

Sample &

Buy

CSD95378BQ5MC

SLPS463B-APRIL 2014-REVISED JULY 2015

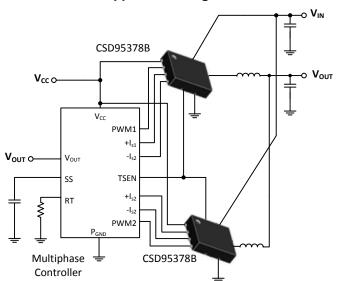
CSD95378BQ5MC Synchronous Buck NexFET[™] Smart Power Stage

Features 1

- 60-A Continuous Operating Current Capability
- 93.4% System Efficiency at 30 A
- Low Power Loss of 2.8 W at 30 A
- High-Frequency Operation (up to 1.25 MHz)
- **Diode Emulation Mode With FCCM**
- **Temperature Compensated Bidirectional Current** Sense
- Analog Temperature Output (400 mV at 0°C)
- Fault Monitoring
 - High-Side Short, Overcurrent, and **Overtemperature Protection**
- 3.3-V and 5-V PWM Signal Compatible
- **Tri-State PWM Input**
- Integrated Bootstrap Diode
- Optimized Deadtime for Shoot-Through Protection
- High-Density SON 5 × 6 mm Footprint
- Ultra-Low Inductance Package
- System-Optimized PCB Footprint
- DualCool[™] Packaging
- RoHS Compliant Lead-Free Terminal Plating
- Halogen-Free

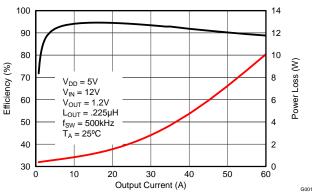
2 Applications

- Multiphase Synchronous Buck Converters
- **High-Frequency Applications**
- High-Current, Low Duty-Cycle Applications
- POL DC-DC Converters
- Memory and Graphic Cards
- Desktop and Server VR11.x / VR12.x V-core and Memory Synchronous Converters


3 Description

The CSD95378BQ5MC NexFET™ smart power stage is a highly-optimized design for use in a highpower, high-density synchronous buck converter. This product integrates the driver IC and power MOSFETs to complete the power stage switching function. This combination produces high-current, high-efficiency, and high-speed switching capability in a small 5 mm × 6 mm outline package. It also integrates the accurate current sensing and temperature sensing functionality to simplify system design and improve accuracy. In addition, the PCB footprint is optimized to help reduce design time and simplify the completion of the overall system design.

Device Information⁽¹⁾


DEVICE	MEDIA	QTY	PACKAGE	SHIP
CSD95378BQ5MC	13-Inch Reel	2500	SON 5 mm × 6	Tape and
CSD95378BQ5MCT	7-Inch Reel	250	mm DualCool Package	Reel

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Application Diagram

Typical Power Stage Efficiency and Power Loss

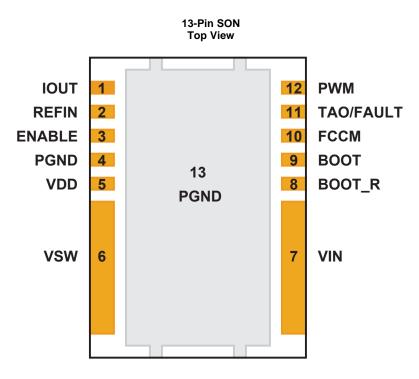
2

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription1
4	Rev	ision History 2
5	Pin	Configuration and Functions
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5

7	Арр	lication Schematic	6
8	Dev	ice and Documentation Support	7
	8.1	Community Resources	7
	8.2	Trademarks	7
	8.3	Electrostatic Discharge Caution	7
	8.4	Glossary	7
9		hanical, Packaging, and Orderable	
	Info	rmation	8
	9.1	Mechanical Drawing	8
	9.2	Recommended PCB Land Pattern	9
	9.3	Recommended Stencil Opening	9

Copyright © 2014–2015, Texas Instruments Incorporated


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (June 2014) to Revision B	Page
Corrected MAX A dimensions in <i>Mechanical Drawing</i> table to 1.050 mm (0.041 inch)	
Changes from Original (April 2014) to Revision A	Page

5 Pin Configuration and Functions

Pin Functions

PIN		DESCRIPTION							
NAME	NUMBER	DESCRIPTION							
воот	9	Bootstrap capacitor connection. Connect a minimum of 0.1 μ F 16 V X7R ceramic capacitor from BOOT to BOOT_R pins. The bootstrap capacitor provides the charge to turn on the control FET. The bootstrap diode is integrated.							
BOOT_R	8	Return path for HS gate driver, connected to V_{SW} internally.							
ENABLE	3	Enables device operation. If ENABLE = logic HIGH, turns on device. If ENABLE = logic LOW, the device is turned off and both MOSFET gates are actively pulled low. An internal 100 k Ω pulldown resistor will pull the ENABLE pin LOW if left floating.							
FCCM	10	This pin enables the diode emulation function. When this pin is held LOW, diode emulation mode is enabled for sync FET. When FCCM is HIGH, the device is operated in Forced Continuous Conduction Mode. An internal 5 μ A current source will pull the FCCM pin to 3.3 V if left floating.							
IOUT	1	Output of current sensing amplifier. V(IOUT) – V(REFIN) is proportional to the phase current.							
P _{GND}	4	Power ground, connected directly to pin 13.							
P _{GND}	13	Power ground.							
PWM	12	Pulse width modulated tri-state input from external controller. Logic LOW sets control FET gate low and sync FET gate high. Logic HIGH sets control FET gate high and sync FET gate low. Open or High Z sets both MOSFET gates low if greater than the tri-state shutdown hold-off time (t_{3HT}).							
REFIN	2	External reference voltage input for current sensing amplifier.							
TAO/ FAULT	11	Temperature analog output. Reports a voltage proportional to the die temperature. An ORing diode is integrated in the IC. When used in multiphase application, a single wire can be used to connect the TAO pins of all the ICs. Only the highest temperature will be reported. TAO will be pulled up to 3.3 V if thermal shutdown occurs. TAO should be bypassed to P _{GND} with a 1 nF 16 V X7R ceramic capacitor.							
V _{DD}	5	Supply voltage to gate driver and internal circuitry.							
V _{IN}	7	Input voltage pin. Connect input capacitors close to this pin.							
V _{SW}	6	Phase node connecting the HS MOSFET source and LS MOSFET drain - pin connection to the output inductor.							

CSD95378BQ5MC

SLPS463B-APRIL 2014-REVISED JULY 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

 $T_A = 25^{\circ}C$ (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	V _{IN} to P _{GND}	-0.3	25	V
	V _{IN} to V _{SW}	-0.3	25	V
	V _{IN} to V _{SW} (10 ns)	-7	27	V
	V _{SW} to P _{GND}	-0.3	20	V
	V _{SW} to P _{GND} (10 ns)	-7	23	V
	V _{DD} to P _{GND}	-0.3	7	V
	ENABLE, PWM, FCCM, TAO, IOUT, REFIN to P _{GND}	-0.3	V _{DD} + 0.3 V	V
	BOOT to BOOT_R ⁽²⁾	-0.3	V _{DD} + 0.3 V	V
PD	Power dissipation		12	W
T_J	Operating junction	-55	150	°C
T _{stg}	Storage temperature	-55	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings (1) only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Should not exceed 7 V. (2)

6.2 ESD Ratings

			VALUE	UNIT
V		Human body model (HBM)	±2000	N/
V(ES	Electrostatic discharge	Charged device model (CDM)	±500	V

6.3 Recommended Operating Conditions

 $T_A = 25^\circ$ (unless otherwise noted)

			MIN	MAX	UNIT
V _{DD}	Gate drive voltage		4.5	5.5	V
V _{IN}	Input supply voltage ⁽¹⁾			16	V
V _{OUT}	Output voltage			5.5	V
I _{OUT}	Continuous output current	$V_{IN} = 12 V, V_{DD} = 5 V, V_{OUT} = 1.2 V,$		60	А
I _{OUT-PK}	Peak output current ⁽³⁾	$f_{SW} = 500 \text{ kHz}, L_{OUT} = 0.225 \mu\text{H}^{(2)}$		90	А
$f_{\rm SW}$	Switching frequency	$C_{BST} = 0.1 \ \mu F \ (min)$		1250	kHz
	On time duty cycle	$f_{SW} = 1 \text{ MHz}$		85%	
	Minimum PWM on time		40		ns
	Operating temperature		-40	125	°C

(1) Operating at high V_{IN} can create excessive AC voltage overshoots on the switch node (V_{SW}) during MOSFET switching transients. For reliable operation, the switch node (V_{SW}) to ground voltage must remain at or below the Absolute Maximum Ratings. Measurement made with six 10 μ F (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across V_{IN} to P_{GND} pins.

(2)

(3) System conditions as defined in Note 1. Peak output current is applied for $t_p = 50 \ \mu s$.

6.4 Thermal Information

$T_A = 25^{\circ}C$ (unless otherwise noted)

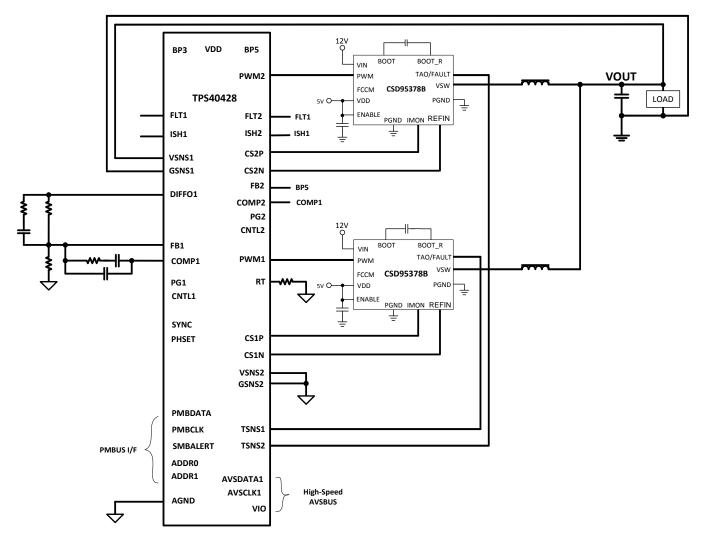
	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case (top of package) thermal resistance ⁽¹⁾			5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance ⁽²⁾			1.5	°C/W

R_{0JC} is determined with the device mounted on a 1 inch² (6.45 cm²), 2 oz (0.071 mm thick) Cu pad on a 1.5 inch x 1.5 inch, 0.06 inch (1.52 mm) thick FR4 board.

(2) $\dot{R}_{\theta JB}$ value based on hottest board temperature within 1 mm of the package.

CSD95378BQ5MC

SLPS463B-APRIL 2014-REVISED JULY 2015


CSD95378BQ5MC

SLPS463B-APRIL 2014-REVISED JULY 2015

TEXAS INSTRUMENTS

www.ti.com

7 Application Schematic

8 Device and Documentation Support

8.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

8.2 Trademarks

DualCool, NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

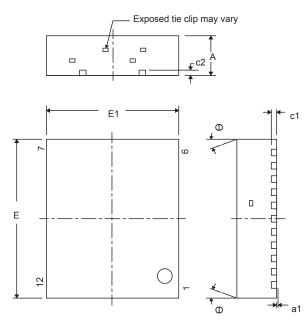
8.3 Electrostatic Discharge Caution

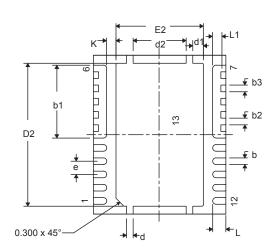
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.4 Glossary

SLYZ022 — TI Glossary.

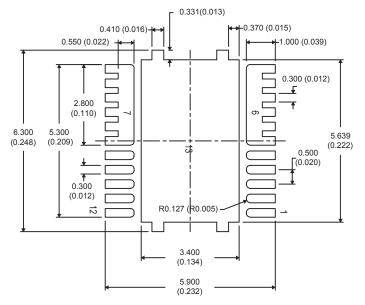

This glossary lists and explains terms, acronyms, and definitions.


CSD95378BQ5MC SLPS463B – APRIL 2014 – REVISED JULY 2015

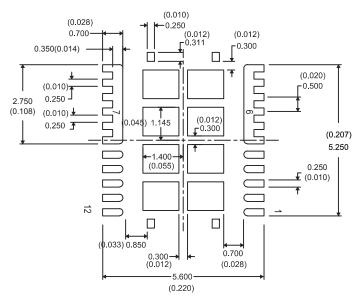
9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

9.1 Mechanical Drawing


DIM	N	IILLIMETERS			INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
А	0.950	1.000	1.050	0.037	0.039	0.041
a1	0.000	0.000	0.050	0.000	0.000	0.002
b	0.200	0.250	0.320	0.008	0.010	0.013
b1		2.750 TYP			0.108 TYP	
b2	0.200	0.250	0.320	0.008	0.010	0.013
b3		0.250 TYP			0.010 TYP	
c1	0.150	0.200	0.250	0.006	0.008	0.010
c2	0.200	0.250	0.300	0.008	0.010	0.012
D2	5.300	5.400	5.500	0.209	0.213	0.217
d	0.200	0.250	0.300	0.008	0.010	0.012
d1	0.350	0.400	0.450	0.014	0.016	0.018
d2	1.900	2.000	2.100	0.075	0.079	0.083
E	5.900	6.000	6.100	0.232	0.236	0.240
E1	4.900	5.000	5.100	0.193	0.197	0.201
E2	3.200	3.300	3.400	0.126	0.130	0.134
е		0.500 TYP			0.020 TYP	
К		0.350 TYP			0.014 TYP	
L	0.400	0.500	0.600	0.016	0.020	0.024
L1	0.210	0.310	0.410	0.008	0.012	0.016
θ	0.00		_	0.00	_	_

Copyright © 2014–2015, Texas Instruments Incorporated


CSD95378BQ5MC SLPS463B – APRIL 2014 – REVISED JULY 2015

9.2 Recommended PCB Land Pattern

1. Dimensions are in mm (inches).

9.3 Recommended Stencil Opening

- 1. Dimensions are in mm (inches).
- 2. Stencil thickness is 100 µm.

6-Jul-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
CSD95378BQ5MC	ACTIVE	VSON-CLIP	DMC	12		Pb-Free (RoHS Exempt)	CU SN	Level-2-260C-1 YEAR		95378BMC	Samples
CSD95378BQ5MCT	ACTIVE	VSON-CLIP	DMC	12	250	Pb-Free (RoHS Exempt)	CU SN	Level-2-260C-1 YEAR		95378BMC	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

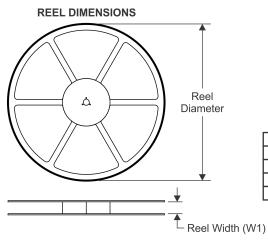
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

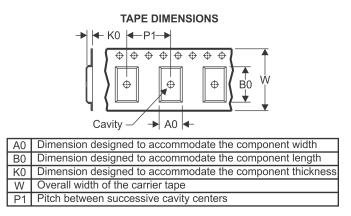
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

6-Jul-2015


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

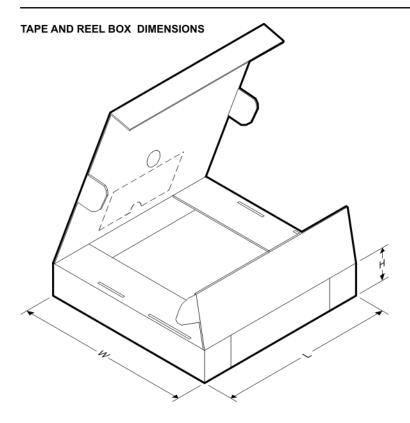

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD95378BQ5MC	VSON- CLIP	DMC	12	2500	330.0	15.4	5.3	6.3	1.2	8.0	12.0	Q1
CSD95378BQ5MC	VSON- CLIP	DMC	12	2500	330.0	12.4	5.3	6.3	1.2	8.0	12.0	Q1
CSD95378BQ5MCT	VSON- CLIP	DMC	12	250	180.0	12.4	5.3	6.3	1.2	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Oct-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD95378BQ5MC	VSON-CLIP	DMC	12	2500	336.6	336.6	41.3
CSD95378BQ5MC	VSON-CLIP	DMC	12	2500	367.0	367.0	35.0
CSD95378BQ5MCT	VSON-CLIP	DMC	12	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated