N-Channel Shielded Gate POWERTRENCH[®] MOSFET

100 V, 268 A, 1.7 m Ω

Description

This N-Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

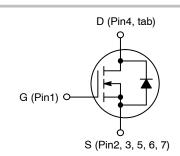
- Max $R_{DS(on)} = 1.75 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 1.7 \text{ m}\Omega$ at $V_{GS} = 12 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 1.65 \text{ m}\Omega$ at $V_{GS} = 15 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 4.4 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 63 \text{ A}$
- 50% Lower Qrr than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested

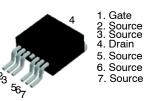
Applications

- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated Tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

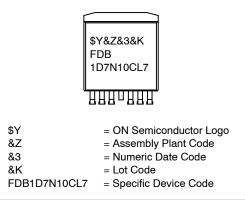
Parameter	Ratings	Unit
V _{DS} Drain to Source Voltage		V
V _{GS} Gate to Source Voltage		V
Drain Current	268	А
	190	
Pulsed (Note 4)	1390	
Single Pulsed Avalanche Energy (Note 3)	595	mJ
Power Dissipation	250	W
$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm A} = 25^{\circ}{\rm C}$ (Note 1a)	3.8	
Operating and Storage Temperature Range	–55 to +175	°C
	Drain to Source VoltageGate to Source VoltageDrain Current Continuous ($T_C = 25^{\circ}C$) (Note 5) Continuous ($T_C = 100^{\circ}C$) (Note 5) Pulsed (Note 4)Single Pulsed Avalanche Energy (Note 3)Power Dissipation $T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ (Note 1a)Operating and Storage Temperature	Drain to Source Voltage100Gate to Source Voltage ± 20 Drain Current268Continuous (T _C = 25°C) (Note 5)190Continuous (T _C = 100°C) (Note 5)1390Pulsed (Note 4)1390Single Pulsed Avalanche Energy (Note 3)595Power Dissipation250T _C = 25°C3.8Operating and Storage Temperature-55 to +175


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

V _{DS}	V _{DS} I _D MAX	
100 V	268 A	$1.7 \text{ m}\Omega$



N-Channel MOSFET

D2PAK7 (TO-263 7 LD) CASE 418AY

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ ext{ heta}JC}$	R _{0JC} Thermal Resistance, Junction to Case (Note 1)		°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	40	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
OFF CHARACT	DFF CHARACTERISTICS							
BV _{DSS}	Drain to Source Breakdown Voltage	ID = 250 μA, VGS = 0 V	100	-	-	V		
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	ID = 250 μ A, referenced to 25°C	-	57	-	mV/°C		
I _{DSS} Zero Gate Voltage Drain Current Zero Gate Voltage Drain Current		Vds = 80 V, Vgs = 0 V	_	-	1	μΑ		
I _{GSS}	Gate to Source Leakage Current	$VGS = \pm 20 V$, $VDS = 0 V$	-	-	±100	nA		

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	Vgs = Vds, Id = 700 µA	2.0	3.1	4.0	V
$V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	ID = 700 μ A, referenced to 25°C	-	-9	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	Vgs = 10 V, Id = 100 A	-	1.5	1.75	mΩ
		Vgs = 12 V, Id = 100 A	-	1.4	1.7	
		Vgs = 15 V, Id = 100 A	-	1.33	1.65	
		Vgs = 6 V, Id = 63 A	-	2.2	4.4	
		Vgs = 10 V, Id = 100 A, Tj= 150°C	_	2.65	3.1	
9fs	Forward Transconductance	Vds = 5 V, Id = 100 A	-	237	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	VDS = 50 V, VGS = 0 V, f = 1 MHz	-	8285	11600	pF
C _{oss}	Output Capacitance		-	5025	7035	pF
C _{rss}	Reverse Transfer Capacitance		-	50	80	pF
R _g	Gate Resistance		0.1	0.8	1.6	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 100 \text{ A},$		-	39	63	ns
t _r	Rise Time	V _{GS} = 10 V, R _{GEN} =	= 0 12	-	33	53	ns
t _{d(off)}	Turn-Off Delay Time			-	85	136	ns
t _f	Fall Time			-	36	58	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V		-	116	163	nC
Qg	Total Gate Charge	V_{GS} = 0 V to 6 V	VDD = 50 V, ID = 100 A	-	74	104	nC
Q _{gs}	Gate to Source Gate Charge		= 100 A	-	37	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	24	-	nC
Q _{oss}	Output Charge	VDD = 50 V, VGS = 0	V	-	333	-	nC

SOURCE-DRAIN DIODE CHARACTERISTICS

۱ _S	Continuous Drain to Source Diode Forward Current		-	-	268	А
I _{SM}	Pulsed Drain to Source Diode Forward Current		-	-	1390	А
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, Is = 100 A (Note 2)	-	0.9	1.2	V

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
SOURCE-DRAIN DIODE CHARACTERISTICS							
t _{rr}	Reverse Recovery Time	IF = 50 A, di/dt = 300 A/µs	-	63	101	ns	
Q _{rr}	Reverse Recovery Charge		-	186	298	nC	
t _{rr}	Reverse Recovery Time	IF = 50 A, di/dt = 1000 A/μs	-	82	132	ns	
Q _{rr}	Reverse Recovery Charge		-	869	1390	nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 40°C/W when mounted on a 1 in2 pad of 2 oz copper.

b) 62.5°C/W when mounted on a minimum pad of 2 oz copper.
2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %.

3. E_{AS} of 595 mJ is based on starting $T_J = 25$ °C, L = 0.3 mH, $I_{AS} = 63$ A, $V_{DD} = 90$ V, $V_{GS} = 10$ V. 100% test at L = 0.1 mH, $I_{AS} = 91$ A. 4. Pulsed Id please refer to Figure "Forward Bias Safe Operating Area" for more details.

5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB1D7N10CL7	FDB1D7N10CL7	D2-PAK-7L	330 mm	24 mm	800 Units

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

R_{DS(on)}, Drain to Source ON-Resistance (mΩ)

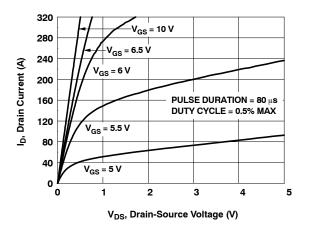
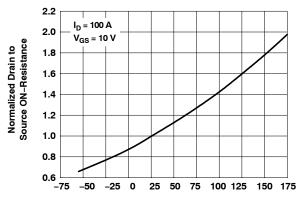



Figure 1. On-Region Characteristics

T_J, Junction Temperature (°C)

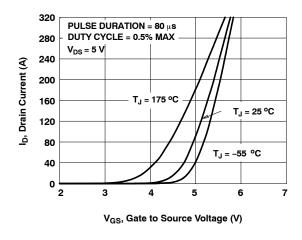


Figure 5. Transfer Characteristics

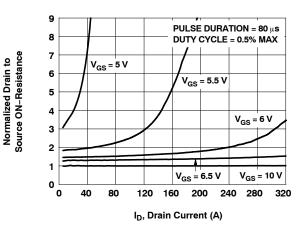
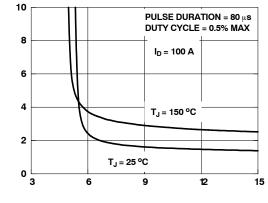
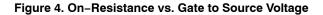




Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

V_{GS}, Gate to Source Voltage (V)

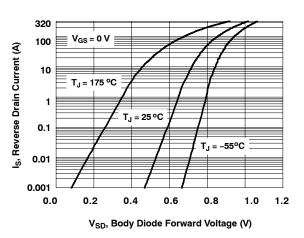


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

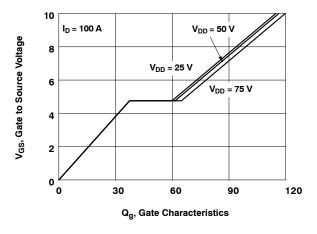


Figure 7. Gate Charge Characteristics

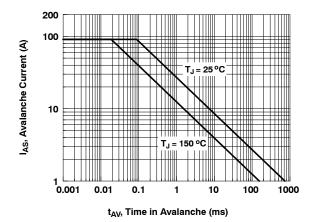


Figure 9. Unclamped Inductive Switching Capability

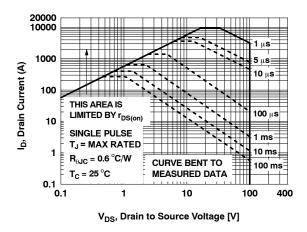
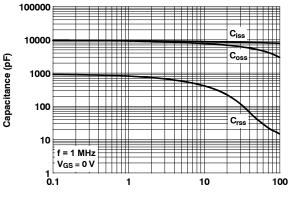



Figure 11. Forward Bias Safe Operating Area

V_{DS}, Drain to Source Voltage (V)

Figure 8. Capacitance vs. Drain to Source Voltage

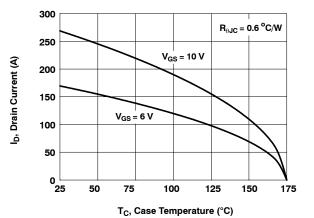


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

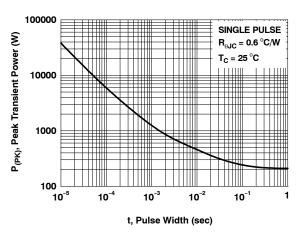
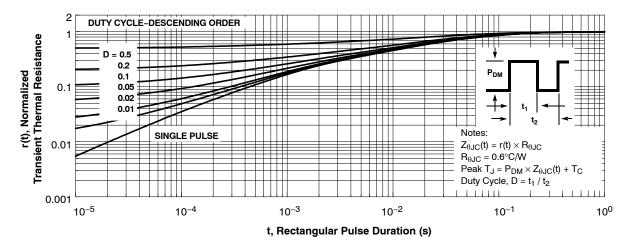
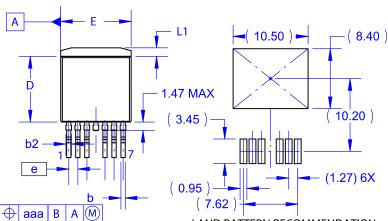


Figure 12. Single Pulse Maximum Power Dissipation

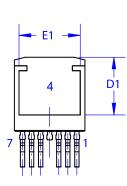
TYPICAL CHARACTERISTICS (Continued)

(T_J = 25°C unless otherwise noted)




Figure 13. Normalized Max Junction to Case Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


DATE 15 JUL 2019

D2PAK7 (TO-263 7 LD)
CASE 418AY
ISSUE C

LAND PATTERN RECOMMENDATION

GENERIC

MARKING DIAGRAM*

XXXXXXXXX AYWWG

XXXX = Specific Device Code

= Year

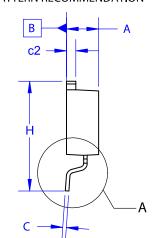
not follow the Generic Marking.

= Work Week

А Y

G

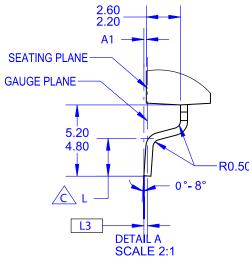
WW


= Assembly Location

= Pb-Free Package

*This information is generic. Please refer to

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may


or may not be present. Some products may

NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE. D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N.

DIM	MIL	LIMETER	S
DIM	MIN	NOM	MAX
Α	4.30	4.50	4.70
A1	0.00	0.10	0.20
b2	0.70	0.80	0.90
b	0.50	0.60	0.70
С	0.40	0.50	0.60
c2	1.20	1.30	1.40
D	9.00	9.20	9.40
D1	7.70	~	~
Е	9.70	9.90	10.20
E1	8.38	8.58	8.78
е	~	1.27	~
Н	15.10	15.40	15.70
L	2.44	2.64	2.84
L1	1.00	1.20	1.40
L3	~	0.25	~
aaa	~	~	0.25

DOCUMENT NUMBER:	98AON13798G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D2PAK7 (TO-263 7 LD)		PAGE 1 OF 1

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative