

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, wen if such claim alleges that ON Semiconductor was negligent regarding the des



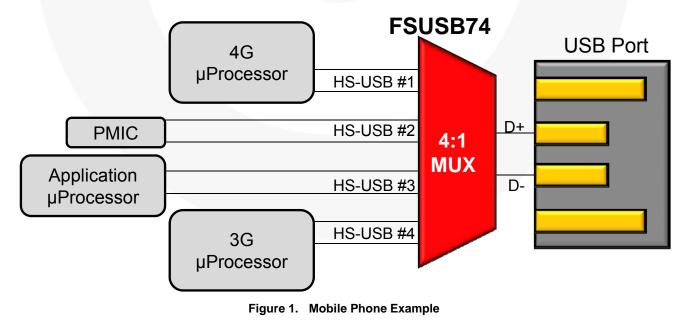


# FSUSB74 4:1 High-Speed USB Multiplexer/Switch

#### Features

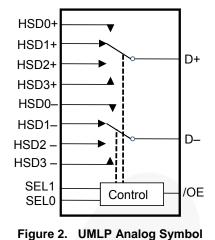
| Switch Type          | 4:1                                                                                              |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|
| USB                  | USB 2.0 High–Speed Compliant<br>USB 2.0 Full-Speed Compliant                                     |  |
| R <sub>ON</sub>      | 6.5Ω                                                                                             |  |
| C <sub>ON</sub>      | 7.5pF                                                                                            |  |
| ESD (IEC61000-4-2)   | 15kV (Air)<br>8kV (Contact)                                                                      |  |
| V <sub>cc</sub>      | 2.7 to 4.4V                                                                                      |  |
|                      | <1µA                                                                                             |  |
| ICCACT               | 9μΑ                                                                                              |  |
| Package              | 16- Lead UMLP 1.80 x 2.60 x<br>0.55mm, 0.40mm Pitch<br>16-Lead MLP 3 x 3 x 0.7mm,<br>0.5mm Pitch |  |
| Ordering Information | FSUSB74UMX (UMLP)<br>FSUSB74MPX (MLP)                                                            |  |

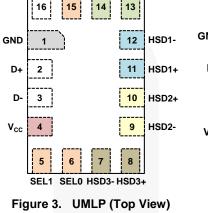
# Description


The FSUSB74 is a bi-directional, low-power, high-speed USB 2.0 4:1 MUX. It is optimized for switching from four high-speed (480Mbps) sources or any combination of high-speed and full-/low-speed USB/UART sources to one USB 2.0 connector.

### **Applications**

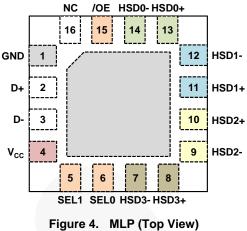
- MP3 Portable Media Players
- Cellular Phones, Smart Phones
- Netbooks, Mobile Internet Devices (MID)


### **Related Resources**


- For samples and questions, please contact: <u>Analog.Switch@fairchildsemi.com</u>.
- FSUSB74 Demonstration Board
- FSUSB74 Evaluation Board



# Typical Application


## **Pin Configurations**





/OE HSD0- HSD0+

NC



#### **Pin Descriptions**

| Pin # | Name            | Туре                                         | Description                                          |  |
|-------|-----------------|----------------------------------------------|------------------------------------------------------|--|
| 1     | GND             | Ground                                       | Ground                                               |  |
| 2     | D+              | I/O                                          | D+ common port (HS or FS USB)                        |  |
| 3     | D-              | I/O                                          | D- common port (HS or FS USB)                        |  |
| 4     | V <sub>CC</sub> | Power Supply                                 | Supply Voltage                                       |  |
| 5     | SEL1            | Input                                        | Path Selection Control Input (see truth table below) |  |
| 6     | SEL0            | Input                                        | Path Selection Control Input (see truth table below) |  |
| 7     | HSD3-           | I/O                                          | D- from fourth source path (HS or FS USB)            |  |
| 8     | HSD3+           | I/O                                          | D+ from fourth source path (HS or FS USB)            |  |
| 9     | HSD2-           | I/O                                          | D- from third source path (HS or FS USB)             |  |
| 10    | HSD2+           | I/O                                          | D+ from third source path (HS or FS USB)             |  |
| 11    | HSD1+           | I/O                                          | D+ from second source path (HS or FS USB)            |  |
| 12    | HSD1-           | I/O                                          | D- from second source path (HS or FS USB)            |  |
| 13    | HSD0+           | I/O D+ from first source path (HS or FS USB) |                                                      |  |
| 14    | HSD0-           | I/O                                          | D- from first source path (HS or FS USB)             |  |
| 15    | /OE             | Input                                        | Enable Control Input (see truth table below)         |  |
| 16    | NC              |                                              | No Connect                                           |  |

#### **Truth Table**

| /OE | SEL1 | SEL0 | Function                 |
|-----|------|------|--------------------------|
| 1   | Х    | Х    | D+, D- Switch Paths Open |
| 0   | 0    | 0    | D+=HSD0+, D-=HSD0-       |
| 0   | 0    | 1    | D+=HSD1+, D-=HSD1-       |
| 0   | 1    | 0    | D+=HSD2+, D-=HSD2-       |
| 0   | 1    | 1    | D+=HSD3+, D-=HSD3-       |

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol             | Parameter                                               |                | Min.  | Max.            | Unit  |
|--------------------|---------------------------------------------------------|----------------|-------|-----------------|-------|
| V <sub>CC</sub>    | Supply Voltage                                          |                | -0.5  | 5.25            | V     |
| V <sub>CNTRL</sub> | DC Input Voltage (SEL1, SEL0, /OE, SELS) <sup>(1)</sup> |                | -0.50 | V <sub>CC</sub> | V     |
| V <sub>SW</sub>    | DC Switch I/O Voltage <sup>(1)</sup>                    |                | -0.50 | 5.25            | V     |
| l <sub>iK</sub>    | DC Input Diode Current                                  |                | -50   |                 | mA    |
| T <sub>STG</sub>   | Storage Temperature                                     |                | -65   | +150            | °C    |
| MSL                | Moisture Sensitivity Level (JEDEC J-STD-020A)           |                |       | 1               | Level |
|                    | IFC61000.4.2 System on LISB connector sing D.L. & D.    | Air Gap        | 15    |                 |       |
|                    | IEC61000-4-2 System on USB connector pins D+ & D-       | Contact        | 8     |                 |       |
| ESD                |                                                         | D+,D- to GND   | 6     |                 | kV    |
|                    | Human Body Model, JEDEC: JESD22-A114                    | Power to GND   | 12    |                 |       |
|                    |                                                         | All Other Pins | 2     |                 |       |

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

### **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol                            | Parameter                                         | Min. | Max. | Unit |
|-----------------------------------|---------------------------------------------------|------|------|------|
| V <sub>cc</sub>                   | Supply Voltage                                    | 2.5  | 4.4  | V    |
| V <sub>CNTRL</sub> <sup>(2)</sup> | Control Input Voltage (SEL1, SEL0, /OE, and SELS) | 0    | Vcc  | V    |
| V <sub>SW</sub>                   | Switch I/O Voltage                                | -0.5 | 4.4  | V    |
| T <sub>A</sub>                    | Operating Temperature                             | -40  | +85  | °C   |

Note:

2. The control input must be held HIGH or LOW; it must not float.

# **DC Electrical Characteristics**

All typical values are for  $V_{CC}$ =3.3V at 25°C unless otherwise specified.

| Symbol                         | Parameter                                    | Conditions                                                                 |                     | T <sub>A</sub> =- 40°C to +85°C |      |      | Unit |
|--------------------------------|----------------------------------------------|----------------------------------------------------------------------------|---------------------|---------------------------------|------|------|------|
| Symbol                         | Parameter                                    | Conditions                                                                 | V <sub>cc</sub> (V) | Min.                            | Тур. | Max. | Unit |
| R <sub>ON</sub> <sup>(3)</sup> | HS Switch On Resistance                      | $V_{SW}$ =0.4V, I <sub>ON</sub> =-8mA, Figure 5                            | 3.3                 |                                 | 6.5  | 9.0  | Ω    |
| $\Delta R_{ON}^{(3)}$          | HS Delta Ron <sup>(4)</sup>                  | V <sub>SW</sub> =0.4V, I <sub>ON</sub> =-8mA                               | 3.3                 |                                 | 0.5  |      | Ω    |
| l <sub>in</sub>                | Control Input Leakage                        | All Combinations of /OE, SEL1 & SEL0 in the Truth Table $(1=V_{CC}, 0=0V)$ | 4.4                 | -1                              |      | 1    | μA   |
| I <sub>OZ</sub>                | Off State Leakage                            | $0 \le Dn$ , HSD0n, HSD1n, HSD2n, HSD3n $\le 4.4V$                         | 4.4                 | -1                              |      | 1    | μA   |
| I <sub>OFF</sub>               | Power-Off Leakage Current<br>(All I/O Ports) | $V_{SW}$ =0V to 4.4V, $V_{CC}$ =0V, Figure 6                               | 0                   | -1                              |      | 1    | μA   |
| I <sub>CCSLP</sub>             | Sleep Mode Supply Current                    | /OE=V <sub>CC</sub>                                                        | 4.4                 |                                 |      | 1    | μA   |
| I <sub>CCACT</sub>             | Active Mode Supply Current                   | All Active Modes in Truth Table                                            | 4.4                 |                                 | 9    | 18   | μA   |
|                                | Increase in Icc Current per                  | V <sub>CNTRL</sub> =1.8V                                                   | 4.4                 |                                 | 3.3  | 4.0  | μA   |
| ICCT                           | Control Input and V <sub>CC</sub>            | V <sub>CNTRL</sub> =1.2V                                                   | 4.4                 |                                 | 4.9  | 6.0  | μA   |
| VIK                            | Clamp Diode Voltage                          | I <sub>IN</sub> =-18mA                                                     | 2.5                 |                                 |      | -1.2 | V    |
| V <sub>IH</sub>                | Control Input Voltage High                   | SEL1, SEL0, /OE                                                            | 2.5 to 4.4          | 1.0                             |      |      | V    |
| VIL                            | Control Input Voltage Low                    | SEL1, SEL0, /OE                                                            | 2.5 to 4.4          |                                 |      | 0.35 | V    |

Notes:

3. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).

4. Guaranteed by characterization.

Unit

μs

ns

ns

ns

μs

dB

dB

ps

ps

# **AC Electrical Characteristics**

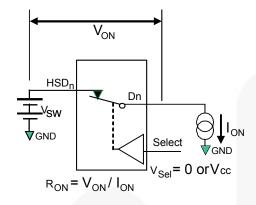
| Symbol             | Parameter                                                                                        | Conditions                                                                              |                     | T <sub>A</sub> =- 40°C to +85°C |      |      |
|--------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|---------------------------------|------|------|
| Symbol             |                                                                                                  |                                                                                         | V <sub>cc</sub> (V) | Min.                            | Тур. | Max. |
| t <sub>on</sub>    | Turn-On Time when Switching<br>from One USB Path (or Disabled<br>i.e. /OE=1) to Another USB Path | $R_L$ =50 $\Omega$ , $C_L$ =35pF, $V_{SW}$ =0.8V, Figure 7, Figure 8                    | 2.5 to 4.4          | 126                             |      | 400  |
| t <sub>OFF</sub>   | Turn-Off Time, Turning Off Any of the USB Paths                                                  | $R_L$ =50 $\Omega$ , C <sub>L</sub> =35pF, V <sub>SW</sub> =0.8V,<br>Figure 7, Figure 8 | 2.5 to 4.4          |                                 |      | 80   |
| t <sub>PD</sub>    | Propagation Delay <sup>(5)</sup>                                                                 | $C_L$ =5pF, R <sub>L</sub> =50 $\Omega$ , Figure 7, Figure 9                            | 3.3                 |                                 | 0.25 |      |
| t <sub>RF</sub>    | Slow Turn-On/Off Switch Paths <sup>(5)</sup>                                                     | $C_L$ =5pF, Dn at 0V or 3.6V, 40.5 $\Omega$ in series with switch 10% to 90%            | 3.3                 |                                 | 4.5  |      |
| t <sub>BBM</sub>   | Break-Before-Make Time <sup>(5)</sup>                                                            | $R_L$ =50 $\Omega$ , $C_L$ =35pF, $V_{SW1}$ = $V_{SW2}$ =0.8V, Figure 11                | 2.5 to 4.4          | 126                             |      | 400  |
| O <sub>IRR</sub>   | Off Isolation <sup>(5)</sup>                                                                     | $R_L$ =50 $\Omega$ , f=240MHz, Figure 13                                                | 2.5 to 4.4          |                                 | -40  |      |
| Xtalk              | Channel-to-Channel Crosstalk <sup>(5)</sup>                                                      | $R_L$ =50 $\Omega$ , f=240MHz, Figure 14                                                | 2.5 to 4.4          |                                 | -40  |      |
| t <sub>SK(P)</sub> | Pulse Skew <sup>(5)</sup>                                                                        | $V_{SW}$ =0.2Vdiff <sub>PP</sub> , Figure 10, C <sub>L</sub> =5pF                       | 2.5 to 4.4          |                                 | 25   |      |
| t <sub>sk(I)</sub> | Skew Between Differential<br>Signals Within a Pair <sup>(5)</sup>                                | $V_{SW}$ =0.2Vdiff <sub>PP</sub> , Figure 10, C <sub>L</sub> =5pF                       | 2.5 to 4.4          |                                 | 25   |      |

All typical values are for V<sub>CC</sub>=3.3V at T<sub>A</sub>=25°C unless otherwise specified.

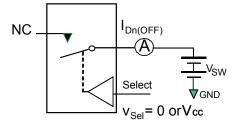
Note:

5. Guaranteed by characterization.

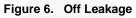
## **Capacitance Characteristics**

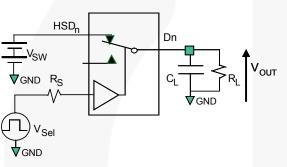

All typical values are for  $V_{CC}$ =3.3V at T<sub>A</sub>=25°C unless otherwise specified.

| Symbol           | Parameter                                                    | Conditions                                          | V <sub>cc</sub> (V) | Typical | Unit |
|------------------|--------------------------------------------------------------|-----------------------------------------------------|---------------------|---------|------|
| CIN              | Input Capacitance <sup>(6)</sup>                             |                                                     | 0                   | 3       |      |
| C <sub>ON</sub>  | D+/D- On Capacitance <sup>(6)</sup>                          | Any Switch Path Enabled, f=1MHz, Figure 16          | 3.3                 | 7.5     | pF   |
| C <sub>OFF</sub> | HSD0n, HSD1n, HSD2n, HSD3n<br>Off Capacitance <sup>(6)</sup> | If $V_{CC}$ =3.3V, then /OE=3.3V; f=1MHz, Figure 15 | 0 or 3.3            | 2.2     | μ,   |

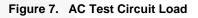

Note:

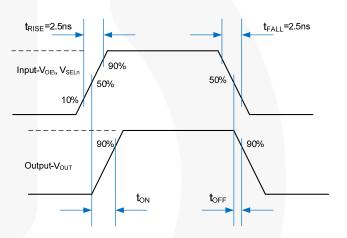
6. Guaranteed by characterization.


### **Test Diagrams**

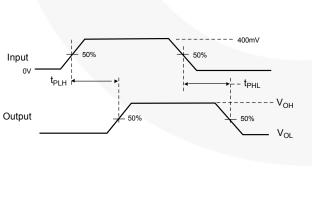




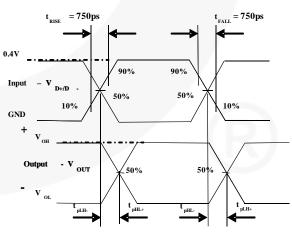



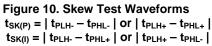


\*\*Each switch port is tested separately

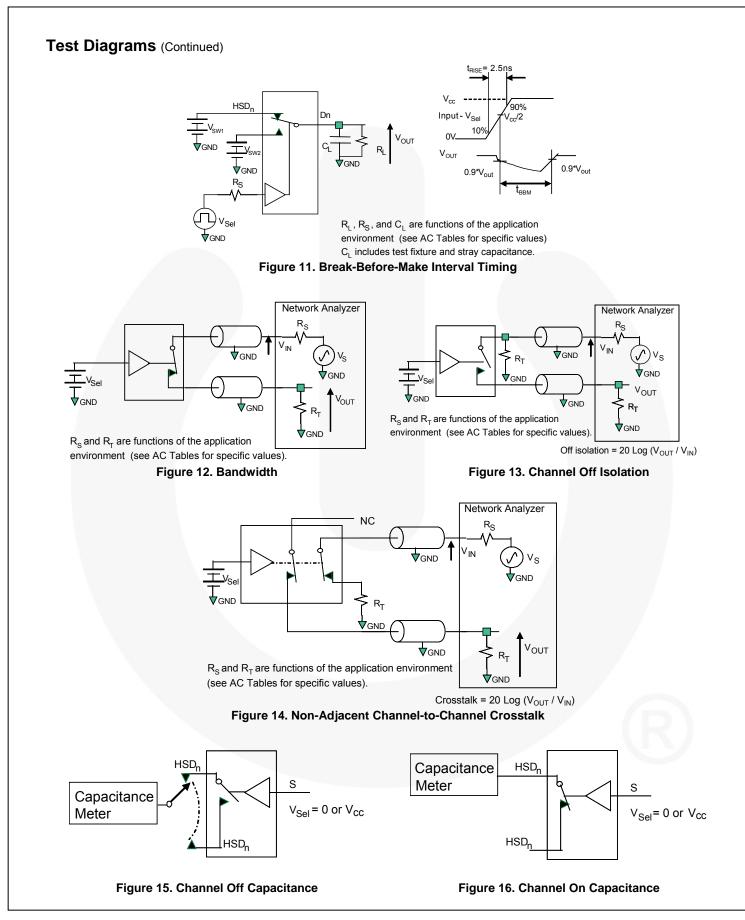




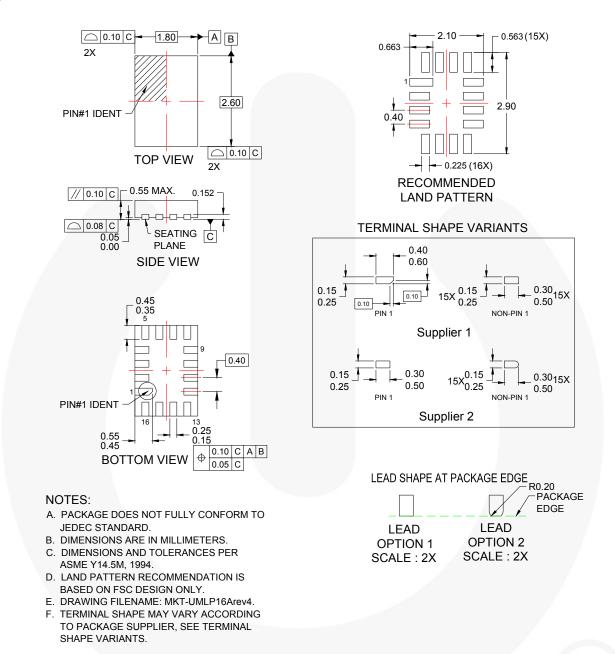

 $R_L$ ,  $R_S$ , and  $C_L$  are functions of the application environment (see AC Tables for specific values)  $C_L$  includes test fixture and stray capacitance.





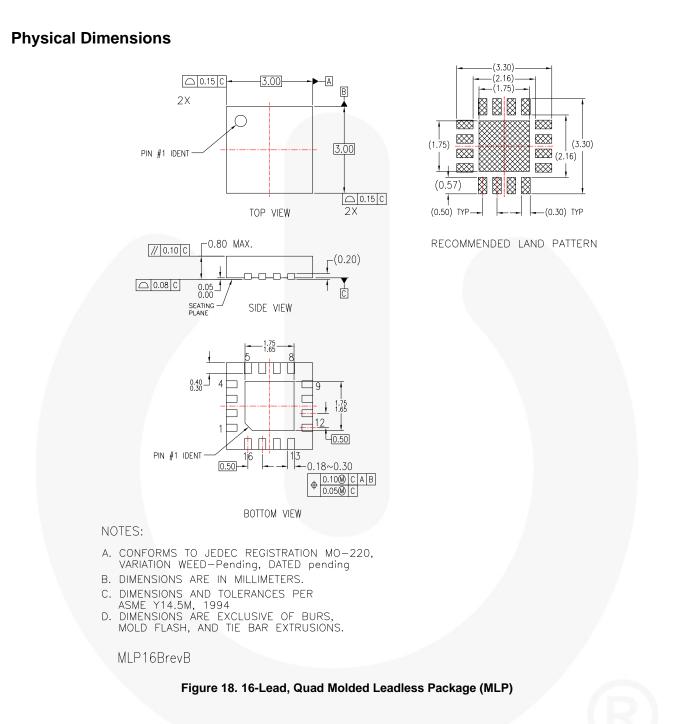










## **Physical Dimensions**




#### Figure 17. 16-Pin, Ultrathin Molded Leadless Package (UMLP)

| Order Number Operating Temperature Range Package |             | Package Description                                      | Packing Method |
|--------------------------------------------------|-------------|----------------------------------------------------------|----------------|
| FSUSB74UMX                                       | -40 to 85°C | 16-Terminal, Ultrathin Molded Leadless<br>Package (UMLP) | Tape & Reel    |

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.



| Order Number | rder Number Operating Temperature Range Package Description |                                                            | Packing Method |
|--------------|-------------------------------------------------------------|------------------------------------------------------------|----------------|
| FSUSB74MPX   | -40 to 85°C                                                 | 16-Lead, Quad, Molded Leadless Package<br>(MLP), 3mm x 3mm | Tape & Reel    |

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

#### SEMICONDUCTOR TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool™ F-PFS™ PowerTrench® PowerXS™ AccuPower<sup>TN</sup> FRFET® AX-CAPTM\* Global Power Resource<sup>SM</sup> Programmable Active Droop™ GreenBridge™ OFET **BitSiC™** Green FPS™ OSTM Build it Now™ Green FPS™ e-Series™ Ouiet Series™ CorePLUS™ RapidConfigure™ CorePOWER™ Gmax™ CROSSVOLT™ GTO™

IntelliMAX™

MegaBuck™

**MicroFET™** 

MicroPak™

MicroPak2™

Miller Drive\*

Motion Max™

mWSaver™

**OptoHiT™** 

Motion-SPM™

**OPTOLOGIC®** 

**OPTOPLANAR®** 

**ISOPLANAR™** 

and Better

MICROCOUPLER<sup>TM</sup>

Making Small Speakers Sound Louder

 $\bigcirc$ 

SYSTEM GENERAL®\*

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM STEALTH\* SuperFET<sup>®</sup> SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS<sup>®</sup> SyncFET™ Sync-Lock™

franchise p TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® **TINYOPTO™** TinyPower™ TinyPWM™ TinyWire™ Tran SiC\* TriFault Detect™ TRUECURRENT®\* uSerDes™

The Power Franchise®



Ultra FRFET™ UniFET™ VCX VisualMax™ VoltagePlus™ XSTM

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### DISCLAIMER

CTL<sup>TM</sup>

DEUXPEED

Dual Cool™

EcoSPARK®

ESBC™

F

FACT

FPST

FAST®

FastvCore™

FETBench<sup>11</sup>

FlashWriter®\*

R

Fairchild®

EfficientMax™

FAIRCHILD

Current Transfer Logic™

Fairchild Semiconductor®

FACT Quiet Series™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS

| Definition of Terms      |                       |                                                                                                                                                                                                        |
|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                             |
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change<br>in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild<br>Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make<br>changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.<br>The datasheet is for reference information only.                                                    |

Rev. 161

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC