24       | 49 | 2 |  |  |  |  |  |  |  |
| 1:32                        | 40       | 49 | 4 |  |  |  |  |  |  |  |
| 1:48                        | 56       | 81 | 8 |  |  |  |  |  |  |  |
| 1:64                        | 80       | 81 | 8 |  |  |  |  |  |  |  |
| 1:80                        | 80       | 81 | 8 |  |  |  |  |  |  |  |

Table 25. Relationship between multiplex rates and bias setting variables with the icon row (only extended command set)


### 12.10 Set V<sub>OP</sub> value

For multiplex rate 1:80 the optimum operation voltage of a liquid can be calculated with the variables given in Table 25, Equation 1 and Equation 2.

$$V_{LCD} = \frac{2}{\sqrt{8}} \times V_{TH} \times \sqrt{\frac{80}{2} \times \frac{\sqrt{81} - \sqrt{81 - 80}}{\sqrt{81} - 1}} = 4.472 \times V_{TH}$$
 (3)

Where V<sub>TH</sub> is the threshold voltage of the liquid crystal material used.

The programming method for the  $V_{OP}$  value is implemented differently in the basic command set from that in the extended command set. In the basic command set two commands are sent to the PCF8811: namely  $V_{PR}[5:0]$  and  $V_{OFF}[2:0]$ . In the extended command set only one command  $V_{PR}[7:0]$  is sent to the PCF8811. The programming of  $V_{OP}$  in the basic command set can be used when the PCF8811 is used as a replacement for an IAPT (Improved Alt-Pleshko Technique) LCD driver. The ROM look-up table Table 28 shows the possible values for  $V_{OFF}[2:0]$ ,  $V_{PR}[5:0]$ ,  $V_{OPF}[7:0]$  and  $V_{LCD}$ .



#### 12.10.1 Basic command set

The  $V_{LCD}$  at  $T = T_{CUT}$  in the basic command set is determined by the conversion in the ROM look-up table with the programmed values of  $V_{PR}[5:0]$  and  $V_{OFF}[2:0]$ . It can, additionally, be adjusted with the  $V_{LCD}$  offset pads  $V_{OS}[4:0]$  to obtain the optimum optical performance.

Example: To get the value of 6 V for  $V_{LCD}$  the following values have to be taken; see Table 26.

PCF8811\_4 © NXP B.V. 2008. All rights reserved

#### 80 x 128 pixels matrix LCD driver

Table 26. Example values of  $V_{PR}$ ,  $V_{OP}$  and  $V_{OFF}$  for  $V_{LCD}$  = 6 V

| Register               | Value in <u>Table 28</u> | Binary value |
|------------------------|--------------------------|--------------|
| V <sub>PR</sub> [5:0]  | 15                       | 0 1111       |
| V <sub>OP</sub> [7:0]  | 100                      | 110 0100     |
| V <sub>OFF</sub> [2:0] | 010                      | 010          |

Instead of using the  $V_{LCD}$  offset pads ( $V_{OS}[4:0]$ ) the  $V_{LCD}$  can be adjusted with the module maker calibration setting MMVOPCAL[4:0]; see Section 18.

$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + V_{OP}[7:0]) \times b$$
 (4)

#### Where:

- T<sub>CUT</sub> is a reference temperature; see <u>Section 12.11</u>
- a is a fixed constant value; see Table 27
- b is a fixed constant value; see Table 27
- V<sub>OP</sub>[7:0] is the result of the conversion table
- V<sub>OS</sub>[4:0]/MMVOPCAL[4:0] is the value of the offset V<sub>LCD</sub> pads or the value stored in the OTP cells

Table 27. Parameters of  $V_{LCD}$  for the basic and extended command set

| Symbol           | Value | Unit |
|------------------|-------|------|
| T <sub>CUT</sub> | 40    | °C   |
| b                | 0.03  | V    |
| a                | 3     | V    |

| 8811_4                | V <sub>OFF</sub> [       | 000]                     |                         | V <sub>OFF</sub> [       | 001]                     |                      | V <sub>OFF</sub> [       | 010]                     |                      | V <sub>OFF</sub> [       | 011]                     |                         | V <sub>OFF</sub> [       | 100]                     |                         | V <sub>OFF</sub> [       | 101]                     |                         | V <sub>OFF</sub> [       | 110]                     |                         | V <sub>OFF</sub>         | [111]                    |                      |
|-----------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|----------------------|--------------------------|--------------------------|----------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|----------------------|
|                       | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub> (V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub> (V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub> (V) |
|                       | 0                        | 13                       | 3.39                    | 0                        | 48                       | 4.44                 | 0                        | 82                       | 5.46                 | 0                        | 116                      | 6.48                    | 0                        | 150                      | 7.5                     | 0                        | 185                      | 8.55                    | 0                        | 219                      | 9.57                    | 0                        | 253                      | 10.59                |
|                       | 1                        | 14                       | 3.42                    | 1                        | 49                       | 4.47                 | 1                        | 83                       | 5.49                 | 1                        | 118                      | 6.54                    | 1                        | 152                      | 7.56                    | 1                        | 187                      | 8.61                    | 1                        | 221                      | 9.63                    | 1                        | 256                      | 10.68                |
|                       | 2                        | 15                       | 3.45                    | 2                        | 50                       | 4.5                  | 2                        | 84                       | 5.52                 | 2                        | 119                      | 6.57                    | 2                        | 154                      | 7.62                    | 2                        | 189                      | 8.67                    | 2                        | 223                      | 9.69                    | 2                        | 256                      | 10.68                |
|                       | 3                        | 15                       | 3.45                    | 3                        | 51                       | 4.53                 | 3                        | 86                       | 5.58                 | 3                        | 121                      | 6.63                    | 3                        | 156                      | 7.68                    | 3                        | 191                      | 8.73                    | 3                        | 226                      | 9.78                    | 3                        | 256                      | 10.68                |
|                       | 4                        | 16                       | 3.48                    | 4                        | 52                       | 4.56                 | 4                        | 87                       | 5.61                 | 4                        | 122                      | 6.66                    | 4                        | 157                      | 7.71                    | 4                        | 192                      | 8.76                    | 4                        | 228                      | 9.84                    | 4                        | 256                      | 10.68                |
|                       | 5                        | 17                       | 3.51                    | 5                        | 53                       | 4.59                 | 5                        | 88                       | 5.64                 | 5                        | 123                      | 6.69                    | 5                        | 159                      | 7.77                    | 5                        | 194                      | 8.82                    | 5                        | 230                      | 9.9                     | 5                        | 256                      | 10.68                |
|                       | 6                        | 18                       | 3.54                    | 6                        | 54                       | 4.62                 | 6                        | 89                       | 5.67                 | 6                        | 125                      | 6.75                    | 6                        | 161                      | 7.83                    | 6                        | 196                      | 8.88                    | 6                        | 232                      | 9.96                    | 6                        | 256                      | 10.68                |
|                       | 7                        | 19                       | 3.57                    | 7                        | 55                       | 4.65                 | 7                        | 90                       | 5.7                  | 7                        | 126                      | 6.78                    | 7                        | 162                      | 7.86                    | 7                        | 198                      | 8.94                    | 7                        | 234                      | 10.02                   | 7                        | 256                      | 10.68                |
|                       | 8                        | 19                       | 3.57                    | 8                        | 56                       | 4.68                 | 8                        | 92                       | 5.76                 | 8                        | 128                      | 6.84                    | 8                        | 164                      | 7.92                    | 8                        | 200                      | 9                       | 8                        | 236                      | 10.08                   | 8                        | 256                      | 10.68                |
|                       | 9                        | 20                       | 3.6                     | 9                        | 57                       | 4.71                 | 9                        | 93                       | 5.79                 | 9                        | 129                      | 6.87                    | 9                        | 166                      | 7.98                    | 9                        | 202                      | 9.06                    | 9                        | 239                      | 10.17                   | 9                        | 256                      | 10.68                |
|                       | 10                       | 21                       | 3.63                    | 10                       | 58                       | 4.74                 | 10                       | 94                       | 5.82                 | 10                       | 131                      | 6.93                    | 10                       | 167                      | 8.01                    | 10                       | 204                      | 9.12                    | 10                       | 241                      | 10.23                   | 10                       | 256                      | 10.68                |
|                       | 11                       | 22                       | 3.66                    | 11                       | 59                       | 4.77                 | 11                       | 95                       | 5.85                 | 11                       | 132                      | 6.96                    | 11                       | 169                      | 8.07                    | 11                       | 206                      | 9.18                    | 11                       | 243                      | 10.29                   | 11                       | 256                      | 10.68                |
|                       | 12                       | 22                       | 3.66                    | 12                       | 60                       | 4.8                  | 12                       | 97                       | 5.91                 | 12                       | 134                      | 7.02                    | 12                       | 171                      | 8.13                    | 12                       | 208                      | 9.24                    | 12                       | 245                      | 10.35                   | 12                       | 256                      | 10.68                |
|                       | 13                       | 23                       | 3.69                    | 13                       | 61                       | 4.83                 | 13                       | 98                       | 5.94                 | 13                       | 135                      | 7.05                    | 13                       | 173                      | 8.19                    | 13                       | 210                      | 9.3                     | 13                       | 247                      | 10.41                   | 13                       | 256                      | 10.68                |
|                       | 14                       | 24                       | 3.72                    | 14                       | 62                       | 4.86                 | 14                       | 99                       | 5.97                 | 14                       | 137                      | 7.11                    | 14                       | 174                      | 8.22                    | 14                       | 212                      | 9.36                    | 14                       | 249                      | 10.47                   | 14                       | 256                      | 10.68                |
|                       | 15                       | 25                       | 3.75                    | 15                       | 63                       | 4.89                 | 15                       | 100                      | 6                    | 15                       | 138                      | 7.14                    | 15                       | 176                      | 8.28                    | 15                       | 214                      | 9.42                    | 15                       | 252                      | 10.56                   | 15                       | 256                      | 10.68                |
|                       | 16                       | 25                       | 3.75                    | 16                       | 64                       | 4.92                 | 16                       | 102                      | 6.06                 | 16                       | 140                      | 7.2                     | 16                       | 178                      | 8.34                    | 16                       | 216                      | 9.48                    | 16                       | 254                      | 10.62                   | 16                       | 256                      | 10.68                |
|                       | 17                       | 26                       | 3.78                    | 17                       | 65                       | 4.95                 | 17                       | 103                      | 6.09                 | 17                       | 141                      | 7.23                    | 17                       | 179                      | 8.37                    | 17                       | 218                      | 9.54                    | 17                       | 256                      | 10.68                   | 17                       | 256                      | 10.68                |
|                       | 18                       | 27                       | 3.81                    | 18                       | 66                       | 4.98                 | 18                       | 104                      | 6.12                 | 18                       | 143                      | 7.29                    | 18                       | 181                      | 8.43                    | 18                       | 220                      | 9.6                     | 18                       | 256                      | 10.68                   | 18                       | 256                      | 10.68                |
|                       | 19                       | 28                       | 3.84                    | 19                       | 66                       | 4.98                 | 19                       | 105                      | 6.15                 | 19                       | 144                      | 7.32                    | 19                       | 183                      | 8.49                    | 19                       | 221                      | 9.63                    | 19                       | 256                      | 10.68                   | 19                       | 256                      | 10.68                |
|                       | 20                       | 29                       | 3.87                    | 20                       | 68                       | 5.04                 | 20                       | 106                      | 6.18                 | 20                       | 145                      | 7.35                    | 20                       | 184                      | 8.52                    | 20                       | 223                      | 9.69                    | 20                       | 256                      | 10.68                   | 20                       | 256                      | 10.68                |
|                       | 21                       | 29                       | 3.87                    | 21                       | 69                       | 5.07                 | 21                       | 108                      | 6.24                 | 21                       | 147                      | 7.41                    | 21                       | 186                      | 8.58                    | 21                       | 225                      | 9.75                    | 21                       | 256                      | 10.68                   |                          | 256                      | 10.68                |
|                       | 22                       | 30                       | 3.9                     | 22                       | 70                       | 5.1                  | 22                       | 109                      | 6.27                 | 22                       | 148                      | 7.44                    | 22                       | 188                      | 8.64                    | 22                       | 227                      | 9.81                    | 22                       | 256                      | 10.68                   | 22                       | 256                      | 10.68                |
| 6                     | 23                       | 31                       | 3.93                    | 23                       | 71                       | 5.13                 | 23                       | 110                      | 6.3                  | 23                       | 150                      | 7.5                     | 23                       | 190                      | 8.7                     | 23                       | 229                      | 9.87                    | 23                       | 256                      | 10.68                   | 23                       | 256                      | 10.68                |
| NXPE                  | 24                       | 32                       | 3.96                    | 24                       | 72                       | 5.16                 | 24                       | 111                      | 6.33                 | 24                       | 151                      | 7.53                    | 24                       | 191                      | 8.73                    | 24                       | 231                      | 9.93                    | 24                       | 256                      | 10.68                   |                          | 256                      | 10.68                |
| B.V. 2008. All rights | 25                       | 32                       | 3.96                    | 25                       | 73                       | 5.19                 | 25                       | 113                      | 6.39                 | 25                       | 153                      | 7.59                    | 25                       | 193                      | 8.79                    | 25                       | 233                      | 9.99                    | 25                       | 256                      | 10.68                   |                          | 256                      | 10.68                |
| 38. All r             | 26                       | 33                       | 3.99                    | 26                       | 74                       | 5.22                 | 26                       | 114                      | 6.42                 | 26                       | 154                      | 7.62                    | 26                       | 195                      | 8.85                    | 26                       | 235                      | 10.05                   | 26                       | 256                      | 10.68                   | 26                       | 256                      | 10.68                |
|                       | 27                       | 34                       | 4.02                    | 27                       | 75                       | 5.25                 | 27                       | 115                      | 6.45                 | 27                       | 156                      | 7.68                    | 27                       | 196                      | 8.88                    | 27                       | 237                      | 10.11                   | 27                       | 256                      | 10.68                   |                          | 256                      | 10.68                |
| reserve               | 28                       | 35                       | 4.05                    | 28                       | 76                       | 5.28                 | 28                       | 116                      | 6.48                 | 28                       | 157                      | 7.71                    | 28                       | 198                      | 8.94                    | 28                       | 239                      | 10.17                   | 28                       | 256                      | 10.68                   | 28                       | 256                      | 10.68                |

Product data sheet

Table 28. ROM look-up table with values of V<sub>OFF</sub>, V<sub>PR</sub>, V<sub>OP</sub> and V<sub>LCD</sub>

| Pro          | PCF8811 | Table                    | 28.                     |
|--------------|---------|--------------------------|-------------------------|
| duc          | 811_4   | V <sub>OFF</sub> [       | 000]                    |
| roduct data  |         | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0 |
| shee         |         | 29                       | 35                      |
| et           |         | 30                       | 36                      |
|              |         | 31                       | 37                      |
|              |         | 32                       | 38                      |
|              |         | 33                       | 39                      |
|              |         | 34                       | 39                      |
|              |         | 35                       | 40                      |
|              |         | 36                       | 41                      |
| Rev.         |         | 37                       | 42                      |
|              |         | 38                       | 42                      |
|              |         | 39                       | 43                      |
| . 04         |         | 40                       | 44                      |
| 2            |         | 41                       | 45                      |
| 04 — 27 June |         | 42                       | 45                      |
| ine :        |         | 43                       | 46                      |
| 2008         |         | 44                       | 47                      |
|              |         | 45                       | 48                      |
|              |         | 46                       | 48                      |
|              |         | 47                       | 49                      |
|              |         | 48                       | 50                      |
|              |         | 49                       | 51                      |
|              |         | 50                       | 52                      |
|              |         | 51                       | 52                      |
|              |         | 52                       | 53                      |
|              | © NXP   | 53                       | 54                      |
|              | Гщ      |                          |                         |

ROM look-up table with values of V<sub>OFF</sub>, V<sub>PR</sub>, V<sub>OP</sub> and V<sub>LCD ...continued</sub>

VOP

118

119

120

121

123

124

125

126

127

129

130

131

132

134

135

136

137

139

140

141

142

143

145

146

147

148

150

151

152

[5:0] [7:0] (V)

V<sub>LCD</sub>

6.54

6.57

6.66

6.63

6.69

6.72

6.75

6.78

6.81

6.87

6.9

6.93

6.96

7.02

7.05

7.08

7.11

7.17

7.2

7.23

7.26

7.29

7.35

7.38

7.41

7.44

7.5

7.53

7.56

V<sub>OFF</sub>[011]

V<sub>OP</sub>

[5:0] [7:0] (V)

159

160

162

163

165

166

167

169

170

172

173

175

176

178

179

181

182

184

185

187

188

189

191

192

194

195

197

198

200 9

 $V_{PR}$ 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

V<sub>OFF</sub>[100]

 $V_{OP}$ 

[5:0] [7:0] (V)

200

201

203

205

207

208

210

212

213

215

217

218

220

222

224

225

227

229

230

232

234

235

237

239

241

242

244

246

247

V<sub>LCD</sub>

9.03

9.09

9.15

9.21

9.24

9.36

9.39

9.45

9.51

9.54

9.6

9.66

9.72

9.75

9.81

9.87

9.9

9.96

10.02 49

10.05 50

10.11 51

10.17 52

10.23 53

10.26 54

10.32 55

10.38 56

10.41 57

9.3

9

 $V_{PR}$ 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

V<sub>LCD</sub>

7.77

7.8

7.86

7.89

7.95

7.98

8.01

8.07

8.1

8.16

8.19

8.25

8.28

8.34

8.37

8.43

8.46

8.52

8.55

8.61

8.64

8.67

8.73

8.76

8.82

8.85

8.91

8.94

Voff[010]

 $V_{PR}$ 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 $V_{LCD}$ 

(V)

5.31

5.34

5.37

5.4

5.43

5.46

5.49

5.52

5.55

5.58

5.61

5.64

5.67

5.7

5.73

5.76

5.79

5.82

5.85

5.88

5.91

5.94

5.97

6.03

6.06

6.09

6.12

6.15

6

V<sub>OFF</sub>[001]

[5:0] [7:0]

 $V_{OP}$ 

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

 $V_{PR}$ 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

56

57

V<sub>LCD</sub>

(V)

4.05

4.08

4.11

4.14

4.17

4.17

4.2

4.23

4.26

4.26

4.29

4.32

4.35

4.35

4.38

4.41

4.44

4.44

4.47

4.5

4.53

4.56

4.56

4.59

4.62 53

4.65

4.65

4.68

4.71

 $V_{OP}$ [7:0]

55

55

56

57

56

57

52

V<sub>OFF</sub>[101]

VOP

241

243

245

247

249

250

252

254

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

[7:0] (V)

V<sub>LCD</sub>

10.23 29

10.29 30

10.35 31

10.41 32

10.47 33

10.56 35

10.62 36

10.68 37

10.68 38

10.68 39

10.68 40

10.68 41

10.68 42

10.68 43

10.68 44

10.68 45

10.68 46

10.68 47

10.68 48

10.68 49

10.68 50

10.68 51

10.68 52

10.68 53

10.68 54

10.68 55

10.68 56

10.68 57

34

10.5

 $V_{PR}$ 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

[5:0]

V<sub>OFF</sub>[110]

 $V_{OP}$ 

[5:0] [7:0] (V)

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

 $V_{LCD}$ 

10.68 29

10.68 30

10.68 31

10.68 32

10.68 33

10.68 34

10.68 35

10.68 36

10.68 37

10.68 38

10.68 39

10.68 40

10.68 41

10.68 42

10.68 43

10.68 44

10.68 45

10.68 46

10.68 47

10.68 48

10.68 49

10.68 50

10.68 51

10.68 52

10.68 53

10.68 54

10.68 55

10.68 56

10.68 57

 $V_{PR}$ 

V<sub>OFF</sub>[111]

V<sub>OP</sub>

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

256

[7:0] (V)

 $V_{LCD}$ 

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

10.68

 $V_{PR}$ 

[5:0]

| Pro               | PCF           | Tak                   |
|-------------------|---------------|-----------------------|
| odu               | 8811_         | Vo                    |
| ct data           | 44            | V <sub>P</sub><br>[5: |
| she               |               | 29                    |
| et                |               | 30                    |
|                   |               | 31                    |
|                   |               | 32                    |
|                   |               | 33                    |
|                   |               | 34                    |
|                   |               | 35                    |
|                   |               | 36                    |
|                   |               | 37                    |
|                   |               | 38                    |
| Rev               |               | 39                    |
| . 04              |               | 40                    |
| Rev. 04 — 27 June |               | 41                    |
| 7 Ju              |               | 42                    |
| ne 2              |               | 43                    |
| 800               |               | 44                    |
|                   |               | 45                    |
|                   |               | 46                    |
|                   |               | 47                    |
|                   |               | 48                    |
|                   |               | 49                    |
|                   |               | 50                    |
|                   |               | 51                    |
|                   |               | 52                    |
|                   | ® NXP         | 53                    |
|                   | B.V. 20       | 54                    |
|                   | )08. <i>p</i> | 55                    |

80 x 128 pixels matrix LCD driver

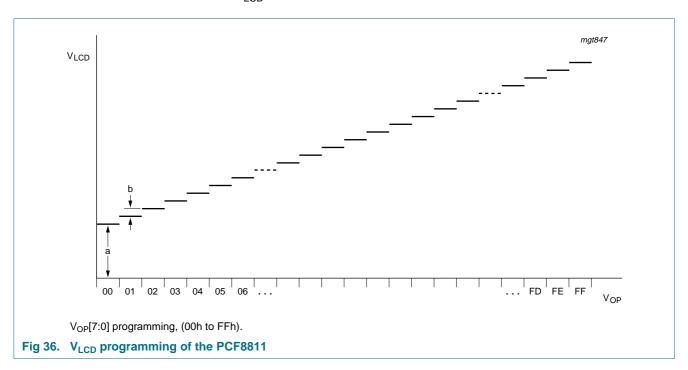
| 7        |   |
|----------|---|
| <u>o</u> |   |
|          |   |
| 앉        | ľ |
| data     |   |
| sheet    |   |
| <b>~</b> |   |
|          | ı |

| Voff                     | [000]                    |                         | V <sub>OFF</sub> [       | 001]                     |                         | V <sub>OFF</sub> [       | 010]                     |                         | V <sub>OFF</sub> [       | 011]                     |                         | V <sub>OFF</sub> [       | 100]                     |                         | V <sub>OFF</sub> [       | 101]                     |                         | V <sub>OFF</sub> [       | 110]                     |                         | V <sub>OFF</sub> [       | 111]                     |                         |
|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|
| V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) | V <sub>PR</sub><br>[5:0] | V <sub>OP</sub><br>[7:0] | V <sub>LCD</sub><br>(V) |
| 58                       | 58                       | 4.74                    | 58                       | 105                      | 6.15                    | 58                       | 153                      | 7.59                    | 58                       | 201                      | 9.03                    | 58                       | 249                      | 10.47                   | 58                       | 256                      | 10.68                   | 58                       | 256                      | 10.68                   | 58                       | 256                      | 10.68                   |
| 59                       | 58                       | 4.74                    | 59                       | 107                      | 6.21                    | 59                       | 155                      | 7.65                    | 59                       | 203                      | 9.09                    | 59                       | 251                      | 10.53                   | 59                       | 256                      | 10.68                   | 59                       | 256                      | 10.68                   | 59                       | 256                      | 10.6                    |
| 60                       | 59                       | 4.77                    | 60                       | 108                      | 6.24                    | 60                       | 156                      | 7.68                    | 60                       | 204                      | 9.12                    | 60                       | 252                      | 10.56                   | 60                       | 256                      | 10.68                   | 60                       | 256                      | 10.68                   | 60                       | 256                      | 10.6                    |
| 61                       | 60                       | 4.8                     | 61                       | 109                      | 6.27                    | 61                       | 157                      | 7.71                    | 61                       | 206                      | 9.18                    | 61                       | 254                      | 10.62                   | 61                       | 256                      | 10.68                   | 61                       | 256                      | 10.68                   | 61                       | 256                      | 10.68                   |
| 62                       | 61                       | 4.83                    | 62                       | 110                      | 6.3                     | 62                       | 158                      | 7.74                    | 62                       | 207                      | 9.21                    | 62                       | 256                      | 10.68                   | 62                       | 256                      | 10.68                   | 62                       | 256                      | 10.68                   | 62                       | 256                      | 10.6                    |
| 63                       | 62                       | 4.86                    | 63                       | 111                      | 6.33                    | 63                       | 160                      | 7.8                     | 63                       | 209                      | 9.27                    | 63                       | 256                      | 10.68                   | 63                       | 256                      | 10.68                   | 63                       | 256                      | 10.68                   | 63                       | 256                      | 10.6                    |

80 x 128 pixels matrix LCD driver

#### 12.10.2 Extended command set

The  $V_{LCD}$  at  $T = T_{CUT}$  is calculated using Equation 5. In the extended command set  $V_{PR}[7:0]$  is the same value as  $V_{OP}[7:0]$ . It can additionally be adjusted with the  $V_{LCD}$  offset pads  $V_{OS}[4:0]$  to obtain the optimum optical performance.


Instead of using the  $V_{LCD}$  offset pads ( $V_{OS}[4:0]$ ) the  $V_{LCD}$  can be adjusted with the module maker calibration setting MMVOPCAL[4:0]; see Section 18.

$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + V_{OP}[7:0]) \times b$$
 (5)

#### Where:

- T<sub>CUT</sub> is a reference temperature; see <u>Section 12.11</u>
- a is a fixed constant value; see Table 27
- b is a fixed constant value; see Table 27
- V<sub>PR</sub>[7:0] is the programmed V<sub>OP</sub> value
- V<sub>OS</sub>[4:0]/MMVOPCAL[4:0] is the value of the offset V<sub>LCD</sub> pads or the value stored in the OTP cells

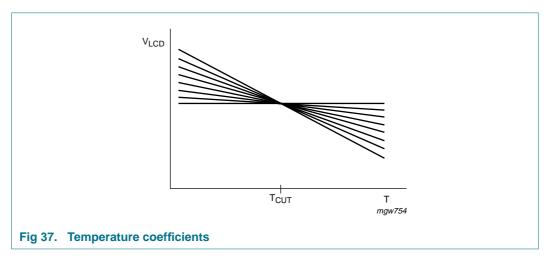
As the programming range for the internally generated  $V_{LCD}$  allows values above the maximum allowed  $V_{LCD}$  (9 V) the user has to ensure while setting the  $V_{PR}$  register and selecting the Temperature Compensation (TC), that under all conditions and including all tolerances the  $V_{LCD}$  remains below 9.0 V. This is valid for the two different command sets.



#### 12.11 Temperature control

Due to the temperature dependency of the liquid crystals' viscosity, the LCD controlling voltage  $V_{\text{LCD}}$  might have to be increased at lower temperatures to maintain optimum contrast.

PCF8811\_4 © NXP B.V. 2008. All rights reserved

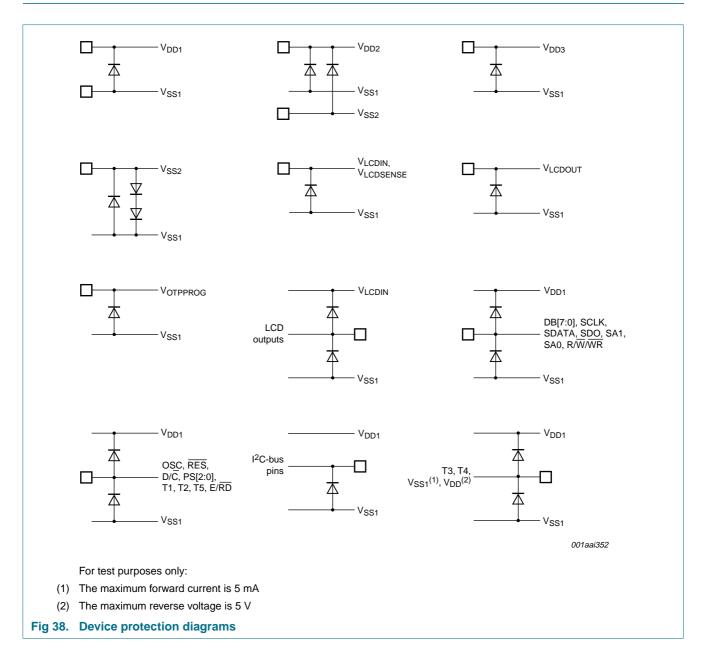

#### 80 x 128 pixels matrix LCD driver

You can calculate the  $V_{LCD}$  at a specific temperature for both command sets.  $V_{LCD}$  (at T =  $T_{CUT}$ ) is given by Equation 4 or Equation 5 depending on the command set which is used.

$$V_{LCD(T)} = V_{LCD(T = T_{CUT})} \times [I + (T - T_{CUT}) \times TC]$$

$$\tag{6}$$

In the extended command set and basic command set 8 different temperature coefficients are available; see Figure 37.




The typical values of the different temperature coefficients are given in Section 15. The coefficients are proportional to the programmed  $V_{LCD}$ .

The basic and extended command set differ in the way that the temperature coefficients can be accessed. In the basic command set only one temperature coefficient is available. However, the possibility exists to program the default temperature coefficient by means of OTP programming; see <a href="Section 18">Section 18</a>. In the extended command set the different temperature coefficients are selected by the interface with three bits TC[2:0].

80 x 128 pixels matrix LCD driver

# 13. Internal circuitry



# 14. Limiting values

Table 29. Limiting values[1]

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol    | Parameter        | Conditions                        | Min      | Max  | Unit |
|-----------|------------------|-----------------------------------|----------|------|------|
| $V_{DD1}$ | supply voltage 1 | general                           | -0.5     | +6.5 | V    |
| $V_{DD2}$ | supply voltage 2 | for internal voltage<br>generator | [2] -0.5 | +4.5 | V    |
| $V_{DD3}$ | supply voltage 3 | for internal voltage<br>generator | [2] -0.5 | +4.5 | V    |

© NXP B.V. 2008. All rights reserved.

## 80 x 128 pixels matrix LCD driver

Table 29. Limiting values 11 ... continued In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter                                   | Conditions | Min  | Max  | Unit |
|------------------|---------------------------------------------|------------|------|------|------|
| $V_{LCD}$        | LCD supply voltage                          |            | -0.5 | +10  | V    |
| V <sub>i</sub>   | input voltage                               |            | -0.5 | +6.5 | V    |
| $V_{OTPPROG}$    | voltage applied to pad V <sub>OTPPROG</sub> |            | -0.5 | +12  | V    |
| I <sub>I</sub>   | input current                               | DC level   | -10  | +10  | mA   |
| $I_{O}$          | output current                              | DC level   | -10  | +10  | mA   |
| $I_{SS}$         | ground supply current                       |            | -50  | +50  | mA   |
| P <sub>tot</sub> | total power dissipation                     |            | -    | 300  | mW   |
| P/out            | power dissipation per output                |            | -    | 30   | mW   |
| T <sub>stg</sub> | storage temperature                         |            | -65  | +150 | °C   |

<sup>[1]</sup> Parameters are valid over the whole operating temperature range unless otherwise specified. All voltages are referenced to  $V_{SS}$  unless otherwise specified.

## 15. Static characteristics

Table 30. Static characteristics

 $V_{DD1}$  = 1.7 V to 3.3 V;  $V_{SS}$  = 0 V;  $V_{LCD}$  = 3 V to 9 V;  $T_{amb}$  = -40 °C to +85 °C; unless otherwise specified.

| Symbol               | Parameter                               | Conditions                                                         |            | Min                   | Тур | Max                 | Unit |
|----------------------|-----------------------------------------|--------------------------------------------------------------------|------------|-----------------------|-----|---------------------|------|
| $V_{DD1}$            | supply voltage 1                        | general                                                            |            | 1.7                   | -   | 3.3                 | V    |
|                      |                                         | basic command set; when using ROM look-up table; see Section 12.10 |            | 2                     | -   | 3.3                 | V    |
| $V_{DD2}$            | supply voltage 2                        | for internal voltage multiplier                                    |            | 1.8                   | -   | 3.3                 | V    |
| $V_{DD3}$            | supply voltage 3                        | for internal voltage multiplier                                    |            | 1.8                   | -   | 3.3                 | V    |
| $V_{LCDIN}$          | LCD supply voltage                      | LCD voltage externally supplied (voltage multiplier disabled)      |            | 3                     | -   | 9                   | V    |
| V <sub>LCDOUT</sub>  | voltage multiplier output voltage       | LCD voltage internally generated (voltage multiplier enabled)      | <u>[1]</u> | -                     | -   | 9                   | V    |
| (10.)                | tolerance of generated                  | without calibration                                                |            | -300                  | -   | +300                | mV   |
|                      | $V_{LCD}$                               | with calibration                                                   | [2]        | -70                   | -   | +70                 | mV   |
| I <sub>DD1</sub> s   | supply current 1                        | general [3]                                                        |            | 0.5                   | 1.5 | 5                   | μΑ   |
|                      |                                         |                                                                    |            | 15                    | 25  | 50                  | μΑ   |
| I <sub>DD2</sub>     | supply current 2                        | for internal voltage multiplier                                    | [3][4]     | 0                     | 0.5 | 1                   | μΑ   |
|                      |                                         |                                                                    | [4][5]     | 130                   | 150 | 200                 | μΑ   |
| I <sub>DD3</sub>     | supply current 3                        | for internal voltage multiplier                                    | [3][4]     | 0                     | 0.5 | 1                   | μΑ   |
|                      |                                         |                                                                    | [4][5]     | 130                   | 150 | 200                 | μΑ   |
| I <sub>DD(tot)</sub> | total supply current                    | $V_{DD1} + V_{DD2} + V_{DD3}$                                      | [4][5]     | 145                   | 175 | 250                 | μΑ   |
| Logic in             | outs; MF[2:0], V <sub>OS</sub> [4:0], D | S0, EXT, PS[2:0], RES and OSC                                      |            |                       |     |                     |      |
| Vi                   | input voltage                           |                                                                    |            | V <sub>SS</sub> - 0.5 | ;   | $V_{DD1} + 0.5$     | V    |
| $V_{IL}$             | LOW-level input voltage                 |                                                                    |            | $V_{SS}$              | -   | 0.2V <sub>DD1</sub> | V    |

<sup>[2]</sup> For the internal voltage multiplier.

## 80 x 128 pixels matrix LCD driver

Table 30. Static characteristics ...continued  $V_{DD1} = 1.7 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} = 3 \text{ V to } 9 \text{ V; } T_{amb} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C; unless otherwise specified.}$ 

| Symbol                 | Parameter                               | Conditions                                      |     | Min                 | Тур                     | Max                 | Unit      |
|------------------------|-----------------------------------------|-------------------------------------------------|-----|---------------------|-------------------------|---------------------|-----------|
| V <sub>IH</sub>        | HIGH-level input voltage                |                                                 |     | $0.8V_{DD1}$        | -                       | $V_{DD1}$           | V         |
| lL                     | leakage current                         | $V_I = V_{DD}$ or $V_{SS}$                      |     | -1                  | -                       | +1                  | μΑ        |
| Column                 | and row outputs                         |                                                 |     |                     |                         |                     |           |
| R <sub>col</sub>       | column output resistance                | C0 to C127; V <sub>LCD</sub> = 5 V              |     | -                   | -                       | 5                   | kΩ        |
| R <sub>row</sub>       | row output resistance                   | R0 to R79; $V_{LCD} = 5 \text{ V}$              |     | -                   | -                       | 5                   | $k\Omega$ |
| V <sub>bias(col)</sub> | bias tolerance voltage                  | C0 to C127                                      |     | -100                | 0                       | +100                | mV        |
| V <sub>bias(row)</sub> | bias tolerance voltage                  | R0 to R80                                       |     | -100                | 0                       | +100                | mV        |
|                        | ply voltage multiplier                  |                                                 |     |                     |                         |                     |           |
| TC0                    | LCD voltage temperature coefficient 0   |                                                 |     | -                   | 0                       | -                   | ¹∕°C      |
| TC1                    | LCD voltage temperature coefficient 1   |                                                 |     | -                   | $-0.16 \times 10^{-3}$  | -                   | ¹∕°C      |
| TC2                    | LCD voltage temperature coefficient 2   |                                                 |     | -                   | $-0.33 \times 10^{-3}$  | -                   | ¹∕°C      |
| TC3                    | LCD voltage temperature coefficient 3   |                                                 |     | -                   | $-0.50 \times 10^{-3}$  | -                   | 1/°C      |
| TC4                    | LCD voltage temperature coefficient 4   |                                                 |     | -                   | $-0.66 \times 10^{-3}$  | -                   | ¹∕°C      |
| TC5                    | LCD voltage temperature coefficient 5   |                                                 |     | -                   | $-0.833 \times 10^{-3}$ | -                   | ¹∕°C      |
| TC6                    | LCD voltage temperature coefficient 6   |                                                 |     | -                   | $-1.25 \times 10^{-3}$  | -                   | ¹∕°C      |
| TC7                    | LCD voltage temperature coefficient 7   |                                                 | [6] | -                   | $-1.66 \times 10^{-3}$  | -                   | ¹∕°C      |
| Parallel i             | nterface; V <sub>DD1</sub> = 1.8 V to 3 | 3.3 V                                           |     |                     |                         |                     |           |
| Vi                     | input voltage                           |                                                 |     | -0.5                | -                       | $V_{DD1} + 0.5$     | V         |
| V <sub>IL</sub>        | LOW-level input voltage                 |                                                 |     | $V_{SS}$            | -                       | 0.2V <sub>DD1</sub> | V         |
| $V_{IH}$               | HIGH-level input voltage                |                                                 |     | 0.8V <sub>DD1</sub> | -                       | $V_{DD1}$           | V         |
| Serial int             | erface; V <sub>DD1</sub> = 1.7 V to 3.3 | 3 V                                             |     |                     |                         |                     |           |
| Vi                     | input voltage                           |                                                 |     | -0.5                | -                       | $V_{DD1} + 0.5$     | V         |
| V <sub>IL</sub>        | LOW-level input voltage                 |                                                 |     | $V_{SS}$            | -                       | 0.2V <sub>DD1</sub> | V         |
| V <sub>IH</sub>        | HIGH-level input voltage                |                                                 |     | 0.8V <sub>DD1</sub> | -                       | $V_{DD1}$           | V         |
| l <sup>2</sup> C-bus i | nterface; V <sub>DD1</sub> = 1.8 V to 3 | 3.3 V                                           |     |                     |                         |                     |           |
| Vi                     | input voltage                           |                                                 |     | -0.5                | -                       | +3.3                | V         |
| I <sub>OL(SDA)</sub>   | LOW-level output current                | $V_{OL} = 0.4 \text{ V}; V_{DD1} > 2 \text{ V}$ |     | -                   | -                       | 3                   | mΑ        |
|                        | on pin SDAH                             | $V_{OL} = 0.2 V_{DD1}; V_{DD1} < 2 V$           |     | -                   | -                       | 2                   | mΑ        |
| V <sub>IL</sub>        | LOW-level input voltage                 |                                                 |     | V <sub>SS</sub>     | -                       | 0.3V <sub>DD1</sub> | V         |
| V <sub>IH</sub>        | HIGH-level input voltage                |                                                 |     | 0.7V <sub>DD1</sub> | -                       | $V_{DD1}$           | ٧         |
| Output le              | evels for all interfaces                |                                                 |     |                     |                         |                     |           |
| V <sub>OL</sub>        | LOW-level output voltage                | $I_{OL} = 0.5 \text{ mA}$                       |     | V <sub>SS</sub>     | -                       | 0.2V <sub>DD1</sub> | V         |
| V <sub>OH</sub>        | HIGH-level output voltage               | $I_{OH} = -0.5 \text{ mA}$                      |     | 0.8V <sub>DD1</sub> | -                       | $V_{DD1}$           | ٧         |

 $<sup>[1] \</sup>quad \text{The maximum possible $V_{LCD}$ voltage that can be generated is dependent on voltage, temperature and (display) load.}$ 

© NXP B.V. 2008. All rights reserved.

80 x 128 pixels matrix LCD driver

- [2] Valid for values of temperature, V<sub>PR</sub> and TC used at calibration.
- [3] During power-down all static currents are switched off.
- [4] Conditions are:  $V_{DD1}$  = 1.8 V,  $V_{DD2}$  = 2.7 V,  $V_{LCD}$  = 8.05 V, voltage multiplier  $4 \times V_{DD2}$ , inputs at  $V_{DD1}$  or  $V_{SS}$ , interface inactive, internal  $V_{LCD}$  generation,  $V_{LCD}$  output is loaded by 10  $\mu$ A and  $T_{amb}$  = 25  $^{\circ}$ C.
- [5] Normal mode.
- [6] TC7 can only be used when  $V_{DD2} = V_{DD3} = 2.4 \text{ V}$  or higher.

# 16. Dynamic characteristics

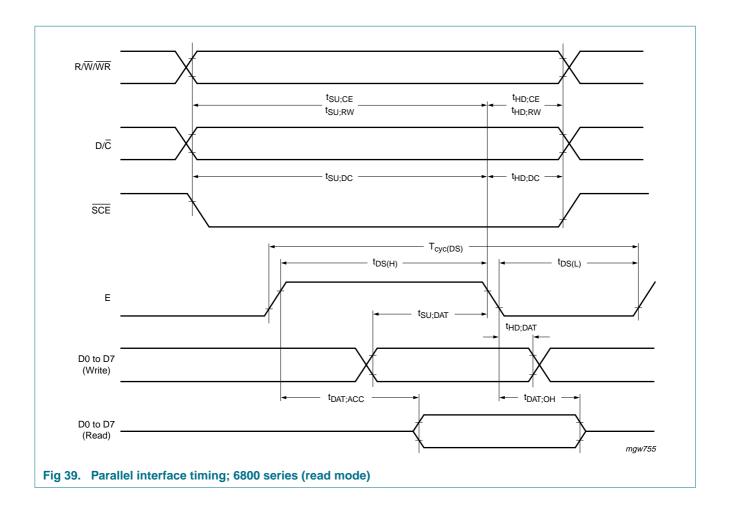
Table 31. Dynamic characteristics[1]

 $V_{DD1}$  = 1.7 V to 3.3 V;  $V_{SS}$  = 0 V;  $V_{LCD} \le 9$  V;  $T_{amb}$  = -40 °C to +85 °C; unless otherwise specified.

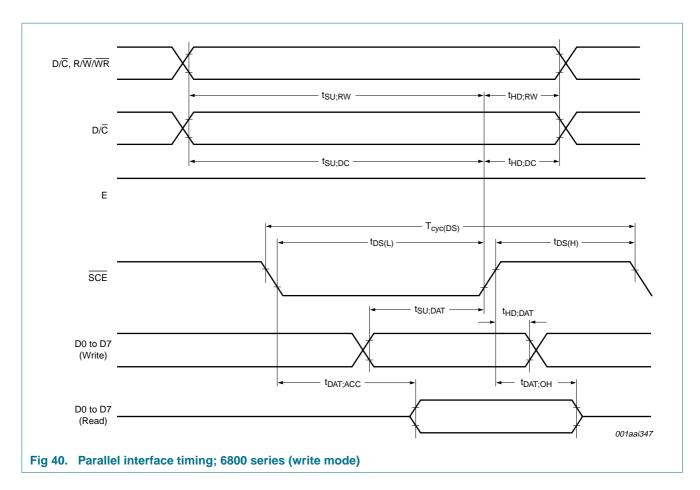
| Symbol             | Parameter                        | Conditions                             | Min          | Тур | Max | Unit |
|--------------------|----------------------------------|----------------------------------------|--------------|-----|-----|------|
| $f_{\text{ext}}$   | external frequency               | external clock                         | -            | 200 | -   | kHz  |
| f <sub>frame</sub> | frame frequency                  | $T_{amb}$ = 25 °C; $V_{DD1}$ = 2.4 $V$ | 54           | 60  | 66  | Hz   |
|                    |                                  |                                        | 43           | 58  | 73  | Hz   |
| $t_{VHRL}$         | $V_{DD}$ to $\overline{RES}$ LOW | see Figure 47                          | <u>[2]</u> 0 | -   | 1   | μs   |
| t <sub>RW</sub>    | RES LOW pulse width              | see Figure 47                          | 500          | -   | -   | ns   |

<sup>[1]</sup> All specified timings are based on 20 % and 80 % of  $V_{DD}$ .

## **16.1** Parallel interface timing characteristics


Table 32. Parallel interface (6800 series) timing characteristics

 $V_{DD1}$  = 1.8 V to 3.3 V;  $V_{SS}$  = 0 V;  $V_{LCD} \le 9$  V;  $T_{amb}$  = -40 °C to +85 °C; unless otherwise specified; see Figure 39 and Figure 40.


| Symbol                      | Parameter                | Min  | Max | Unit |
|-----------------------------|--------------------------|------|-----|------|
| $t_{\text{SU;DC}}$          | data/command set-up time | 40   | -   | ns   |
| $t_{\text{HD;DC}}$          | data/command hold time   | 20   | -   | ns   |
| $T_{\text{cyc}(\text{DS})}$ | data strobe cycle time   | 1000 | -   | ns   |
| $t_{DS(L)}$                 | data strobe LOW time     | 320  | -   | ns   |
| $t_{DS(H)}$                 | data strobe HIGH time    | 300  | -   | ns   |
| t <sub>SU;RW</sub>          | read/write set-up time   | 280  | -   | ns   |
| t <sub>HD;RW</sub>          | read/write hold time     | 20   | -   | ns   |
| t <sub>SU;CE</sub>          | chip enable set-up time  | 280  | -   | ns   |
| t <sub>HD;CE</sub>          | chip enable hold time    | 0    | -   | ns   |
| t <sub>SU;DAT</sub>         | data set-up time         | 20   | -   | ns   |
| t <sub>HD;DAT</sub>         | data hold time           | 40   | -   | ns   |
| t <sub>DAT;ACC</sub>        | data output access time  | -    | 280 | ns   |
| t <sub>DAT;OH</sub>         | data output disable time | -    | 20  | ns   |

<sup>[2]</sup>  $\overline{\text{RES}}$  can be LOW before  $V_{DD}$  goes HIGH.

## 80 x 128 pixels matrix LCD driver

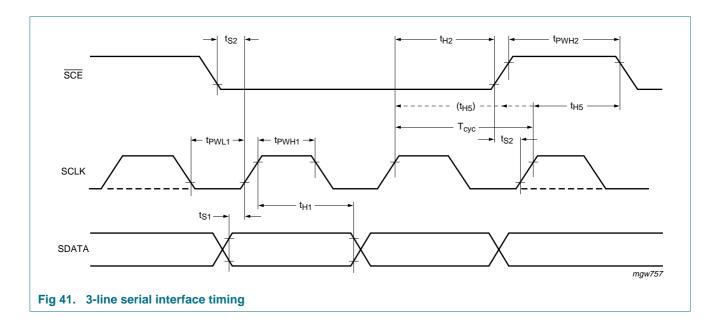


## 80 x 128 pixels matrix LCD driver

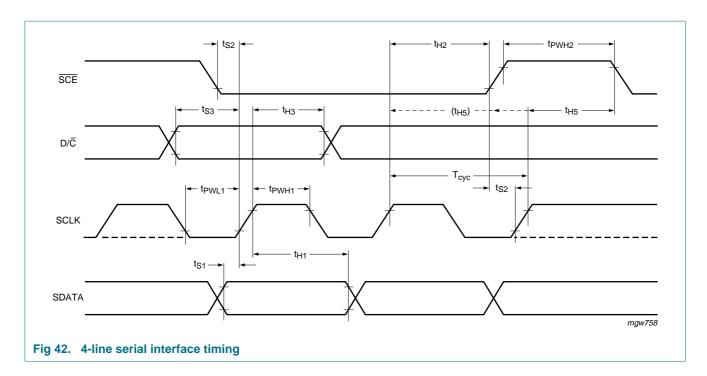


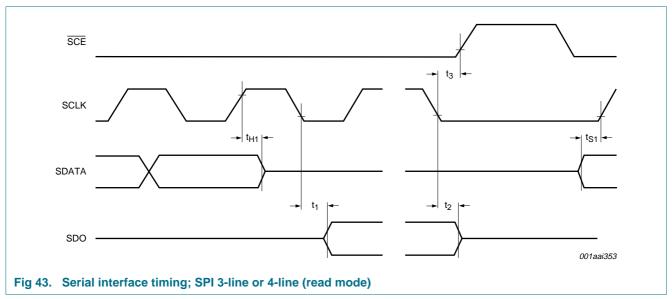
## 16.2 Serial interface timing characteristics

Table 33. Serial interface timing characteristics  $^{11}$   $V_{DD1} = 1.8 \ V$  to  $3.3 \ V$ ;  $V_{SS} = 0 \ V$ ;  $V_{LCD} \le 9 \ V$ ;  $T_{amb} = -40 \ ^{\circ}C$  to  $+85 \ ^{\circ}C$ ; unless otherwise specified; see Figure~41, Figure~42, Figure~43 and Figure~44.

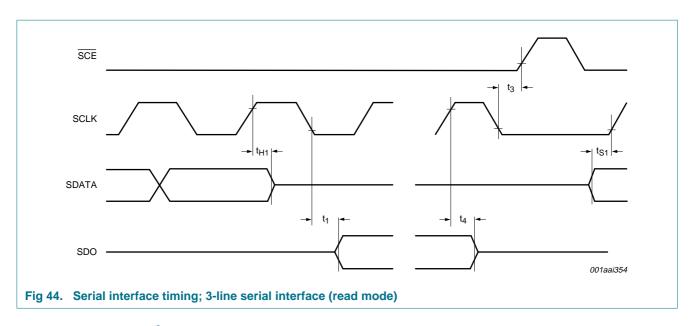

| Symbol            | Parameter                |     | Min  | Max | Unit |
|-------------------|--------------------------|-----|------|-----|------|
| f <sub>SCLK</sub> | clock frequency          |     | 9.00 | -   | MHz  |
| T <sub>cyc</sub>  | clock cycle SCLK         |     | 111  | -   | ns   |
| t <sub>PWH1</sub> | SCLK pulse width HIGH    |     | 45   | -   | ns   |
| t <sub>PWL1</sub> | SCLK pulse width LOW     |     | 45   | -   | ns   |
| t <sub>S2</sub>   | SCE set-up time          |     | 50   | -   | ns   |
| t <sub>H2</sub>   | SCE hold time            |     | 45   | -   | ns   |
| t <sub>PWH2</sub> | SCE minimum HIGH time    |     | 50   | -   | ns   |
| t <sub>H5</sub>   | SCE start hold time      | [2] | 50   | -   | ns   |
| t <sub>S3</sub>   | data/command set-up time |     | 50   | -   | ns   |
| t <sub>H3</sub>   | data/command hold time   |     | 50   | -   | ns   |
| t <sub>S1</sub>   | SDATA set-up time        |     | 50   | -   | ns   |
| t <sub>H1</sub>   | SDATA hold time          |     | 50   | -   | ns   |
| t <sub>1</sub>    | SDO access time          |     | -    | 50  | ns   |
| t <sub>2</sub>    | SDO disable time         | [3] | -    | 50  | ns   |

#### 80 x 128 pixels matrix LCD driver


Table 33. Serial interface timing characteristics  $11 \dots continued$   $V_{DD1} = 1.8 \ V$  to  $3.3 \ V$ ;  $V_{SS} = 0 \ V$ ;  $V_{LCD} \le 9 \ V$ ;  $T_{amb} = -40 \ ^{\circ}C$  to  $+85 \ ^{\circ}C$ ; unless otherwise specified; see Figure 41, Figure 42, Figure 43 and Figure 44.


| Symbol         | Parameter                 | Min          | Max | Unit |
|----------------|---------------------------|--------------|-----|------|
| $t_3$          | SCE hold time             | 50           | -   | ns   |
| t <sub>4</sub> | SDO disable time          | [4] 25       | 100 | ns   |
| C <sub>b</sub> | capacitive load for SDO   | <u>[5]</u> _ | 30  | pF   |
| R <sub>b</sub> | series resistance for SDO | <u>[5]</u> _ | 500 | Ω    |

- [1] All specified timings are based on 20 % and 80 % of  $V_{DD}$ .
- [2] t<sub>H5</sub> is the time from the previous SCLK rising edge (irrespective of the state of  $\overline{SCE}$ ) to the falling edge of  $\overline{SCE}$ .
- [3] SDO disable time for SPI 3-line or 4-line.
- [4] SDO disable time for 3-line serial interface.
- [5] Maximum values are for f<sub>SCLK</sub> = 9 MHz. Series resistance includes ITO track + connector resistance + printed-circuit board.




## 80 x 128 pixels matrix LCD driver





80 x 128 pixels matrix LCD driver



## 16.3 I<sup>2</sup>C-bus interface timing characteristics

Table 34. I<sup>2</sup>C-bus characteristics; F/S-mode

 $V_{DD1} = 1.8 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \leq 9 \text{ V; } T_{amb} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C; unless otherwise specified}$ ; see Figure 45.

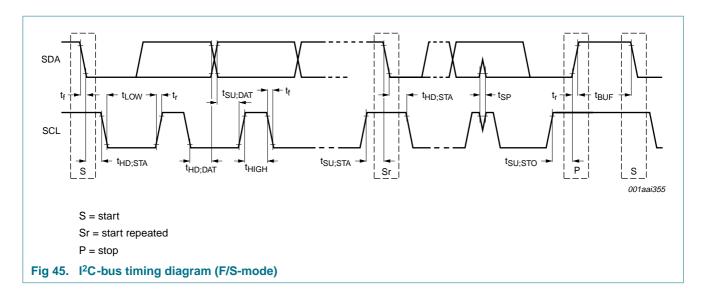
| Symbol              | Parameter                                                         | Conditions                                       | Min                    | Тур | Max | Unit |
|---------------------|-------------------------------------------------------------------|--------------------------------------------------|------------------------|-----|-----|------|
| f <sub>SCL</sub>    | SCL clock frequency                                               |                                                  | 0                      | -   | 400 | kHz  |
| t <sub>SU;STA</sub> | set-up time for a repeated START condition                        |                                                  | 600                    | -   | -   | ns   |
| t <sub>HD;STA</sub> | hold time (repeated) START condition                              |                                                  | 600                    | -   | -   | ns   |
| $t_{LOW}$           | LOW period of the SCL clock                                       |                                                  | 1300                   | -   | -   | ns   |
| t <sub>HIGH</sub>   | HIGH period of the SCL clock                                      |                                                  | 600                    | -   | -   | ns   |
| t <sub>SU;DAT</sub> | data set-up time                                                  |                                                  | 100                    | -   | -   | ns   |
| t <sub>HD;DAT</sub> | data hold time                                                    |                                                  | 0                      | -   | 900 | ns   |
| t <sub>r</sub>      | rise time of both SDA and SCL signals                             |                                                  | $20 + 0.1C_b$          | -   | 300 | ns   |
| t <sub>f</sub>      | fall time of both SDA and SCL signals                             |                                                  | 20 + 0.1C <sub>b</sub> | -   | 300 | ns   |
| C <sub>b</sub>      | capacitive load for each bus line                                 |                                                  | -                      | -   | 400 | pF   |
| t <sub>SU;STO</sub> | set-up time for STOP condition                                    |                                                  | 600                    | -   | -   | ns   |
| t <sub>SP</sub>     | pulse width of spikes that must be suppressed by the input filter |                                                  | -                      | -   | 50  | ns   |
| t <sub>BUF</sub>    | bus free time between a STOP and START condition                  |                                                  | 1300                   | -   | -   | ns   |
| $V_{nL}$            | noise margin at the LOW level                                     | for each connected device (including hysteresis) | 0.1V <sub>DD1</sub>    | -   | -   | V    |
| $V_{nH}$            | noise margin at the HIGH level                                    | for each connected device (including hysteresis) | 0.2V <sub>DD1</sub>    | -   | -   | V    |

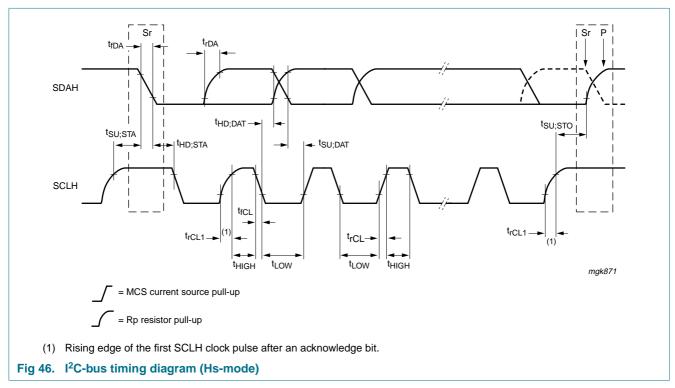
<sup>[1]</sup> All specified timings are based on 20 % and 80 % of  $\rm V_{\rm DD}.$ 

80 x 128 pixels matrix LCD driver

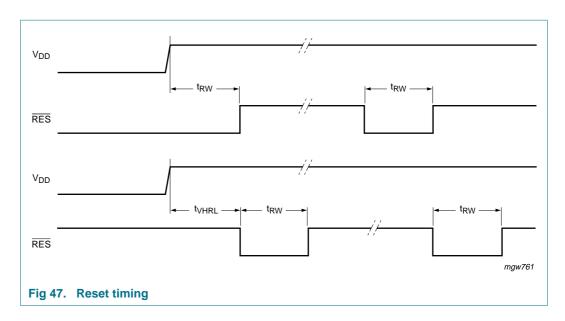
Table 35. I<sup>2</sup>C-bus characteristics; Hs-mode

 $V_{DD1} = 1.8 \text{ V to } 3.3 \text{ V; } V_{SS} = 0 \text{ V; } V_{LCD} \le 9 \text{ V; } T_{amb} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C; unless otherwise specified}$ ; see Figure 46.


| /lax    |
|---------|
| 1.7 MHz |
| - ns    |
| 150 ns  |
| 80 ns   |
| 160 ns  |
| 80 ns   |
| 160 ns  |
| 160 ns  |
| - ns    |
| 5 ns    |
| 100 pF  |
| 100 pF  |
| - V     |
| - V     |
|         |


<sup>[1]</sup> All specified timings are based on 20 % and 80 % of  $V_{DD}$ .

<sup>[2]</sup> For bus line loads  $C_b$  between 100 pF and 400 pF the timing parameters must be linearly interpolated.

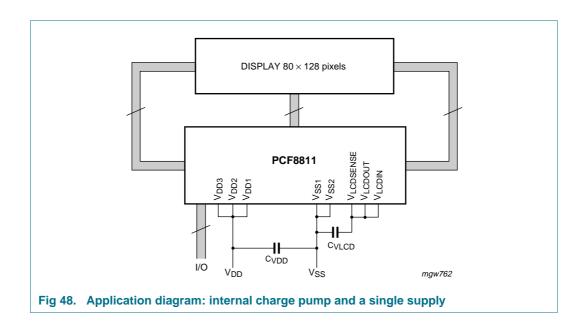

<sup>[3]</sup> A device must internally provide a data hold time to bridge the undefined part between V<sub>IH</sub> and V<sub>IL</sub> of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.

## 80 x 128 pixels matrix LCD driver





80 x 128 pixels matrix LCD driver




# 17. Application information

Semiconductors are light sensitive. Exposure to light sources can cause the IC to malfunction. In this application you must protect the IC from light. The protection has to be done on all sides of the IC, i.e. front, rear and all edges.

The pinning of the PCF8811 has an optimum design for single plane wiring e.g. for chip-on-glass display modules. Display size:  $80 \times 128$  pixels.

For further application information refer to NXP Semiconductors Application Note *AN10170 Design guidelines for COG modules with Philips monochrome LCD drivers.* 



80 x 128 pixels matrix LCD driver

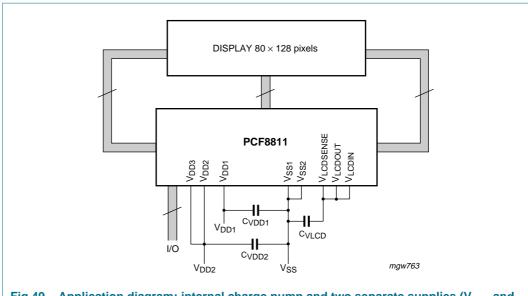
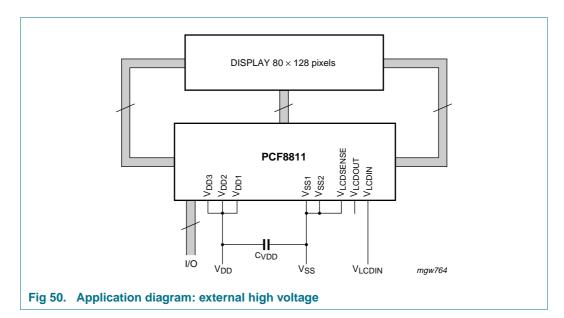




Fig 49. Application diagram: internal charge pump and two separate supplies ( $V_{DD1}$  and  $V_{DD2}$ )



The required minimum value for the external capacitors in an application with the PCF8811 are:

 $C_{VLCD}$  = 1.0  $\mu F$  to 4.7  $\mu F$  depending on the application.

 $C_{VDD}$ ,  $C_{VDD1}$ ,  $C_{VDD2}$  = 1.0  $\mu$ F. For these capacitors, higher values can be used.

80 x 128 pixels matrix LCD driver

## 18. Support information

## 18.1 Module maker programming

One Time Programmable (OTP) technology is implemented on the PCF8811. It enables the module maker to program some extended features of the PCF8811 after it has been assembled on an LCD module. Programming is made under the control of the interfaces and the use of one special pad. This pad must be made available on the module glass but need not be accessed by the set maker.

The PCF8811 features 3 parameters programmable by the module maker:

- V<sub>I CD</sub> calibration
- Temperature coefficient selection
- Seal bit

### 18.1.1 V<sub>I CD</sub> calibration

The first feature included is the ability to adjust the  $V_{LCD}$  voltage with a 5-bit code (MMVOPCAL). This code is implemented in two's complement notation giving rise to a positive or negative offset to the  $V_{PR}$  register. This is in the same manner as the on-glass calibration pads  $V_{OS}$ .

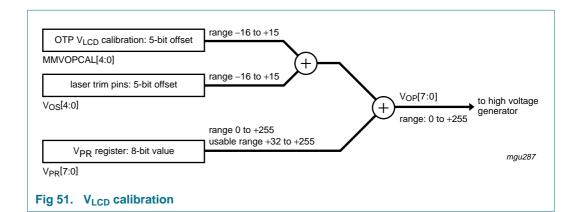
In theory, both may be used together but it is recommended that the  $V_{OS}$  pads are tied to  $V_{SS}$  when OTP calibration is being used. This sets them to a default offset of zero. If both are used then the addition of the two 5-bit numbers must not exceed a 5-bit result, otherwise the resultant value is undefined. The final adder in the circuit has underflow and overflow protection. In the event of an overflow, the output will be clamped to 255; during an underflow the output will be clamped to 0.

The final control to the high voltage multiplier,  $V_{OP}$ , is the sum of all the calibration registers and pads. The  $V_{LCD}$  Equation 4 or Equation 5 given in Section 12.10.1 or Section 12.10.2 must be extended to include the OTP calibration, as follows:

$$V_{LCD(T=T_{CUT})} = a + (V_{OS}[4:0] + MMVOPCAL[4:0] + V_{OP}[7:0]) \times b$$
 (7)

The possible values for MMVOPCAL[4:0] and V<sub>OS</sub>[4:0] values are given in Table 36.

Table 36. V<sub>OS</sub>/MMVOPCAL values in two's complement notation


| Binary | Decimal | Binary | Decimal    |
|--------|---------|--------|------------|
| 0 0000 | 0       | 1 1111 | -1         |
| 0 0001 | +1      | 1 1110 | -2         |
| 0 0010 | +2      | 1 1101 | -3         |
| 0 0011 | +3      | 1 1100 | -4         |
| 0 0100 | +4      | 1 1011 | <b>-</b> 5 |
| 0 0101 | +5      | 1 1010 | -6         |
| 0 0110 | +6      | 1 1001 | <b>-7</b>  |
| 0 0111 | +7      | 1 1000 | -8         |
| 0 1000 | +8      | 1 0111 | -9         |
| 0 1001 | +9      | 1 0110 | -10        |

© NXP B.V. 2008. All rights reserved

80 x 128 pixels matrix LCD driver

| Binary | Decimal | Binary | Decimal    |  |  |  |
|--------|---------|--------|------------|--|--|--|
| 0 1010 | +10     | 1 0101 | <b>–11</b> |  |  |  |
| 0 1011 | +11     | 1 0100 | -12        |  |  |  |
| 0 1100 | +12     | 1 0011 | -13        |  |  |  |
| 0 1101 | +13     | 1 0010 | -14        |  |  |  |
| 0 1110 | +14     | 1 0001 | <b>–15</b> |  |  |  |
| 0 1111 | +15     | 1 0000 | <b>–16</b> |  |  |  |

Table 36. Vos/MMVOPCAL values in two's complement notation ...continued



## 18.1.2 Temperature coefficient selection

The second feature is an OTP factory default setting for the temperature coefficient selection (MMTC) in the basic command set. This 3-bit value will be loaded from OTP after leaving the Power-save mode or by the Refresh command. The idea of this feature is to provide, in the basic command set, the complete set of temperature coefficients without an additional command. In the extended command set the temperature coefficient can be programmed as given in Table 20 and Table 30.

#### 18.1.3 Seal bit

The module maker programming is performed in a special mode: the calibration mode (CALMM). This mode is entered via a special interface command, CALMM. To prevent unwanted programming, a seal bit has been implemented which prevents the device from entering the calibration mode. This seal bit, once programmed, cannot be reversed so further changes in programmed values are not possible.

Applying the programming voltages when not in CALMM mode has no effect on the programmed values.

Table 37. Seal bit definition

| Seal bit | Action                             |
|----------|------------------------------------|
| 0        | possible to enter calibration mode |
| 1        | calibration mode disabled          |

80 x 128 pixels matrix LCD driver

#### 18.1.4 OTP architecture

The OTP circuitry in the PCF8811 contains 9 bits of data: 5 for  $V_{LCD}$  calibration (MMVOPCAL), 3 for the temperature coefficient default setting in the basic command set MMTC and 1 seal bit. The circuitry for 1-bit is called an OTP slice. Each OTP slice consists of 2 main parts: the OTP cell (a non-volatile memory cell) and the shift register cell (a flip-flop). The OTP cells are only accessible through their shift register cells: on the one hand both reading from and writing to the OTP cells is performed with the shift register cells, on the other hand only the shift register cells are visible to the rest of the circuit. The basic OTP architecture is shown in Figure 52.

This OTP architecture allows the following operations:

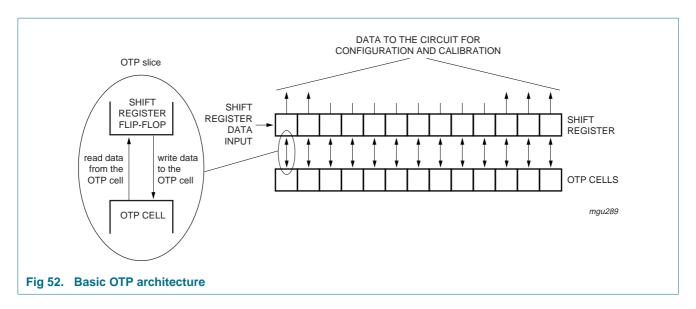
**Reading data from the OTP cells** — The content of the non-volatile OTP cells is transferred to the shift register where upon it may affect the PCF8811 operation.

**Writing data to the OTP cells** — All 9 data bits are shifted into the shift register via the interface. The content of the shift register is then transferred to the OTP cells. There are some limitations related to storing data in these cells; see Section 18.1.7.

Checking calibration without writing to the OTP cells — Shifting data into the shift register allows the effects on the  $V_{LCD}$  voltage to be observed.

The reading of data from the OTP cells is initiated by either:

- Exit from Power-save mode
- The 'Refresh' command (power control)


**Remark:** Note that in both cases the reading operation needs up to 5 ms to complete.

The shifting of data into the shift register is performed in the special mode CALMM. In the PCF8811 the CALMM mode is entered by the CALMM command. Once in the CALMM mode the data is shifted into the shift register via the interface at the rate of 1-bit per command. After transmitting the last (9<sup>th</sup>) bit and exiting the CALMM mode, the serial interface will return to the normal mode and all other commands can be sent. Care should be taken that 9 bits of data (or a multiple of 9) are always transferred before exiting the CALMM mode, otherwise the bits will be in the wrong positions.

In the shift register the value of the seal bit is, like the others, always zero at reset. To ensure that the security feature (seal bit) works correctly, the CALMM command is disabled until a refresh has been performed. Once the refresh is completed, the seal bit value in the shift register will be valid and permission to enter the CALMM mode can thus be determined.

The 9 bits are shifted into the shift register in a predefined order: first 5 bits of MMVOPCAL[4:0], 3 bits for MMTC[2:0] and lastly the seal bit. The MSB is always first, thus the first bit shifted is MMVOPCAL[4] and the two last bits are MMTC[0] and the seal bit.

80 x 128 pixels matrix LCD driver



#### 18.1.5 Interface commands

These instructions are in addition to those indicated in Table 10.

Table 38. Additional interface commands

| Instruction               | Pad  |     |        | Command byte |     |     |     |     |     |     |     | Description                                                  |
|---------------------------|------|-----|--------|--------------|-----|-----|-----|-----|-----|-----|-----|--------------------------------------------------------------|
|                           | EXT  | D/C | R/W/WR | DB7          | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |                                                              |
| CALMM                     | X[1] | 0   | 0      | 1            | 0   | 0   | 0   | 0   | 0   | 1   | 0   | enter CALMM mode                                             |
| Power control ('refresh') | X[1] | 0   | 0      | 0            | 0   | 1   | 0   | 1   | PC1 | PC0 | 1   | switch HVgen on/off to force a refresh of the shift register |

#### [1] X =value without meaning.

#### 18.1.5.1 CALMM

This instruction puts the device in calibration mode. This mode enables the shift register for loading and allows programming of the non-volatile OTP cells to take place. If the seal bit is set then this mode cannot be accessed and the instruction will be ignored. Once in calibration mode all commands are interpreted as shift register data. The mode can only be exited by sending data with DB7 set to logic 0. Reset will also clear this mode. Each shift register data byte is preceded by  $D/\overline{C}=0$  and has only 2 significant bits, thus the remaining 6 bits are ignored. DB7 is the continuation bit (DB7 = 1 remain in CALMM mode, DB7 = 0 exit CALMM mode). DB0 is the data bit and its value is shifted into the OTP shift register (on the falling edge of SCLK).

#### 18.1.5.2 Refresh

The action of the 'Refresh' instruction is to force the OTP shift register to re-load from the non-volatile OTP cells. This instruction takes up to 5 ms to complete. During this time all other instructions may be sent.

In the PCF8811 the 'Refresh' instruction is associated with the 'Power control' instruction so that the shift register is automatically refreshed every time the high voltage multiplier is enabled or disabled. Note that if this instruction is sent while in Power-save mode, the PC[1:0] bits are updated but the refreshing is ignored.

80 x 128 pixels matrix LCD driver

## 18.1.6 Example sequence for filling the shift register

An example of the sequence of commands and data is shown in <u>Table 39</u>. In this example the shift register is filled with the following data: MMVOPCAL = -4 (1 1100b), MMTC = 2 (010b) and the seal bit is logic 0.

It is assumed that the PCF8811 has just been reset. After transmitting the last bit the PCF8811 can either exit or remain in the CALMM mode; see <u>Table 39</u>, Step 1. It should be noted that while in CALMM mode the interface does not recognize commands in the normal sense.

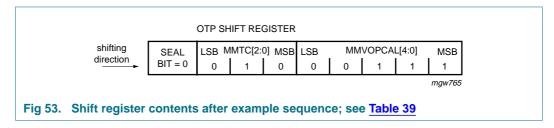

After this sequence has been applied it is possible to observe the impact of the data shifted in. The described sequence is, however, not useful for OTP programming because the number of bits with the value logic 1 is greater than that allowed for programming; see Section 18.1.7. The shift register after this action is shown in Figure 53.

Table 39. Sequence for filling the shift register; example 1[1]

| Step   | Pad     |        |             | Comr     | nand b  | yte |      |     |     |     |     | Action                                      |
|--------|---------|--------|-------------|----------|---------|-----|------|-----|-----|-----|-----|---------------------------------------------|
|        | EXT     | D/C    | R/W/WR      | DB7      | DB6     | DB5 | DB4  | DB3 | DB2 | DB1 | DB0 |                                             |
| 1      | Χ       | 0      | 0           | 1        | 1       | 1   | 0    | 0   | 0   | 0   | 1   | exit power-down                             |
| 2      | -       | -      | -           | -        | -       | -   | -    | -   | -   | -   | -   | wait 5 ms for refresh to take effect        |
| 3      | Χ       | 0      | 0           | 1        | 0       | 0   | 0    | 0   | 0   | 1   | 0   | enter CALMM mode                            |
| 4      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 1   | shift in data; MMVOPCAL[4] is first bit [2] |
| 5      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 1   | MMVOPCAL[3]                                 |
| 6      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 1   | MMVOPCAL[2]                                 |
| 7      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 0   | MMVOPCAL[1]                                 |
| 8      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 0   | MMVOPCAL[0]                                 |
| 9      | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 0   | MMTC[2]                                     |
| 10     | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 1   | MMTC[1]                                     |
| 11     | Χ       | 0      | 0           | 1        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 0   | MMTC[0]                                     |
| 12     | Χ       | 0      | 0           | 0        | Χ       | Χ   | Χ    | Χ   | Χ   | Χ   | 0   | seal bit; exit CALMM mode                   |
| An alt | ernativ | e endi | ng could be | e to sta | y in CA | LMM | mode |     |     |     |     |                                             |
| 13     | Χ       | 0      | 0           | 1        | 1       | 1   | 1    | 1   | 1   | 1   | 0   | seal bit; remain in CALMM mode              |

<sup>[1]</sup> X = value without meaning.

<sup>[2]</sup> The data for the bits is not in the correct shift register position until all bits have been sent.



### 18.1.7 Programming flow

Programming is achieved whilst in CALMM mode and with the application of the programming voltages. As mentioned previously, the data for programming the OTP cell is contained in the corresponding shift register cell. The shift register cell must be loaded

#### 80 x 128 pixels matrix LCD driver

with a logic 1 in order to program the corresponding OTP cell. If the shift register cell contains a logic 0, then no action will take place when the programming voltages are applied.

Once programmed, an OTP cell cannot be de-programmed. An already programmed cell, i.e. an OTP cell containing a logic 1, must not be re-programmed.

During programming, a substantial current flows in the  $V_{LCDIN}$  pad. For this reason it is recommended to program only one OTP cell at a time. This is achieved by filling all but one shift register cells with logic 0.

It should be noted that the programming specification refers to the voltages at the chip pads, contact resistance must therefore be considered by the user.

An example sequence of commands and data for OTP programming is given in <u>Table 40</u>. It is assumed that the PCF8811 has just been reset.

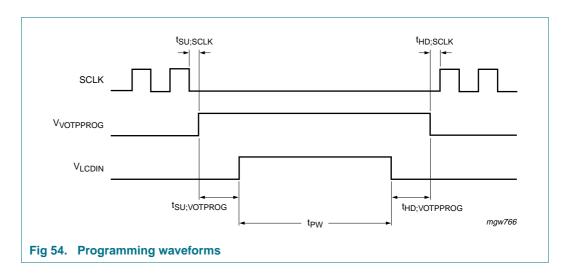
The order for programming cells is not significant. However, NXP Semiconductors recommends that the seal bit is programmed last. Once this bit has been programmed and the CALMM mode is exited, it is not possible to re-enter the CALMM mode.

Table 40. Sequence for filling the shift register; example 2[1]

| Step | Pad     |        |            | Comi    | mand l | byte    |        |       |           |         | Action |                                                                                                           |
|------|---------|--------|------------|---------|--------|---------|--------|-------|-----------|---------|--------|-----------------------------------------------------------------------------------------------------------|
|      | EXT     | D/C    | R/W/WR     | DB7     | DB6    | DB5     | DB4    | DB3   | DB2       | DB1     | DB0    |                                                                                                           |
| 1    | Х       | 0      | 0          | 1       | 1      | 1       | 0      | 0     | 0         | 0       | 1      | exit power-save                                                                                           |
| 2    | -       | -      | -          | -       | -      | -       | -      | -     | -         | -       | -      | wait 5 ms for refresh to take effect                                                                      |
| 3    | Χ       | 0      | 0          | 1       | 0      | 1       | 0      | 1     | 0         | 0       | 1      | re-enter power-down (DON = 0)                                                                             |
| 4    | Χ       | 0      | 0          | 1       | 0      | 0       | 0      | 0     | 0         | 1       | 0      | enter CALMM mode                                                                                          |
| 5    | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 1      | shift in data; MMVOPCAL[4] is first bit                                                                   |
| 6    | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 1      | MMVOPCAL[3]                                                                                               |
| 7    | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 1      | MMVOPCAL[2]                                                                                               |
| 9    | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 0      | MMVOPCAL[1]                                                                                               |
| 10   | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 0      | MMVOPCAL[0]                                                                                               |
| 11   | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 0      | MMTC[2]                                                                                                   |
| 12   | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 1      | MMTC[1]                                                                                                   |
| 13   | Χ       | 0      | 0          | 1       | 0      | Χ       | Χ      | Χ     | Χ         | Χ       | 0      | MMTC[0]                                                                                                   |
| 14   | Χ       | 0      | 0          | 1       | 1      | Χ       | Χ      | Χ     | Χ         | Χ       | 0      | seal bit                                                                                                  |
| 15   | -       | -      | -          | -       | -      | -       | -      | -     | -         | -       | -      | apply programming voltage at pads V <sub>OTPPROG</sub> and V <sub>LCDIN</sub> ; see <u>Section 18.1.8</u> |
| Repe | at step | s 5 to | 14 for eac | h bit w | hich m | nust be | progra | ammed | d to 1; e | exit CA | LMM    | mode                                                                                                      |
| 16   | -       | -      | -          | -       | -      | -       | -      | -     | -         | -       | -      | apply external reset                                                                                      |

<sup>[1]</sup> X =value without meaning.

80 x 128 pixels matrix LCD driver


## 18.1.8 Programming specification

**Table 41. Programming specification** *See Figure 54.* 

| Symbol                   | Parameter                                                | Conditions                               |            | Min           | Тур              | Max            | Unit |
|--------------------------|----------------------------------------------------------|------------------------------------------|------------|---------------|------------------|----------------|------|
| $V_{OTPPROG}$            | voltage applied to pad V <sub>OTPPROG</sub>              | programming active                       | <u>[1]</u> | 11            | 11.5             | 12             | V    |
|                          | relative to V <sub>SS1</sub>                             | programming inactive                     | <u>[1]</u> | $V_{SS}-0.2$  | 0                | $V_{SS} + 0.2$ | V    |
| $V_{LCDIN}$              | voltage applied to pad V <sub>LCDIN</sub>                | programming active                       | [1][2]     | 9             | 9.5              | 10             | V    |
|                          | relative to V <sub>SS1</sub>                             | programming inactive                     | [1][2]     | $V_{DD2}-0.2$ | $V_{\text{DD2}}$ | 4.5            | V    |
| I <sub>LCDIN</sub>       | current drawn by V <sub>LCDIN</sub> during programming   | when programming a single bit to logic 1 |            | -             | 850              | 1000           | mA   |
| I <sub>VOTPPROG</sub>    | current drawn by V <sub>OTPPROG</sub> during programming |                                          |            | -             | 100              | 200            | mA   |
| $T_{amb(PROG)}$          | ambient temperature during programming                   |                                          |            | 0             | 25               | 40             | °C   |
| t <sub>SU;SCLK</sub>     | set-up time of internal data after last clock            |                                          |            | 1             | -                | -              | μs   |
| t <sub>HD;SCLK</sub>     | hold time of internal data before next clock             |                                          |            | 1             | -                | -              | μs   |
| t <sub>SU;VOTPPROG</sub> | set-up time of V <sub>OTPPROG</sub> prior to programming |                                          |            | 1             | -                | 10             | μs   |
| t <sub>HD;VOTPPROG</sub> | hold time of V <sub>OTPPROG</sub> after programming      |                                          |            | 1             | -                | 10             | ms   |
| $t_{PW}$                 | pulse width of programming voltage                       |                                          |            | 100           | 120              | 200            | ms   |

<sup>[1]</sup> The voltage drop across the ITO track and zebra connector must be taken into account to guarantee a sufficiently high voltage at the chip pads.

<sup>[2]</sup> The Power-down mode (DON = 0 and DAL = 1) and CALMM mode must be active while the  $V_{LCDIN}$  pad is being driven.

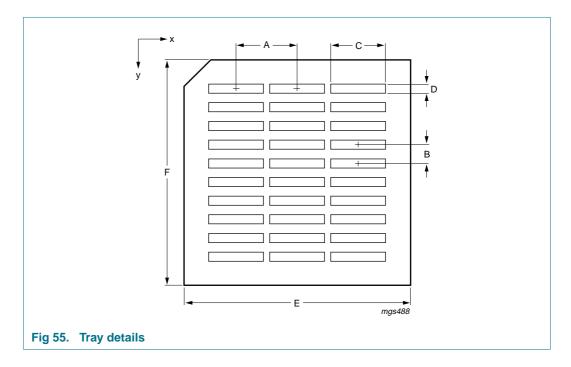


# 19. Package outline

Not applicable.

PCF8811\_4 © NXP B.V. 2008. All rights reserved.

80 x 128 pixels matrix LCD driver


# 20. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe you must take normal precautions appropriate to handling MOS devices; see *JESD625-A and/or IEC61340-5*.

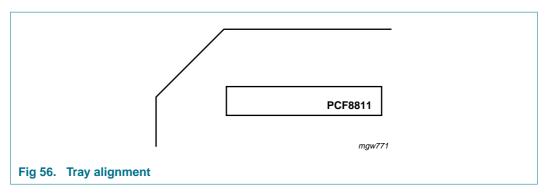

# 21. Packing information

Table 42. Tray dimensions See Figure 55.

| Symbol | Description                    | Value    |
|--------|--------------------------------|----------|
| Α      | pocket pitch in x direction    | 13.77 mm |
| В      | pocket pitch in y direction    | 4.45 mm  |
| С      | pocket width in x direction    | 12.55 mm |
| D      | pocket width in y direction    | 2.41 mm  |
| E      | tray width in x direction      | 50.8 mm  |
| F      | tray width in y direction      | 50.8 mm  |
| x      | number of pockets, x direction | 3        |
| у      | number of pockets, y direction | 10       |



80 x 128 pixels matrix LCD driver



The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray. Refer to the bonding pad location diagram (Figure 2) for the orientation and position of the type name on the die surface.

## 22. Abbreviations

Table 43. Abbreviations

| CDM Charged Device Model  CMOS Complementary Metal Oxide Semiconductor  COG Chip-On-Glass  DDRAM Double Data Random Access Memory  ESD ElectroStatic Discharge  HBM Human Body Model  HV High Voltage  IC Integrated Circuit  ITO Indium Tin Oxide  LCD Liquid Crystal Display  LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface  TC Temperature Coefficient | Acronym | Description                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------|
| COG Chip-On-Glass DDRAM Double Data Random Access Memory  ESD ElectroStatic Discharge  HBM Human Body Model  HV High Voltage IC Integrated Circuit ITO Indium Tin Oxide  LCD Liquid Crystal Display  LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                        | CDM     | Charged Device Model                    |
| DDRAM Double Data Random Access Memory  ESD ElectroStatic Discharge  HBM Human Body Model  HV High Voltage  IC Integrated Circuit  ITO Indium Tin Oxide  LCD Liquid Crystal Display  LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                        | CMOS    | Complementary Metal Oxide Semiconductor |
| ESD ElectroStatic Discharge  HBM Human Body Model  HV High Voltage  IC Integrated Circuit  ITO Indium Tin Oxide  LCD Liquid Crystal Display  LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                | COG     | Chip-On-Glass                           |
| HBM Human Body Model HV High Voltage IC Integrated Circuit ITO Indium Tin Oxide LCD Liquid Crystal Display LSB Least Significant Bit MM Machine Model MRA Multiple Row Addressing MSB Most Significant Bit MPU MicroProcessing Unit OTP One Time Programmable RAM Read Access Memory SPI Serial Peripheral Interface                                                                                                                                                                                                         | DDRAM   | Double Data Random Access Memory        |
| HV High Voltage IC Integrated Circuit ITO Indium Tin Oxide LCD Liquid Crystal Display LSB Least Significant Bit MM Machine Model MRA Multiple Row Addressing MSB Most Significant Bit MPU MicroProcessing Unit OTP One Time Programmable RAM Read Access Memory SPI Serial Peripheral Interface                                                                                                                                                                                                                              | ESD     | ElectroStatic Discharge                 |
| IC Integrated Circuit ITO Indium Tin Oxide LCD Liquid Crystal Display LSB Least Significant Bit MM Machine Model MRA Multiple Row Addressing MSB Most Significant Bit MPU MicroProcessing Unit OTP One Time Programmable RAM Read Access Memory SPI Serial Peripheral Interface                                                                                                                                                                                                                                              | HBM     | Human Body Model                        |
| ITO Indium Tin Oxide  LCD Liquid Crystal Display  LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                           | HV      | High Voltage                            |
| LCD Liquid Crystal Display LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                  | IC      | Integrated Circuit                      |
| LSB Least Significant Bit  MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                             | ITO     | Indium Tin Oxide                        |
| MM Machine Model  MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                        | LCD     | Liquid Crystal Display                  |
| MRA Multiple Row Addressing  MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                          | LSB     | Least Significant Bit                   |
| MSB Most Significant Bit  MPU MicroProcessing Unit  OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                                                       | MM      | Machine Model                           |
| MPU MicroProcessing Unit OTP One Time Programmable RAM Read Access Memory SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                                                                                    | MRA     | Multiple Row Addressing                 |
| OTP One Time Programmable  RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSB     | Most Significant Bit                    |
| RAM Read Access Memory  SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MPU     | MicroProcessing Unit                    |
| SPI Serial Peripheral Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OTP     | One Time Programmable                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RAM     | Read Access Memory                      |
| TC Temperature Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPI     | Serial Peripheral Interface             |
| To Tomporatoro Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TC      | Temperature Coefficient                 |
| TCP Tape Carrier Packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCP     | Tape Carrier Packages                   |

80 x 128 pixels matrix LCD driver

# 23. Revision history

## Table 44. Revision history

|                               | , ,                                                                                 |                                               |                         |                               |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|-------------------------------|--|--|--|--|
| Document ID                   | Release date                                                                        | Data sheet status                             | Change notice           | Supersedes                    |  |  |  |  |
| PCF8811_4                     | 20080627                                                                            | Product data sheet                            | -                       | PCF8811_3                     |  |  |  |  |
| Modifications:                | <ul> <li>The format of<br/>of NXP Semi</li> </ul>                                   | f this data sheet has been red<br>conductors. | designed to comply with | n the new identity guidelines |  |  |  |  |
|                               | <ul> <li>Legal texts h</li> </ul>                                                   | ave been adapted to the nev                   | v company name where    | e appropriate.                |  |  |  |  |
|                               | <ul> <li>Amendments</li> </ul>                                                      | s to the text                                 |                         |                               |  |  |  |  |
|                               | <ul> <li>Added ROM</li> </ul>                                                       | look-up <u>Table 28</u>                       |                         |                               |  |  |  |  |
|                               | <ul> <li>Changed values in Table 30 and Table 31</li> </ul>                         |                                               |                         |                               |  |  |  |  |
|                               | <ul> <li>Changed Figure 2, Figure 4, Figure 48, Figure 49, and Figure 50</li> </ul> |                                               |                         |                               |  |  |  |  |
|                               | <ul> <li>Moved <u>Figure</u></li> </ul>                                             | e 2 to Section 6 "Pinning info                | ormation"               |                               |  |  |  |  |
|                               | <ul> <li>Moved <u>Table</u></li> </ul>                                              | 3 and Table 4 to Section 6 "                  | Pinning information"    |                               |  |  |  |  |
|                               | <ul> <li>Added Fab 1</li> </ul>                                                     | and Fab 2 details and adjus                   | ted die dimensions in   | Table 3                       |  |  |  |  |
| PCF8811_3<br>(9397 750 13144) | 20040517                                                                            | Product specification                         | -                       | PCF8811_2                     |  |  |  |  |
| PCF8811_2<br>(9397 750 10285) | 20021204                                                                            | Product specification                         | -                       | PCF8811_1                     |  |  |  |  |
| PCF8811_1<br>(9397 750 09148) | 20020814                                                                            | Product specification                         | -                       | -                             |  |  |  |  |
|                               |                                                                                     |                                               |                         |                               |  |  |  |  |

80 x 128 pixels matrix LCD driver

## 24. Legal information

#### 24.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

#### 24.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

## 24.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 24.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I<sup>2</sup>C-bus — logo is a trademark of NXP B.V.

#### 25. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

© NXP B.V. 2008. All rights reserved.

**PCF8811 NXP Semiconductors** 

## 80 x 128 pixels matrix LCD driver

# 26. Contents

| 1            | General description                                                                                                                    | . 1 | 8.1.2.1          | Horizontal/vertical addressing                        | 21 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-------------------------------------------------------|----|
| 2            | Features                                                                                                                               | . 1 | 8.1.2.2          | Data order                                            |    |
| 3            | Applications                                                                                                                           | . 2 | 8.1.2.3          | Features available in both command sets               |    |
| 4            | Ordering information                                                                                                                   |     | 9                | Parallel interface                                    |    |
| 5            | Block diagram                                                                                                                          |     | 9.1              | 6800 series parallel interface                        | 25 |
| 6            | Pinning information                                                                                                                    |     | 10               | Serial interfacing (SPI and serial interface) .       | 26 |
| 6.1          | Pinning                                                                                                                                |     | 10.1             | Serial peripheral interface lines                     | 26 |
| 6.2          | Pin description                                                                                                                        |     | 10.1.1           | Write mode                                            |    |
| _            | •                                                                                                                                      |     | 10.1.2           | Read mode (only extended command set)                 |    |
| 7            | Functional description                                                                                                                 |     | 10.2             | Serial interface (3-line)                             |    |
| 7.1<br>7.1.1 | Pad functions                                                                                                                          |     | 10.2.1           | Write mode                                            |    |
| 7.1.1        | C0 to C127: column driver signals                                                                                                      |     | 10.2.2           | Read mode (only extended command set)                 |    |
| 7.1.2        | $V_{SS1}$ and $V_{SS2}$ : negative power supply rails                                                                                  |     | 11               | I <sup>2</sup> C-bus interface                        | 31 |
| 7.1.3        | V <sub>SS1</sub> and V <sub>SS2</sub> . Regative power supply rails V <sub>DD1</sub> to V <sub>DD3</sub> : positive power supply rails |     | 11.1             | Characteristics of the I <sup>2</sup> C-bus (Hs-mode) | 31 |
| 7.1.4        | V <sub>OTPPROG</sub> : OTP power supply                                                                                                |     | 11.1.1           | System configuration                                  | 31 |
| 7.1.6        | V <sub>LCDOUT</sub> , V <sub>LCDIN</sub> , and V <sub>LCDSENSE</sub> : LCD power                                                       | 13  | 11.1.2           | Bit transfer                                          |    |
| 7.1.0        | supply                                                                                                                                 | 15  | 11.1.3           | Start and stop conditions                             |    |
| 7.1.7        | T1 to T5: test pads                                                                                                                    |     | 11.1.4           | Acknowledge                                           |    |
| 7.1.8        | MF2 to MF0                                                                                                                             |     | 11.2             | I <sup>2</sup> C-bus Hs-mode protocol                 | 33 |
| 7.1.9        | DS0                                                                                                                                    |     | 11.3             | Command decoder                                       | 36 |
| 7.1.10       | $V_{OS4}$ to $V_{OS0}$                                                                                                                 |     | 12               | Instructions                                          | 36 |
| 7.1.11       | EXT: extended command set                                                                                                              |     | 12.1             | Instruction set commands                              | 40 |
| 7.1.12       | PS0, PS1 and PS2                                                                                                                       |     | 12.1.1           | Common instructions of the basic and                  |    |
| 7.1.13       | D/C                                                                                                                                    |     |                  | extended command set                                  | 40 |
| 7.1.14       | R/W/WR                                                                                                                                 | 17  | 12.1.2           | Specific commands of the basic command set            | 41 |
| 7.1.15       | E/RD                                                                                                                                   | 17  | 12.1.3           | Specific commands of the extended                     |    |
| 7.1.16       | SCLH/SCE                                                                                                                               | 17  |                  | command set                                           |    |
| 7.1.17       | SDAH                                                                                                                                   | 17  | 12.2             | Initialization                                        |    |
| 7.1.18       | SDAHOUT                                                                                                                                | 17  | 12.3             | Reset function                                        | _  |
| 7.1.19       | DB7 to DB0                                                                                                                             |     | 12.3.1           | Basic command set                                     |    |
| 7.1.19.1     |                                                                                                                                        |     | 12.3.2           | Extended command set                                  |    |
| 7.1.19.2     | ,                                                                                                                                      |     | 12.4             | Power-save mode                                       |    |
| 7.1.19.3     | B DB3 and DB2 (I <sup>2</sup> C-bus interface)                                                                                         | 18  | 12.5             | Display control                                       |    |
| 7.1.20       | OSC: oscillator                                                                                                                        |     | 12.5.1           | Bit MX                                                |    |
| 7.1.21       | RES: reset                                                                                                                             |     | 12.5.2           | Bit MY                                                |    |
| 7.2          | Block diagram functions                                                                                                                |     | 12.6             | Set Y address of RAM                                  |    |
| 7.2.1        | Oscillator                                                                                                                             |     | 12.7             | Set X address of RAM                                  |    |
| 7.2.2        | Address counter                                                                                                                        |     | 12.8             | Set display start line                                |    |
| 7.2.3        | Display data RAM                                                                                                                       |     | 12.9             | Bias levels                                           |    |
| 7.2.4        | Timing generator                                                                                                                       |     | 12.10<br>12.10.1 | Set V <sub>OP</sub> value                             |    |
| 7.2.5        | Display address counter                                                                                                                |     | 12.10.1          |                                                       |    |
| 7.2.6        | LCD row and column drivers                                                                                                             |     | 12.10.2          | Temperature control                                   |    |
| 8            | Addressing                                                                                                                             |     |                  | •                                                     |    |
| 8.1          | Display data RAM structure                                                                                                             |     | 13               | Internal circuitry                                    |    |
| 8.1.1        | Basic command set                                                                                                                      |     | 14               | Limiting values                                       |    |
| 8.1.2        | Extended command set                                                                                                                   | 21  | 15               | Static characteristics                                | 57 |

continued >>

**PCF8811 NXP Semiconductors** 

## 80 x 128 pixels matrix LCD driver

| 16       | Dynamic characteristics                               | 59 |
|----------|-------------------------------------------------------|----|
| 16.1     | Parallel interface timing characteristics             | 59 |
| 16.2     | Serial interface timing characteristics               | 61 |
| 16.3     | I <sup>2</sup> C-bus interface timing characteristics | 64 |
| 17       | Application information                               | 67 |
| 18       | Support information                                   | 69 |
| 18.1     | Module maker programming                              | 69 |
| 18.1.1   | V <sub>LCD</sub> calibration                          | 69 |
| 18.1.2   | Temperature coefficient selection                     | 70 |
| 18.1.3   | Seal bit                                              | 70 |
| 18.1.4   | OTP architecture                                      | 71 |
| 18.1.5   | Interface commands                                    | 72 |
| 18.1.5.1 | -                                                     | 72 |
| 18.1.5.2 |                                                       | 72 |
| 18.1.6   | Example sequence for filling the shift register       | 73 |
| 18.1.7   | Programming flow                                      | 73 |
| 18.1.8   | Programming specification                             |    |
| 19       | Package outline                                       |    |
| 20       | Handling information                                  | 76 |
| 21       | Packing information                                   | 76 |
| 22       | Abbreviations                                         | 77 |
| 23       | Revision history                                      | 78 |
| 24       | Legal information                                     | 79 |
| 24.1     | Data sheet status                                     | 79 |
| 24.2     | Definitions                                           | 79 |
| 24.3     | Disclaimers                                           | 79 |
| 24.4     | Trademarks                                            | 79 |
| 25       | Contact information                                   | 79 |
| 26       | Cantonia                                              | 00 |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.



