

HD3SS6126

SLAS975 -NOVEMBER 2013

USB 3.0 and USB 2.0 Differential Switch 2:1/1:2 MUX/DEMUX

Check for Samples: HD3SS6126

FEATURES

- Ideal for USB Applications
 - Signal Switch for USB 3.0 (SuperSpeed USB and USB 2.0 HS/FS/LS)
- Three Bi-directional Differential Pair Channel MUX/DEMUX Switch Also Suitable for DisplayPort, PCIe Gen1/2/3, SATA 1.5/3/6G, SAS 1.5/3/6G and XAUI Applications
- Supports Data Rates up to 10 Gbps on Highbandwidth Path (SS)
- VCC Operating Range 3.3V ± 10%
- Wide –3dB Differential BW of Over 10 GHz on High-bandwidth Path (SS)
- Utilizes a unique adaptation method to maintain a constant channel impedance over the supported common mode voltage range
- Excellent High-bandwidth Path Dynamic Characteristics (at 2.5 GHz)
 - Crosstalk = -35 dB
 - Isolation = -23 dB
 - Insertion Loss = –1.1 dB
 - Return Loss = -11 dB
- Small 3.5mm x 9 mm, 42-Pin WQFN Package (RUA)
- Active Mode Power = 8 mW

APPLICATIONS

- Desktop PCs
- Notebook PCs
- Tablets
- Docking Station
- Telecommunications
- Televisions

DESCRIPTION

The HD3SS6126 is a high speed passive switch that is designed for USB applications to route both SuperSpeed USB RX and TX and USB 2.0 DP/DM signals from a source to two destination or viceversa. It can also be used for DisplayPort, PCI Express, SATA, SAS, and XAUI applications. The HD3SS6126 can be used in either sink side or source side applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

HD3SS6126

SLAS975 -NOVEMBER 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

FUNCTIONAL DIAGRAM

TRUTH TABLE USB 3.0 SuperSpeed USB

SEL	USB 3.0 Port Selection							
	SSA0/1	SSB0/1	SSC0/1					
0	To/From SSB0/1	To/From SSA0/1	Off					
1	To/From SSC0/1	Off	To/From SSA0/1					

TRUTH TABLE USB 2.0 High-speed/Full-speed/Low-speed Path

HS_OE	CEI	USB 2.0 Port Selection					
	JEL	HSA	HSB	HSC			
0	0	To/From HSB	To/From HSA	Off			
0	1	To/From HSC	Off	To/From HSA			
1	Х	Off	Off	Off			

HD3SS6126

SLAS975 -NOVEMBER 2013

www.ti.com

ISTRUMENTS

EXAS

PIN	FU	JNC	τιοι	NS
-----	----	------------	------	----

PI	N	1/0	DECODIDION
NAME	NO.	1/0	DESCRIPTION
GND	10, 14, 17, 19, 21	Supply	Ground
HSA(p)	8	I/O	Port A USB 2.0 positive signal
HSA(n)	7		Port A USB 2.0 negative signal
HSB(p)	31	I/O	Port B USB 2.0 positive signal
HSB(n)	32		Port B USB 2.0 negative signal
HSC(p)	33	I/O	Port C USB 2.0 positive signal
HSC(n)	34		Port C USB 2.0 negative signal
HS_OE	6	I (Control)	Output Enable H = Power Down L = Normal Operation
NC	1, 2, 3, 4, 5, 18, 35, 36, 37, 38, 39, 40, 41, 42		Electrically No Connection
SEL	9	I (Control)	USB 3.0/2.0 Port Selection Control Pins
SSA0(p)	11	I/O	Port A, Channel 0, USB 3.0 Positive Signal
SSA0(n)	12		Port A, Channel 0, USB 3.0 Negative Signal
SSA1(p)	15	I/O	Port A, Channel 1, USB 3.0 Positive Signal
SSA1(n)	16		Port A, Channel 1, USB 3.0 Negative Signal
SSB0(p)	29	I/O	Port B, Channel 0, USB 3.0 Positive Signal
SSB0(n)	28		Port B, Channel 0, USB 3.0 Negative Signal
SSB1(p)	27	I/O	Port B, Channel 1, USB 3.0 Positive Signal
SSB1(n)	26		Port B, Channel 1, USB 3.0 Negative Signal
SSC0(p)	25	I/O	Port C, Channel 0, USB 3.0 Positive Signal
SSC0(n)	24		Port C, Channel 0, USB 3.0 Negative Signal
SSC1(p)	23	I/O	Port C, Channel 1, USB 3.0 Positive Signal
SSC1(n)	22		Port C, Channel 1, USB 3.0 Negative Signal
VDD	13, 20, 30	Supply	3.3V power supply voltage

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
Supply voltage range ⁽²⁾ , V _{DD}		-0.3	4	V
Voltage range	Differential I/O, High-bandwidth signal path: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	-0.5	4	
	Differential I/O, Low-bandwidth signal path: HSAp/n), HSB(p/n), HSC(p/n)		7	V
	Control pin and single ended I/O	-0.3	V_{DD} + 0.3	
Electroptotic disphares	Human body model ⁽³⁾⁽⁴⁾		±2,000	N/
Electrostatic discharge	Charged-device model ⁽⁵⁾		±500	v
Continuous power dissipation			mal Informa	tion Table

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to network ground terminal. (2)

(3)

(4)

Tested in accordance with JEDEC Standard 22, Test Method A114-B Tested in accordance with JEDEC Standard 22, Test Method C101-A Tested in accordance with JEDEC Standard 22, Test Method A115-A (5)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA}	Junction-to-ambient thermal resistance			53.8		
θ_{JB}	Junction-to-board thermal resistance			27.4		
θ_{JCT}	Junction-to-case-Top thermal resistance			38.2		°C/W
Ψ_{JB}	Junction-to-board thermal resistance Metric	High-K board ⁽¹⁾		27.3		
Ψ_{JT}	Junction-to-case-Top thermal resistance Metric	High-K board ⁽¹⁾		5.6		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953A, *IC Package Thermal Metrics*. Test conditions for Ψ_{JB} and Ψ_{JT} are clarified in the application report.

RECOMMENDED OPERATING CONDITIONS

Typical values for all parameters are at V_{CC} = 3.3 V and T_A = 25°C. All temp limits are specified by design.

			MIN	TYP	MAX	UNIT
V _{DD}	Supply voltage		3.0	3.3	3.6	V
VIH	Input high voltage	Control Pins	2.0		V_{DD}	V
V _{IL}	Input low voltage	Control Pins	-0.1		0.8	V
V _{I/O_Diff}	Differential voltage	Switch I/O differential voltage for High-bandwidth signal path only: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	0		1.8	V _{p-p}
V _{I/O_CM}	Common voltage	Switch I/O common mode voltage for High-bandwidth signal path only: SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n)	0		2.0	V
T _A	Operating free-air temp	perature	0		70	°C

ELECTRICAL CHARACTERISTICS – DEVICE PARAMETERS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
I _{CC}	Supply current	V_{DD} = 3.6 V, SEL = V_{DD} /GND; \overline{OE} = GND; Outputs Floating	2.4	3	mA
SEL			-		
I _{IH}	Input high current	$V_{DD} = 3.6V, V_{IN} = V_{DD}$		95	μA
IIL	Input high current	$V_{DD} = 3.6V, V_{IN} = GND$		1	μA
HS_OE					
I _{IH}	Input high current	$V_{DD} = 3.6V, \ V_{IN} = V_{DD}$		1	μA
I _{IL}	Input high current	$V_{DD} = 3.6V, V_{IN} = GND$	1		μA
SSA0/	I, SSB0/1, SSC0/1				
	High-impedance leakage	V_{DD} = 3.6V, V_{IN} = 2V, V_{OUT} = 2V, (I _{LK} on open outputs Port B and C)		130	μΑ
ILK	I _{LK} current	V_{DD} = 3.6V, V_{IN} = 2V, V_{OUT} = 2V, (I _{LK} on open outputs Port A)		4	μA
HSA, H	ISB, HSC			·	
I _{LK}	High-impedance leakage current	$V_{DD} = 3.6V, V_{IN} = 0V, V_{OUT} = 0V \text{ to } 4V,$ HS_OE_IN = GND		1	μA

HD3SS6126

SLAS975 -NOVEMBER 2013

ELECTRICAL CHARACTERISTICS – SIGNAL SWITCH PARAMETERS

under recommended operating conditions; R_L , $R_{SC} = 50 \Omega$, $C_L = 10 pF$ (unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
SSA0/1(p/n),	SSB0/1(p/n), SSC0/1(p/n) Signal Pa	th					
t _{on}	SEL-to-Switch ton			70	250		
t _{off}	SEL-to-Switch toff	R_{SC} and $R_{L} = 50 \Omega$, See Figure 1		70	250	ns	
t _{PD}	Switch propagation delay	R_{SC} and R_{L} = 50 Ω , See Figure 3			85	ps	
t _{SK(O)}	Inter-pair output skew (CH-CH)				20	ps	
t _{SK(b-b)}	Intra-Pair Output Skew (bit-bit)	R_{SC} and $R_{L} = 50 \Omega$, See Figure 3			8	ps	
C _{ON}	Outputs ON capacitance	V _{IN} = 0 V, Outputs Open, Switch ON		1.5		pF	
C _{OFF}	Outputs OFF capacitance	V _{IN} = 0V, Outputs Open, Switch OFF		1		pF	
R _{ON}	Output ON resistance	$V_{DD} = 3.3V, V_{CM} = 0V - 2V,$ $I_{O} = -8 \text{ mA}$		5	8	Ω	
ΔR _{ON}	ON resistance match between pairs of the same channel	$V_{DD} = 3.3 \text{ V}; 0 \text{ V} \le V_{IN} \le 2 \text{ V};$ $I_O = -8 \text{ mA}$			0.7	Ω	
R _{FLAT_ON}	ON resistance flatness ($R_{ON(MAX)}$ - $R_{ON(MIN)}$)	$V_{DD} = 3.3 \text{ V}; -0 \text{ V} \le V_{IN} \le 2 \text{ V}$			1.15	Ω	
		f = 0.3 MHz		-25		ps pF pF 3 Ω 7 Ω 5 Ω 6 dB - - 0 7 7 ns	
$\begin{array}{c c c c c c c c } SSA0/1(p/n), S \\ t_{on} & S \\ t_{off} & S \\ t_{PD} & S \\ t_{SK(O)} & Ir \\ t_{SK(O)} & Ir \\ t_{SK(O-b)} & Ir \\ C_{ON} & C \\ C_{OFF} & C \\ R_{ON} & C \\ C_{OFF} & C \\ R_{ON} & C \\ AR_{ON} & C \\ AR_{ON} & C \\ AR_{ON} & C \\ R_{FLAT_ON} & R \\ R_{L} & C \\ C_{O} \\ R_{FLAT_ON} & R \\ R_{L} & C \\ C_{O} \\ R_{FLAT_ON} & C \\ R_{ON} & C \\ C_{O} \\ R_{FLAT_ON} & S \\ R_{C} \\ R_{ON} & C \\ S \\ C_{OFF} & C \\ R_{ON} & C \\ C_{OFF} & C \\ R_{ON} & C \\ C_{O} \\ R_{ON} & C \\ C_{O} \\ R_{ON} & C \\ C_{O} \\ C_{O} \\ R_{ON} & C \\ C_{O} \\ C_{O} \\ R_{ON} & C \\ C_{O} \\ C_{O}$	Differential return loss ($V_{CM} = 0 V$)	f = 2.5 GHz		-11		dB	
		f = 4 GHz		-11			
		f = 0.3 MHz		-85		dB	
SSA0/1 (p/n), s t_{on} t_off t_off t_SK(D) t_SK(D) CON COFF RON ΔRON ΔRON RFLAT_ON IL BW HSA(p/n), HSI tOIRR IL BW HSA(p/n), HSI tOFF tON TOFF TON TOFF TON TOFF RON CON CON <td>Differential crosstalk ($V_{CM} = 0 V$)</td> <td colspan="3">Differential crosstalk ($V_{CM} = 0 V$) f = 2.5 GHz</td> <td></td> <td>dB</td>	Differential crosstalk ($V_{CM} = 0 V$)	Differential crosstalk ($V_{CM} = 0 V$) f = 2.5 GHz				dB	
		f = 4 GHz		-33			
		f = 0.3 MHz		-85			
O _{IRR}	Differential off-isolation ($V_{CM} = 0 V$)	f = 2.5 GHz -23				dB	
		f = 4 GHz		-21			
	Differential incention loss ()/	f = 0.3 MHz		-0.43			
	Differential insertion loss ($V_{CM} = 0$ V)	Iterential insertion loss ($V_{CM} = 0$ f = 2.5 GHz-1.1f = 4 GHz-1.3		-1.1		dB	
	,			-1.3			
BW	Bandwidth	At –3 dB		10		GHz	
HSA(p/n), H	SB(p/n), HSC(p/n) SIGNAL PATH						
tau	SEL to Switch t _{ON}	See Figure 2			30		
'ON	HS_OE to Switch t _{ON}				17	ns	
t	SEL to Switch t _{OFF}	Soo Figuro 2			12		
'OFF	HS_OE to Switch t _{OFF}				10	$\begin{array}{c c c c c c } 250 & ns & 250 & 2$	
t _{PD} ⁽¹⁾	Switch propagation delay	See Figure 3		250		ps	
t _{SK(O)} ⁽¹⁾	Inter-pair output skew (CH-CH)			100	200	ne	
t _{SK(P)} ⁽¹⁾	Intra-Pair Output Skew (bit-bit)			100	200	μ3	
C _{ON}	Outputs ON capacitance	V _{IN} = 0 V, Outputs Open, Switch ON		6	7.5	pF	
C _{OFF}	Outputs OFF capacitance	$V_{IN} = 0 V$, Outputs Open, Switch OFF		3.5	6	pF	
Rou	Output ON resistance	$V_{DD} = 3 V, V_{IN} = 0 V,$ $I_O = 30 mA$		3	6	0	
' 'ON	Cuput On Teololance	$V_{DD} = 3 V, V_{IN} = 2.4 V,$ $I_{O} = 30 mA$		3.4	6	22	
ARou	ON resistance match between pairs	$V_{DD} = 3 \text{ V}; V_{IN} = 0 \text{ V};$ $I_O = 30 \text{ mA}$		0.2		0	
VON	of the same channel	$V_{DD} = 3 V; V_{IN} = 1.7 V;$ $I_{O} = -15 mA$		0.2		22	

ELECTRICAL CHARACTERISTICS – SIGNAL SWITCH PARAMETERS (continued)

under recommended operating conditions; R_L , $R_{SC} = 50 \Omega$, $C_L = 10 pF$ (unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
SSA0/1(p/n), SSB0/1(p/n), SSC0/1(p/n) Signal Path							
R _{FLAT_ON} ON R ₀	ON resistance flatness (R _{ON(MAX)} -	$V_{DD} = 3 \text{ V}; V_{IN} = 0 \text{ V};$ $I_O = 30 \text{ mA}$		1		0	
	R _{ON(MIN})	$V_{DD} = 3 \text{ V}; \text{ V}_{IN} = 1.7 \text{ V};$ $I_{O} = -15 \text{ mA}$	1		Ω		
X _{TALK}	Differential crosstalk ($V_{CM} = 0 V$)	$R_L = 50 \Omega$, f = 250 MHz		-40		dB	
O _{IRR}	Differential off-isolation ($V_{CM} = 0 V$)	$R_{L} = 50 \ \Omega, f = 250 \ MHz$		-41		dB	
BW	Bandwidth	R _L = 50 Ω		0.9		GHz	

TEST TIMING DIAGRAMS

Figure 1. Select to Switch toon and toff

⁽¹⁾ All input pulses are supplied by generators have the following characteristics: PRR \leq 10 MHZ, Z_O = 50 Ω , t_r< 5 ns, t_f< 5 ns. ⁽²⁾ C_L includes probe and jig capacitance.

Figure 2. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

- 1. Measurements based on an ideal input with zero intra-pair skew on the input, i.e. the input at A to B/C or the input at B/C to A
- 2. Inter-pair skew is measured from lane to lane on the same channel, e.g. C0 to C1
- 3. Intra-pair skew is defined as the relative difference from the p and n signals of a single lane

20-Nov-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
HD3SS6126RUAR	ACTIVE	WQFN	RUA	42	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	HD3SS6126	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

20-Nov-2013

PACKAGE MATERIALS INFORMATION

A0 B0 K0 P1 W Pin1

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter	Reel Width	ľ

	Туре	Drawing			Diameter (mm)	Width W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
HD3SS6126RUAR	WQFN	RUA	42	3000	330.0	16.4	3.8	9.3	1.0	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Nov-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
HD3SS6126RUAR	WQFN	RUA	42	3000	367.0	367.0	38.0

MECHANICAL DATA

- Β. This drawing is subject to change without notice.
 - QFN (Quad Flatpack No-Lead) package configuration. C.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. Ε.

RUA (R-PWQFN-N42)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated