MOSFET - SiC Power, Single **N-Channel** 1200 V, 80 mΩ, 31 A

NTHL080N120SC1

Features

- Typ. $R_{DS(on)} = 80 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 56 \text{ nC}$)
- Low Effective Output Capacitance (typ. Coss = 80 pF)
- 100% UIL Tested
- These Devices are RoHS Compliant

Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted)

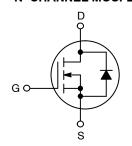
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-15/+25	V
Recommended Operation Values of Gate-to-Source Voltage	T _C < 175°C		V_{GSop}	-5/+20	>
Continuous Drain Current R _{0JC}	Steady State	T _C = 25°C	I _D	31	Α
Power Dissipation $R_{\theta JC}$			P_{D}	178	W
Continuous Drain Current R _{0JC}	Steady State	T _C = 100°C	I _D	22	Α
Power Dissipation $R_{\theta JC}$			P _D	89	W
Pulsed Drain Current (Note 2)	T _A = 25°C		I _{DM}	132	Α
Single Pulse Surge Drain Current Capability	T _A = 25°0 R _G	C, t _p = 10 μs, = 4.7 Ω	I _{DSC}	132	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	18	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 18.5 A, L = 1 mH) (Note 3)			E _{AS}	171	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

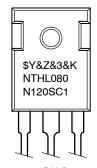
Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.84	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature. 3. E_{AS} of 171 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 18.5 A, $V_{DD} = 120 \text{ V}, V_{GS} = 18 \text{ V}.$



ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	110 mΩ @ 20 V	31 A

N-CHANNEL MOSFET

MARKING DIAGRAM

= ON Semiconductor Logo \$Y &Z = Assembly Plant Code &3 = Data Code (Year & Week)

NTHL080N120SC1 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet

ELECTRICAL CHARACTERISTICS

OFF CHARACTERISTICS Drain-to-Source Breakdown Voltage Temperature Coefficient V _{(BR)DSS} T _J I _D = 1 mA, referenced to 25°C - 700 - 100 10	Unit	Max	Тур	Min	Test Conditions	Symbol	Parameter
Drain-to-Source Breakdown Voltage Temperature Coefficient V(BR)DSSPTJ ID = 1 mA, referenced to 25°C − 700 −							OFF CHARACTERISTICS
Temperature Coefficient Land L	V	_	-	1200	V _{GS} = 0 V, I _D = 1 mA	V _{(BR)DSS}	Drain-to-Source Breakdown Voltage
Vigs = 0 V, Vigs = 1200 V, T, J = 175°C	mV/°C	_	700	-	I _D = 1 mA, referenced to 25°C	V _{(BR)DSS} /T _J	
Gate-to-Source Leakage Current I_GSS V_GS = +25/-15 V, V_DS = 0 V - - ±1	μΑ	100	-	-	$V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{ V}, T_J = 25^{\circ}\text{C}$	I _{DSS}	Zero Gate Voltage Drain Current
ON CHARACTERISTICS Gate Threshold Voltage V _{GS} (th) V _{GS} = V _{DS} , I _D = 5 mA 1.8 2.7 4.3 Recommended Gate Voltage V _{GOP} V _{GS} = 20 V, I _D = 20 A, T _J = 25°C - 80 110 Drain-to-Source On Resistance R _{DS} (en) V _{GS} = 20 V, I _D = 20 A, T _J = 150°C - 114 - Forward Transconductance g _{FS} V _{DS} = 20 V, I _D = 20 A - 13 - CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V - 1112 - Output Capacitance C _{DSS} V _{GS} = -5/20 V, V _{DS} = 600 V, I _D = 20 A - 6.5 - Reverse Transfer Capacitance C _{RSS} C _{CSS} - 6.5 - Reverse Transfer Capacitance C _{RSS} C _{CSS} - 6.5 - Reverse Transfer Capacitance C _{RSS} C _{CSS} - - 6.5 - Total Gate Charge Q _{GS} G _{GS} - 1.1 - -	mA	1	-	-	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175°C		
Gate Threshold Voltage	μΑ	±1	-	-	V _{GS} = +25/–15 V, V _{DS} = 0 V	I _{GSS}	Gate-to-Source Leakage Current
Recommended Gate Voltage							ON CHARACTERISTICS
Drain-to-Source On Resistance	V	4.3	2.7	1.8	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$	V _{GS(th)}	Gate Threshold Voltage
V _{GS} = 20 V, I _D = 20 A, T _J = 150°C	V	+20	-	-5		V _{GOP}	Recommended Gate Voltage
Forward Transconductance gFS VDS = 20 V, ID = 20 A - 13 -	mΩ	110	80	_	V _{GS} = 20 V, I _D = 20 A, T _J = 25°C	R _{DS(on)}	Drain-to-Source On Resistance
CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance CISS VGS = 0 V, f = 1 MHz, VDS = 800 V - 1112 - 80 - 80 - 6.5 - 80 - 6.5 - 6.5 - 6.5 - 6.5 - 6.5 - 70			114	_	V _{GS} = 20 V, I _D = 20 A, T _J = 150°C		
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	S	_	13	-	V _{DS} = 20 V, I _D = 20 A	9 _{FS}	Forward Transconductance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						RESISTANCE	CHARGES, CAPACITANCES & GATE I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pF		1112	-	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	C _{ISS}	Input Capacitance
Total Gate Charge		_	80	-		C _{OSS}	Output Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	6.5	-		C _{RSS}	Reverse Transfer Capacitance
	nC	_	56	-	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V}, I_D = 20 \text{ A}$	Q _{G(tot)}	Total Gate Charge
		_	11	-		Q _{GS}	Gate-to-Source Charge
		_	12	-		Q _{GD}	Gate-to-Drain Charge
	Ω	_	1.7	-	f = 1 MHz	R _G	Gate Resistance
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							SWITCHING CHARACTERISTICS
$ \begin{array}{ c c c c c }\hline Rise Time & t_r & I_D = 20 \ A, \ R_G = 4.7 \ \Omega, \\ \hline Turn-Off Delay Time & t_d_{(off)} & - 22 & - \\ \hline Fall Time & t_f & - 10 & - \\ \hline Turn-On Switching Loss & E_{ON} & - 258 & - \\ \hline Turn-Off Switching Loss & E_{OFF} & - 52 & - \\ \hline Total Switching Loss & E_{TOT} & - 311 & - \\ \hline \hline DRAIN-SOURCE DIODE CHARACTERISTICS & & & & & \\ \hline Continuous Drain-to-Source Diode Forward Current & I_{SD} & V_{GS} = -5 \ V, T_J = 25^{\circ}C & - 18 \\ \hline Pulsed Drain-to-Source Diode Forward Current (Note 2) & & & & & \\ \hline Forward Diode Voltage & V_{SD} & V_{GS} = -5 \ V, I_{SD} = 10 \ A, T_J = 25^{\circ}C & - 4 & - \\ \hline Reverse Recovery Time & t_{RR} & V_{GS} = -5/20 \ V, I_{SD} = 20 \ A, \\ \hline Reverse Recovery Charge & Q_{RR} & - 62 & - \\ \hline \end{array} $	ns	_	13	-	$V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V},$	t _{d(on)}	Turn-On Delay Time
			20	_			Rise Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			22	_		t _{d(off)}	Turn-Off Delay Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	10	-			Fall Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μJ	_	258	-		E _{ON}	Turn-On Switching Loss
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	52	-		E _{OFF}	Turn-Off Switching Loss
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	311	-		E _{TOT}	Total Switching Loss
						ISTICS	DRAIN-SOURCE DIODE CHARACTER
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	18	-	-	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	I _{SD}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	132	-	-	$V_{GS} = -5 \text{ V}, T_{J} = 25^{\circ}\text{C}$	I _{SDM}	
Reverse Recovery Charge Q_{RR} $dl_S/dt = 1000 \text{ A/}\mu\text{s}$ $ 62$ $-$	V	_	4	_	V _{GS} = -5 V, I _{SD} = 10 A, T _J = 25°C	V _{SD}	Forward Diode Voltage
Reverse Recovery Charge Q _{RR} – 62 –	ns		16	_			Reverse Recovery Time
	nC		62	-	dl _S /dt = 1000 A/μs	Q _{RR}	Reverse Recovery Charge
	μJ		5	-	1	E _{REC}	Reverse Recovery Energy
Peak Reverse Recovery Current I _{RRM} - 8 -	Α	_	8	-	1	I _{RRM}	Peak Reverse Recovery Current

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

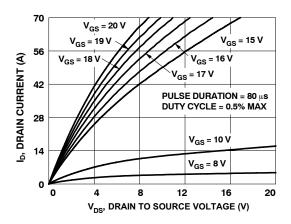


Figure 1. On Region Characteristics

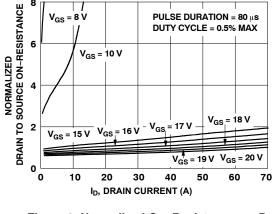


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

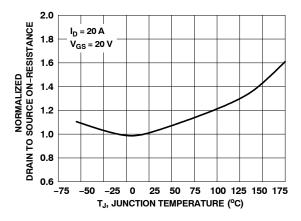


Figure 3. Normalized On Resistance vs. Junction Temperature

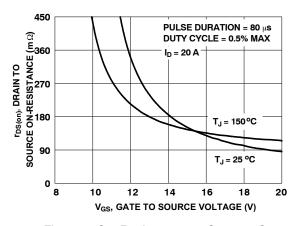


Figure 4. On-Resistance vs. Gate-to-Source Voltage

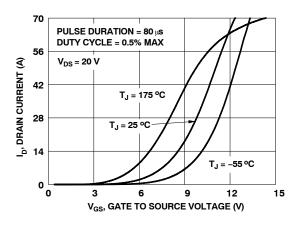


Figure 5. Transfer Characteristics

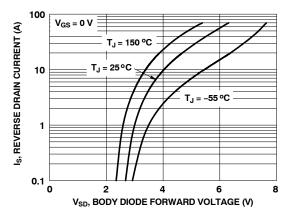


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

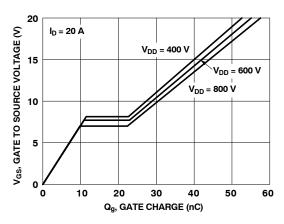


Figure 7. Gate Charge Characteristics

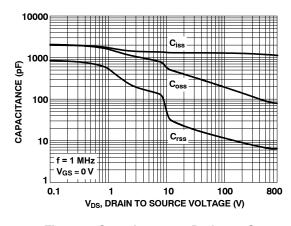


Figure 8. Capacitance vs. Drain-to-Source Voltage

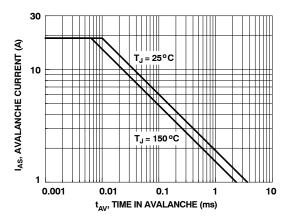


Figure 9. Unclamped Inductive Switching Capability

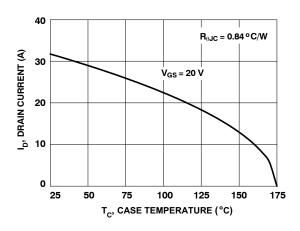


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

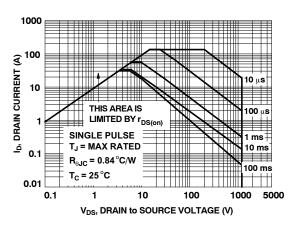


Figure 11. Forward Bias Safe Operating Area

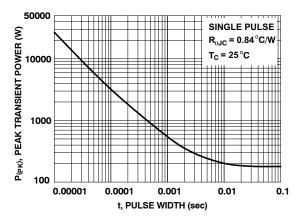
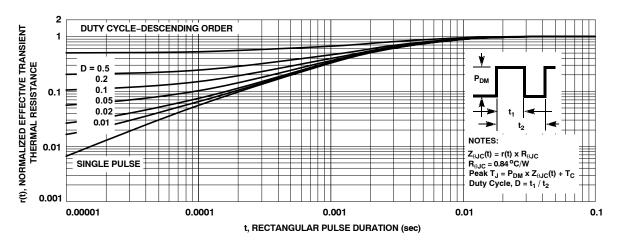
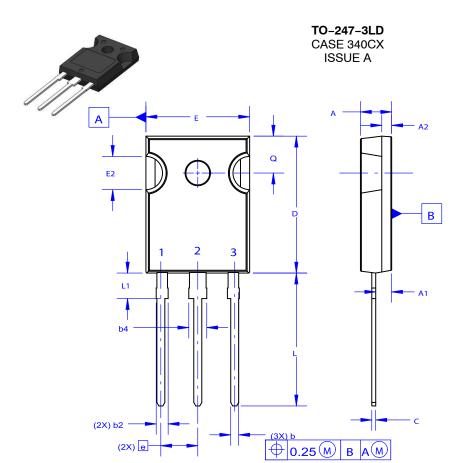
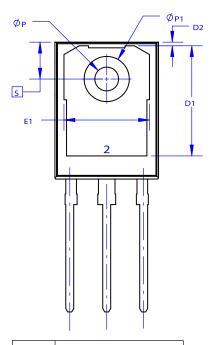


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

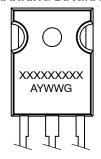




Figure 13. Junction-to-Case Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTHL080N120SC1	NTHL080N120SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " =", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative