LM140QML

LM140QML Three Terminal Positive Regulators

Literature Number: SNVS382A

LM140QML Three Terminal Positive Regulators

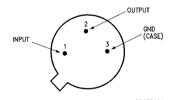
General Description

The monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Considerable effort was expended to make the entire series of regulators easy to use and minimize the number of external

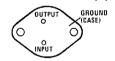
components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Features


- Complete specifications at 1.0A and 0.5A loads
- No external components
- Internal thermal overload protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation

Ordering Information

NS Part Number	SMD Part Number	NS Package Number	Package Description
LM140H-5.0/883		H03A	3LD TO-39 Metal Can
LM140H-12/883		H03A	3LD TO-39 Metal Can
LM140H-15/883		H03A	3LD TO-39 Metal Can
LM140K-5.0/883		K02C	2LD TO-3 Metal Can
LM140K-12/883		K02C	2LD TO-3 Metal Can
LM140K-15/883		K02C	2LD TO-3 Metal Can


Connection Diagrams

Steel Metal Can TO-39 Package (H)

Bottom View See NS Package Number H03A

TO-3 Metal Can (K)

Bottom View
See NS Package Number K02C

Absolute Maximum Ratings (Note 1)

 $\begin{array}{lll} \text{DC Input Voltage} & 35\text{V} \\ \text{Internal Power Dissipation (Note 2)} & \text{Internally Limited} \\ \text{Maximum Junction Temperature (T_{Jmax})} & 150^{\circ}\text{C} \\ \text{Storage Temperature Range} & -65^{\circ}\text{C} \leq T_{A} \leq +150^{\circ}\text{C} \\ \text{Operating Temperature Range} & -55^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C} \\ \end{array}$

Lead Temperature (Soldering 10 seconds) 300°C

Thermal Resistance

 θ_{JA} T0–39 (Still Air) T0–39 (500 LF/Min Air Flow) T0–3 (Still Air) T0–3 (500 LF/Min Air Flow) θ_{JC} T0–39 T0–3

232°C/W 77°C/W 35°C/W TBD

Quality Conformance Inspection

MIL-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

LM140H-5.0 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 10V, I_1 = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{V_0}$	Output Voltage	$V_{I} = 35V, I_{L} = 5mA$		4.75	5.75	V	1
				4.80	5.20	V	1
		$V_I = 8V$		4.70	5.30	٧	1, 2, 3
		$V_I = 8V$, $I_L = 5mA$		4.70	5.30	V	1, 2, 3
		$V_{I} = 20V, I_{L} = 5mA$		4.70	5.30	V	1, 2, 3
		V _I = 20V		4.70	5.30	V	1, 2, 3
R _{Line}	Line Regulation	$7V \le V_1 \le 25V, I_L = 200mA$		-50	50	mV	1
		$8V \le V_1 \le 25V, I_L = 200mA$		-50	50	mV	2, 3
		$8V \le V_1 \le 20V, I_L = 200mA$		-25	25	mV	1
				-40	40	mV	2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 500mA		-50	50	mV	1
				-100	100	mV	2, 3
		5mA ≤ I _L ≤ 200mA		-25	25	mV	1
				-50	50	mV	2, 3
IQ	Quiescent Current				7.0	mA	1, 2, 3
ΔI_Q	Quiescent Current Change	$8V \le V_1 \le 25V, I_L = 200mA$		-0.8	8.0	mA	1, 2, 3
		5mA ≤ I _L ≤ 350mA		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	$V_I - V_O = 7V$	(Note 4)	0.4	2.0	Α	1, 2, 3
V _{DO}	Dropout Voltage		(Note 5)		2.5	V	1
I _{os}	Short Circuit Current	V _I = 35V			1.0	Α	1, 2, 3

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_I = 10V, I_L = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$I_L = 125 \text{mA}, e_I = 1 V_{RMS},$ $f = 2.4 \text{KHz}, V_I = 10 V$		62		dB	4, 5, 6

LM140H-12 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 19V, I_1 = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{V_0}$	Output Voltage	V _I = 35V, I _L = 5mA		11.4	12.6	V	1
				11.5	12.5	V	1
		V _I = 15.5V		11.4	12.6	٧	1, 2, 3
		$V_{I} = 15.5V, I_{L} = 5mA$		11.4	12.6	٧	1, 2, 3
		$V_I = 27V, I_L = 5mA$		11.4	12.6	V	1, 2, 3
		V _I = 27V		11.4	12.6	V	1, 2, 3
R _{Line}	Line Regulation	14.5V ≤ V _I ≤ 30V, I _L = 200mA		-60	60	mV	1
		15.0V ≤ V _I ≤ 30V, I _L = 200mA		-120	120	mV	2, 3
		$16V \le V_1 \le 25V, I_1 = 200mA$		-30	30	mV	1
				-60	60	mV	2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 500mA		-120	120	mV	1
		_		-240	240	mV	2, 3
		5mA ≤ I _L ≤ 200mA		-60	60	mV	1
				-120	120	mV	2, 3
IQ	Quiescent Current				7.0	mA	1, 2, 3
Δl _Q	Quiescent Current Change	$14.5V \le V_1 \le 30V, I_L = 200mA$		-0.8	0.8	mA	1, 2, 3
		5mA ≤ I _L ≤ 350mA		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	$V_I - V_O = 7V$	(Note 4)	0.4	2.0	Α	1, 2, 3
$\overline{V_{DO}}$	Dropout Voltage		(Note 5)		2.5	V	1
I _{OS}	Short Circuit Current	V _I = 35V			1.0	Α	1, 2, 3

AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_{I} = 17V, I_{L} = 125mA,$		55		dB	4, 5, 6
		$e_l = 1V_{RMS}, f = 2.4KHz$					

LM140H-15 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 23V, I_1 = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{V_0}$	Output Voltage	V _I = 35V, I _L = 5mA		14.25	15.75	V	1
				14.40	15.60	V	1
		V _I = 18.5V		14.25	15.75	٧	1, 2, 3
		$V_{I} = 18.5V, I_{L} = 5mA$		14.25	15.75	V	1, 2, 3
		$V_I = 30V, I_L = 5mA$		14.25	15.75	V	1, 2, 3
		V _I = 30V		14.25	15.75	V	1, 2, 3
R _{Line}	Line Regulation	17.5V ≤ V _I ≤ 30V, I _L = 200mA		-60	60	mV	1
		$18.5V \le V_1 \le 30V, I_L = 200mA$		-120	120	mV	2, 3
		20V ≤ V _I ≤ 30V, I _L = 200mA		-30	30	mV	1
				-60	60	mV	2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 500mA		-150	150	mV	1
				-300	300	mV	2, 3
		5mA ≤ I _L ≤ 200mA		-75	75	mV	1
				-150	150	mV	2, 3
IQ	Quiescent Current				7.0	mA	1, 2, 3
ΔI_Q	Quiescent Current Change	$17.5V \le V_1 \le 30V, I_L = 200mA$		-0.8	0.8	mA	1, 2, 3
		5mA ≤ I _L ≤ 350mA		-0.5	0.5	mA	1, 2, 3
I _{Pk}	Peak Current	$V_I - V_O = 7V$	(Note 4)	0.4	2.0	Α	1, 2, 3
V _{DO}	Dropout Voltage		(Note 5)		2.5	V	1
I _{os}	Short Circuit Current	V _I = 35V			1.0	Α	1, 2, 3

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_1 = 23V$, $I_L = 350mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	V _I =20V, I _L =125mA,		54		dB	4, 5, 6
		$e_l=1V_{RMS}, f=2.4KHz$					

LM140K-5.0 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 10V, I_1 = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{I_Q}$	Quiescent Current	I _L = 1A			6.0	mA	1
					7.0	mA	2, 3
ΔQ	Quiescent Current Change	$I_L = 1A, 8V \le V_I \le 20mA$		-0.8	0.8	mA	1
		$I_L \le 500 \text{mA}, 8V \le V_I \le 25V$		-0.8	0.8	mA	1, 2, 3
		5mA, ≤ I _L ≤ 1.0A		-0.5	0.5	mA	1, 2, 3
V _O	Output Voltage			4.80	5.20	٧	1
		$V_1 = 8V$		4.75	5.25	V	1, 2, 3
		$V_I = 8V, I_L = 1A$		4.75	5.25	V	1, 2, 3
		V _I = 20V		4.75	5.25	V	1, 2, 3
		$V_1 = 20V, I_L = 1A$		4.75	5.25	V	1, 2, 3
R _{Line}	Line Regulation	$I_L = 500 \text{mA}, 7V \le V_I \le 25V$		-50	50	mV	1, 2, 3
		$I_L = 1A, 7.3V \le V_I \le 20V$		-50	50	mV	1
		$I_L = 1A, 8.0V \le V_I \le 20V$		-50	50	mV	2, 3
		$I_L = 1A, 8V \le V_I \le 12V$		-25	25	mV	1, 2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 1.5A		-50	50	mV	1
		5mA ≤ I _L ≤ 1.0A		-50	50	mV	2, 3
		250mA ≤ I _L ≤ 750mA		-25	25	mV	1
I _{os}	Current Limit			-4.0	-0.02	Α	1
		V _I = 35V		-2.0	-0.02	Α	1

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_I = 10V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$f = 120$ Hz, $I_L = 350$ mA,		68		dB	4
		$e_I = 1V_{RMS}$					

LM140K-12 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 19V, I_1 = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{I_Q}$	Quiescent Current	I _L = 1A			6.0	mA	1
					7.0	mA	2, 3
Δl _Q	Quiescent Current Change	$I_L = 1A, 15.5V \le V_I \le 27V$		-0.8	0.8	mA	1
		$I_L = 500 \text{mA } 15 \text{V} \le \text{V}_1 \le 30 \text{V}$		-0.8	0.8	mA	1, 2, 3
		5mA ≤ I _L ≤ 1A		-0.5	0.5	mA	1, 2, 3
V _O	Output Voltage			11.5	12.5	V	1
		V _I = 15.5V		11.4	12.6	V	1, 2, 3
		V _I = 15.5V, I _L = 1A		11.4	12.6	V	1, 2, 3
		V _I = 27V		11.4	12.6	V	1, 2, 3
		V _I = 27V, I _L = 1A		11.4	12.6	V	1, 2, 3
R _{Line}	Line Regulation	$I_L = 500 \text{mA}, 14.5 \text{V} \le V_I \le 25 \text{V}$		-120	120	mV	1, 2, 3
		$I_L = 1A, 14.6V \le V_I \le 27V$		-120	120	mV	1
		$I_L = 1A, 15.0V \le V_I \le 27V$		-120	120	mV	2, 3
		$I_L = 1A, 16V \le V_I \le 22V$		-60	60	mV	1, 2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 1.5A		-120	120	mV	1
		5mA ≤ I _L ≤ 1.0A		-120	120	mV	2, 3
		250mA ≤ I _L ≤ 750mA		-60	60	mV	1
I _{os}	Current Limit	V _I = 17V		-3.5	-0.02	Α	1
		V _I = 35V		-2.0	-0.02	Α	1

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_I = 19V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$f = 120$ Hz, $I_L = 350$ mA,		61		dB	4
		$e_{I} = 1V_{RMS}$					

LM140K-15 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

DC: $V_1 = 23V, I_1 = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
$\overline{I_Q}$	Quiescent Current	I _L = 1A			6.0	mA	1
					7.0	mA	2, 3
ΔI_Q	Quiescent Current Change	$I_{L} = 1A, 18.5V \le V_{I} \le 30V$		-0.8	0.8	mA	1
		$I_L = 500 \text{mA}, 18.5 \text{V} \le V_I \le 30 \text{V}$		-0.8	0.8	mA	2, 3
		5mA ≤ I _L ≤ 1A		-0.5	0.5	mA	1, 2, 3
V _O	Output Voltage			14.4	15.6	V	1
		V _I = 18.5V		14.25	15.75	V	1, 2, 3
		V _I = 18.5V, I _L = 1A		14.25	15.75	V	1, 2, 3
		V _I = 30V		14.25	15.75	V	1, 2, 3
		V _I = 30V, I _L = 1A		14.25	15.75	V	1, 2, 3
R _{Line}	Line Regulation	$I_L = 500 \text{mA}, 17.5 \text{V} \le V_I \le 30 \text{V}$		-150	150	mV	1
		$I_L = 500 \text{mA}, 18.5 \text{V} \le V_I \le 30 \text{V}$		-150	150	mV	2, 3
		$I_L = 1A, 17.7V \le V_I \le 30V$		-75	75	mV	1
		$I_L = 1A, 20V \le V_I \le 26V$		-75	75	mV	1, 2, 3
R _{Load}	Load Regulation	5mA ≤ I _L ≤ 1.5A		-150	150	mV	1
		5mA ≤ I _L ≤ 1.0A		-150	150	mV	2, 3
		250mA ≤ I _L ≤ 750mA		-75	75	mV	1
I _{os}	Current Limit	V _I = 20V		-3.5	-0.02	Α	1
		V _I =35V		-2.0	-0.02	Α	1

AC Parameters

The following conditions apply, unless otherwise specified.

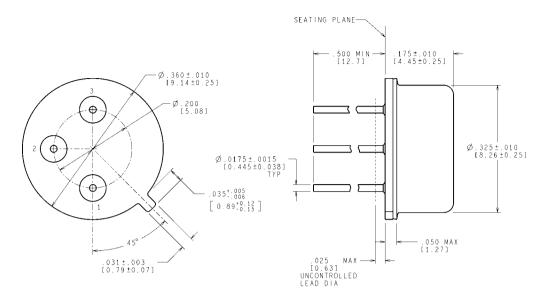
AC: $V_I = 23V$, $I_L = 5mA$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$f = 120$ Hz, $I_L = 350$ mA,		60		dB	4
		$e_I = 1V_{RMS}$					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, 100pF discharged through 1.5K Ω

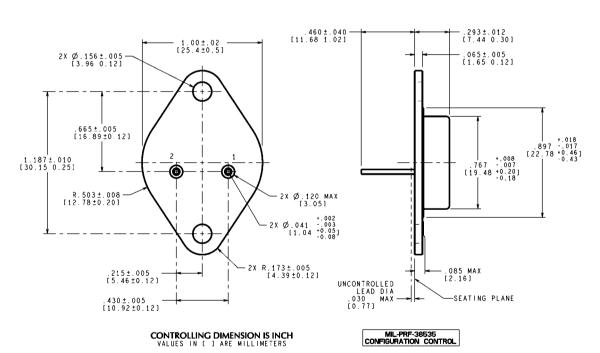

Note 4: V_O is set to 90% V_{Ref}

Note 5: $V_{DO} = V_I - V_O$ when V_O is 95% of V_{Ref} .

Revision History Section

Released	Revision	Section	Originator	Changes
02/21/06	Α	New Release, Corporate format	L. Lytle	6 MDS data sheets converted into one Corp.
				data sheet format. The drift tables were
				eliminated from the 883 section since it did not
				apply. MDS data sheets MNLM140-05H Rev
				0B0, MNLM140-05-K Rev. 0C0,
				MNLM140-12H Rev 0A0, MNLM140-12K Rev
				0B0, MNLM140-15H Rev 0A0, and
				MNLM140-15K Rev 0B0 will be archived.

Physical Dimensions inches (millimeters) unless otherwise noted



CONTROLLING DIMENSION IS INCH

MIL-PRF-38535 CONFIGURATION CONTROL

H03A (Rev D)

Metal Can TO-39 (H) NS Package Number H03A

Steel Metal Can Package (K) NS Package Number K02C

K02C (Rev E)

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench		
Audio	www.national.com/audio	Analog University	www.national.com/AU		
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes		
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts		
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green		
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging		
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality		
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns		
Power Management	www.national.com/power	Feedback	www.national.com/feedback		
Switching Regulators	www.national.com/switchers				
LDOs	www.national.com/ldo				
LED Lighting	www.national.com/led				
PowerWise	www.national.com/powerwise				
Serial Digital Interface (SDI)	www.national.com/sdi				
Temperature Sensors	www.national.com/tempsensors				
Wireless (PLL/VCO)	www.national.com/wireless				

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: new.feedback@nsc.com

Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated