

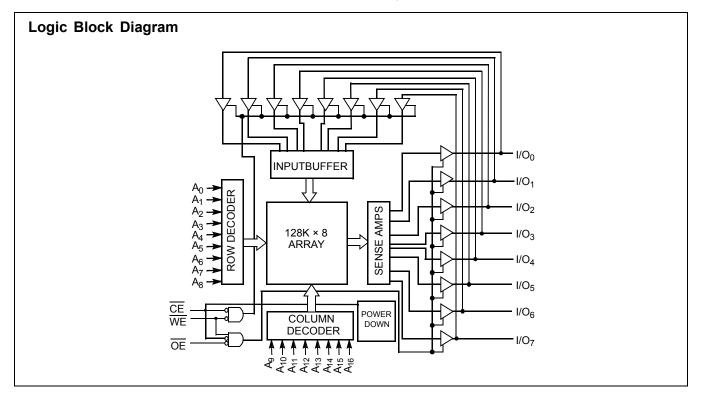
CY7C1019DV33

1-Mbit (128K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C1019CV33
- · High speed
- t_{AA} = 10 ns
- Low Active Power
- I_{CC} = 60 mA @ 10 ns
- Low CMOS Standby Power
 - I_{SB2} = 3 mA
- 2.0V Data retention
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- · Center power/ground pinout
- Easy memory expansion with CE and OE options
- Available in Pb-free 32-pin 400-Mil wide Molded SOJ, 32-pin TSOP II and 48-ball VFBGA packages

Functional Description^[1]


The CY7C1019DV33 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy <u>memory</u> expansion is provided by an <u>active LOW Chip Enable (CE)</u>, an active LOW Output Enable (OE), and three-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

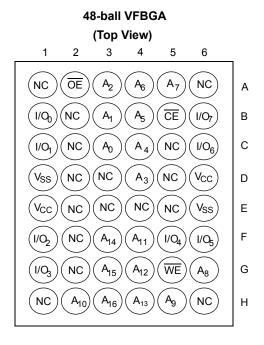
<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0 \text{ through } I/O_7)$ is then written into the location specified on the address pins $(A_0 \text{ through } A_{16})$.

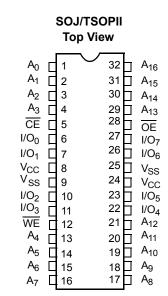
Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019DV33 is available in Pb-free 32-pin 400-Mil wide Molded SOJ, 32-pin TSOP II and 48-ball VFBGA packages.

Note


1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com



Selection Guide

	–10 (Industrial)	Unit
Maximum Access Time	10	ns
Maximum Operating Current	60	mA
Maximum Standby Current	3	mA

Pin Configurations^[2]

Note 2. NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[3]}$ 0.3V to + 4.6V DC Voltage Applied to Outputs in High-Z State ^[3] 0.3V to V_{CC} + 0.3V

DC Input Voltage ^[3]	–0.3V to V _{CC} + 0.3V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

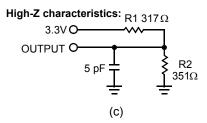
Operating Range

Range	Ambient Temperature	V _{cc}	Speed
Industrial	–40°C to +85°C	$3.3V\pm0.3V$	10 ns

Electrical Characteristics Over the Operating Range

Devenueter	Description	Test Canditions		–10 (Industrial)	11
Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[3]			-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-1	+1	μA
I _{OZ}	Output Leakage Current	GND <u><</u> V _I <u><</u> V _{CC} , Output Disab	led	-1	+1	μA
I _{CC}	V _{CC} Operating Supply Current		100MHz		60	mA
		$I_{OUT} = 0 \text{ mA},$ f = f_{MAX} = 1/t_{RC}	83MHz		55	mA
		MAX WRC	66MHz		45	mA
			40MHz		30	mA
I _{SB1}	Automatic CE Power-down Current—TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$			10	mA
I _{SB2}	Automatic CE Power-down Current—CMOS Inputs	$\begin{array}{l} \text{Max. } V_{\text{CC}}, \ \overline{\text{CE}} \geq V_{\text{CC}} - 0.3V, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3V \text{ or } V_{\text{IN}} \leq 0.3V \end{array}$, f = 0		3	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ C, f = 1 MHz, $V_{CC} = 3.3V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance^[4]

Parameter	Description	Test Conditions	SOJ	TSOP II	VFBGA	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	56.29	62.22	36	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		38.14	21.43	9	°C/W

AC Test Loads and Waveforms^[5]

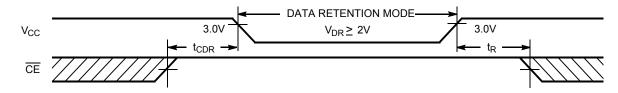
Notes

Tested initially and after any design or process changes that may affect these parameters.
 AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

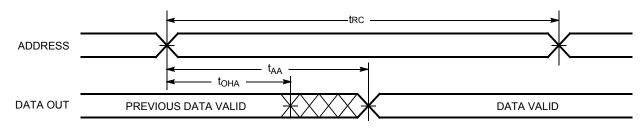
Switching Characteristics Over the Operating Range [6]

D		–10 (In	dustrial)	11
Parameter	Description	Min.	Max.	– Unit
Read Cycle	-			•
t _{power} [7]	V _{CC} (typical) to the first access	100		μS
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{DOE}	OE LOW to Data Valid		5	ns
t _{LZOE}	OE LOW to Low Z	0		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		5	ns
t _{LZCE}	CE LOW to Low Z ^[9]	3		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		5	ns
t _{PU} ^[10]	CE LOW to Power-Up	0		ns
t _{PD} ^[10]	CE HIGH to Power-Down		10	ns
Write Cycle ^{[11}	, 12]			•
t _{WC}	Write Cycle Time	10		ns
t _{SCE}	CE LOW to Write End	8		ns
t _{AW}	Address Set-Up to Write End	8		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-Up to Write End	5		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[9]	3		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		5	ns

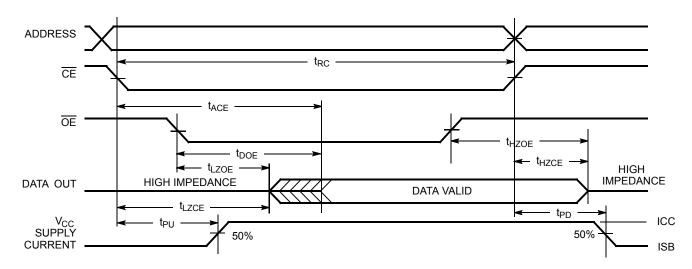
Notes


Notes
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
7. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed
8. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of AC Test Loads. Transition is measured when the outputs enter a high impedance state.
9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
10. This parameter is guaranteed by design and is not tested.
11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
12. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		3	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0		ns
t _R ^[13]	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform



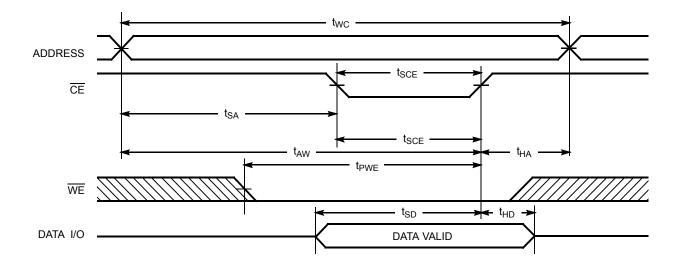
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[14, 15]

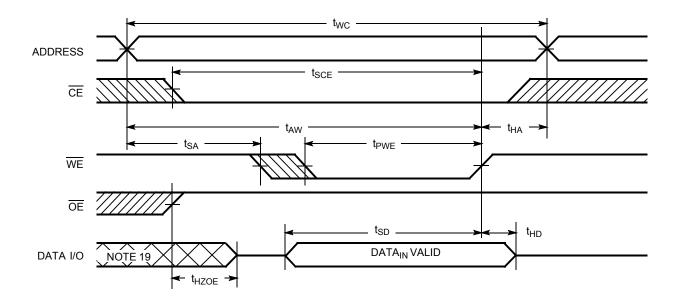
Read Cycle No. 2 (OE Controlled)^[15, 16]

Notes

13. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \ \mu s$ or stable at $V_{CC(min.)} \ge 50 \ \mu s$. 14. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.


15. WE is HIGH for Read cycle.

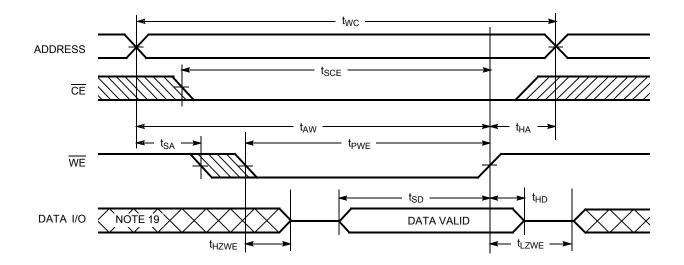
16. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[17, 18]

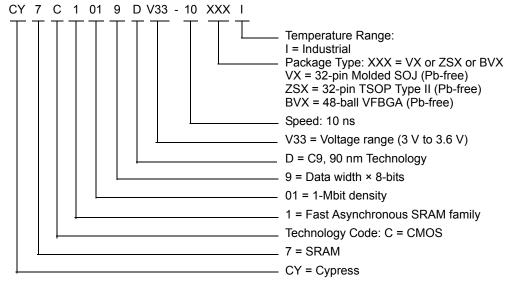
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)^[17, 18]



Notes 17. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 18. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 19. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Truth Table


CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

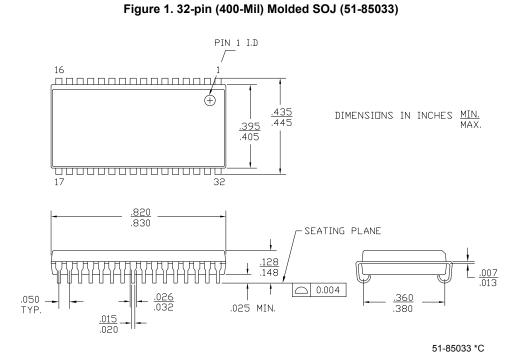
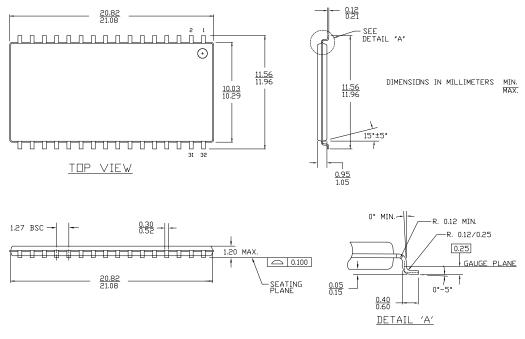
Ordering Information

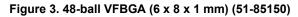
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1019DV33-10VXI	51-85033	32-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1019DV33-10ZSXI	51-85095	32-pin TSOP Type II (Pb-free)	
	CY7C1019DV33-10BVXI	51-85150	48-ball VFBGA (Pb-free)	

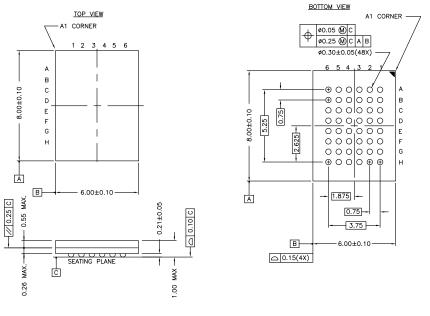
Ordering Code Definitions

Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams


Figure 2. 32-pin Thin Small Outline Package Type II (51-85095)



51-85095 *A

Package Diagrams (continued)

51-85150 *F

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	233750	See ECN	RKF	DC parameters modified as per EROS (Spec # 01-02165 Rev *A) Pb-free Offering in Ordering Information
*В	262950	See ECN	RKF	Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics table Shaded Ordering Information
*C	307598	See ECN	RKF	Reduced Speed bins to -8 and -10 ns
*D	520652	See ECN	VKN	Converted from Preliminary to Final Removed Commercial Operating range Removed 8 ns speed bin Added I _{CC} values for the frequencies 83MHz, 66MHz and 40MHz Added 48-ball VFBGA package Updated Thermal Resistance table Updated Ordering Information table Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #3
*E	3110052	12/14/2010	AJU	Added Ordering Code Definitions. Updated Package Diagrams.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

Document #: 38-05481 Rev. *E

Page 13 of 13

© Cypress Semiconductor Corporation, 2004-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.