

20MHz, Second-Order, Isolated Delta-Sigma Modulator for Current-Shunt Measurement

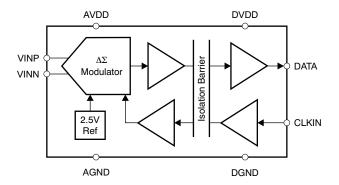
Check for Samples: AMC1204

FEATURES

www.ti.com

- ±250mV Input Voltage Range Optimized for Shunt Resistors
- **Certified Digital Isolation:**
 - CSA, IEC60747-5-2, and UL1577 Approved
 - Isolation Voltage: 4000V_{PEAK}
 - Working Voltage: 1200V_{PEAK}
 - Transient Immunity: 15kV/µs
- Long Isolation Barrier Lifetime (see Application Report SLLA197)
- High Electromagnetic Field Immunity (see Application Note SLLA181A)
- **Outstanding AC Performance:**
 - SNR: 84dB (min)
 - THD: –80dB (max)
- **Excellent DC Precision:**
 - INL: ±8LSB (max)
 - Gain Error: ±2% (max)
- **External Clock Input for Easier** Synchronization
- Fully Specified Over the Extended Industrial **Temperature Range**

APPLICATIONS


- Shunt Resistor Based Current Sensing in:
 - Motor Control
 - **Green Energy**
 - **Inverter Applications**
 - **Uninterruptible Power Supplies**

DESCRIPTION

The AMC1204 is a 1-bit digital output, isolated delta-sigma ($\Delta\Sigma$) modulator that can be clocked at up to 20MHz. The digital isolation of the modulator output is provided by a silicon dioxide (SiO₂) barrier that is highly resistant to magnetic interference. This barrier has been certified to provide basic galvanic isolation of up to 4000V_{PEAK} according to UL1577, IEC60747-5-2, and CSA standards or specifications.

The AMC1204 provides a single-chip solution for measuring the small signal of a shunt resistor across an isolated barrier. These types of resistors are typically used to sense currents in motor control inverters, green energy generation systems, and applications. other industrial The AMC1204 differential inputs easily connect to the shunt resistor or other low-level signal sources. An internal need for eliminates reference the external components. When used with an appropriate external digital filter, an effective number of bits (ENOB) of 14 is achieved at a data rate of 78kSPS.

A 5V analog supply (AVDD) is used by the modulator while the isolated digital interface operates from a 3V. 3.3V, or 5V supply (DVDD). The AMC1204 is available in an SO-16 (DW) package and is specified from -40° C to $+105^{\circ}$ C.

 \overline{M}

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com.

FAMILY OVERVIEW

PART NUMBER	MODULATOR CLOCK (MHz)	DIGITAL SUPPLY	CLOCK SOURCE	INL (LSB)	GAIN ERROR (%)	THD (dB)
AMC1203	10	5V	Internal	±9	±2	84.5
AMC1203B	10	5V	Internal	±6	±1	-88
AMC1204	20	3V, 3.3V, or 5V	External	±8	±2	-80

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over the operating ambient temperature range, unless otherwise noted.

	AMC			
	PARAMETER	MIN	MAX	UNIT
Supply voltage, AVDD to AGND o	-0.3	+6	V	
Analog input voltage at VINP, VIN	N	AGND – 0.5	AVDD + 0.5	V
Digital input voltage at CLKIN		DGND - 0.3	DVDD + 0.3	V
Input current to any pin except su	-10	+10	mA	
Maximum virtual junction temperat		+150	°C	
Operating ambient temperature ra	nge, T _{OA}	-40	+125	°C
	Human body model (HBM) JEDEC standard 22, test method A114-C.01	-3000	+3000	V
Electrostatic discharge (ESD), all pins	Charged device model (CDM) JEDEC standard 22, test method C101	-1500	+1500	V
	Machine model (MM) JEDEC standard 22, test method A115A	-200	+200	V

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the Electrical Characteristics is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

		AMC1204	
	THERMAL METRIC ⁽¹⁾	DW	UNITS
		16 PINS	
θ _{JA}	Junction-to-ambient thermal resistance	78.5	
θ _{JCtop}	Junction-to-case (top) thermal resistance	41.3	
θ_{JB}	Junction-to-board thermal resistance 50.2		°C 44/
ΨJT	Junction-to-top characterization parameter	11.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	41.2	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

www.ti.com

REGULATORY INFORMATION

VDE/IEC	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA component acceptance notice	Recognized under 1577 component recognition program
File number: 40016131	File number: 2350550	File number: E181974

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output (I/O) circuitry. A failure of the I/O circuitry can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. The safety-limiting constraint is the operating virtual junction temperature range specified in the Absolute Maximum Ratings

table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determine the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed in the JESD51-3, *Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages* and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

	PARAMETER	PARAMETER TEST CONDITIONS		TYP	MAX	UNIT
I _S	Safety input, output, or supply current	$\theta_{JA} = +78.5^{\circ}C/W, V_{I} = 5.5V, T_{J} = +150^{\circ}C, T_{A} = +25^{\circ}C$			10	mA
T _C	Maximum case temperature				+150	°C

IEC 61000-4-5 RATINGS

PARAMETER		TEST CONDITIONS	VALUE	UNIT
V _{IOSM}	Surge immunity	1.2/50µs voltage surge and 8/20µs current surge	±6000	V

IEC 60664-1 RATINGS

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	II
	Rated mains voltage ≤ 150V _{RMS}	I-IV
	Rated mains voltage < 300V _{RMS}	I-IV
Installation classification	Rated mains voltage < 400V _{RMS}	I-III
	Rated mains voltage < 600V _{RMS}	I-III

ISOLATION CHARACTERISTICS

	PARAMETER TEST CONDITIONS		VALUE	UNIT
V _{IORM}	Maximum working insulation voltage per IEC		1200	V _{PEAK}
V _{PD(t)}	Partial discharge test voltage per IEC	t = 1s (100% production test), partial discharge < 5pC	2250	V _{PEAK}
	Transient overvoltage	t = 60s (qualification test)	4000	V _{PEAK}
VIOTM		t = 1s (100% production test)	4000	V _{PEAK}
R _S	Isolation resistance	$V_{IO} = 500V$ at T_S	> 10 ⁹	Ω
PD	Pollution degree		2	Degrees

ISOLATOR CHARACTERISTICS⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (clearance)	Shortest terminal to terminal distance through air	7.9			mm
L(I02)	Minimum external tracking (creepage)	Shortest terminal to terminal distance across the package surface	7.9			mm
СТІ	Tracking resistance (comparative tracking index)	DIN IEC 60112/VDE 0303 part 1	≥ 175			V
	Minimum internal gap (internal clearance)	Distance through the insulation	0.014			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500V, all pins on each side of the barrier tied together to create a two-terminal device, T_A < +85°C		> 10 ¹²		Ω
10		Input to output, $V_{IO} = 500V$, +100°C $\leq T_A < T_A \max$		> 10 ¹¹		Ω
CIO	Barrier capacitance input to output	$V_{I} = 0.8V_{PP}$ at 1MHz		1.2		pF
CI	Input capacitance to ground	$V_{I} = 0.8V_{PP}$ at 1MHz		3		pF

(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of a specific application. Care should be taken to maintain the creepage and clearance distance of the board design to ensure that the mounting pads of the isolator on the printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal according to the measurement techniques shown in the *Isolation Glossary* section. Techniques such as inserting grooves and/or ribs on the PCB are used to help increase these specifications.

ELECTRICAL CHARACTERISTICS

All minimum/maximum specifications at $T_A = -40^{\circ}$ C to +105°C, AVDD = 4.5V to 5.5V, DVDD = 2.7V to 5.5V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C, AVDD = 5V, and DVDD = 3.3V.

			AMC1204			
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Γ _A	Specified ambient temperature range		-40		+105	°C
RESOLUT	ION					
	Resolution		16			Bits
DC ACCU	RACY					
INII	Integral linearity error ⁽¹⁾	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	-8	±2	8	LSB
INL	Integral linearity error ($T_A = -40^{\circ}C$ to $+105^{\circ}C$	-16	±5	16	LSB
DNL	Differential nonlinearity		-1		1	LSB
V _{OS}	Offset error ⁽²⁾		-1	±0.1	1	mV
TCV _{os}	Offset error thermal drift		-3.5	±1	3.5	µV/°C
G _{ERR}	Gain error ⁽²⁾		-2	±0.5	2	%
TCG _{ERR}	Gain error thermal drift			±30		ppm/°C
PSRR	Power-supply rejection ratio			79		dB
ANALOG I		1 I				
FSR	Full-scale differential voltage input range	VINP – VINN		±320		mV
-	Specified FSR		-250		250	mV
V _{CM}	Operating common-mode signal ⁽³⁾		AGND		AVDD	V
C _I	Input capacitance to AGND	VINP or VINN	AGINE	7		pF
C _{ID}	Differential input capacitance			3.5		pr pF
R _{ID}	Differential input resistance			12.5		kΩ
ND	Differential input resistance	VINP – VINN = ±250mV	-10	12.5	10	
IL	Input leakage current	$VINP - VINN = \pm 230mV$ VINP - VINN = $\pm 320mV$	-50		50	μΑ
ONATI	Common mode transient immunity				50	μΑ
CMTI	Common-mode transient immunity		15	400		kV/µs
CMRR	Common-mode rejection ratio	V _{IN} from 0V to 5V at 0Hz		108		dB
		V _{IN} from 0V to 5V at 100kHz		114		dB
EXTERNA						
t _{CLKIN}	Clock period		45.5	50	200	ns
f _{CLKIN}	Input clock frequency		5	20	22	MHz
Duty _{CLKIN}	Duty cycle	$5MHz \le f_{CLKIN} < 20MHz$	40	50	60	%
-		$20MHz \le f_{CLKIN} \le 22MHz$	45	50	55	%
AC ACCU	RACY					
SINAD	Signal-to-noise + distortion	$f_{IN} = 1 \text{ kHz}, T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	78	87		dB
		$f_{IN} = 1$ kHz, $T_A = -40^{\circ}$ C to $+105^{\circ}$ C	70	87		dB
SNR	Signal-to-noise ratio	$f_{IN} = 1 \text{kHz}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	84	88		dB
		$f_{IN} = 1 \text{kHz}, T_A = -40^{\circ}\text{C} \text{ to } +105^{\circ}\text{C}$	83	88		dB
THD	Total harmonic distortion	$f_{IN} = 1 \text{kHz}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$		-96	-80	dB
		$f_{IN} = 1 \text{kHz}, T_A = -40^{\circ}\text{C} \text{ to } +105^{\circ}\text{C}$		-96	-70	dB
	Spurious free dynamic reason	$f_{IN} = 1 \text{kHz}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	82	96		dB
SFDR	Spurious-free dynamic range	$f_{IN} = 1 \text{ kHz}, T_A = -40^{\circ} \text{C to } +105^{\circ} \text{C}$	72	96		dB
	NPUTS ⁽³⁾	· · ·				
IN	Input current	V _{IN} = DVDD to DGND	-10		10	μA
C _{IN}	Input capacitance			5		pF
CMOS logic family CMOS with Schmitt-trigger						
V _{IH}	High-level input voltage	DVDD = 4.5V to 5.5V	0.7DVDD		OVDD + 0.3	V
V _{IL}	Low-level input voltage	DVDD = 4.5V to 5.5V	-0.3	-	0.3DVDD	V

(1) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer function expressed as number of LSBs or as a percent of the specified 560mV input range.

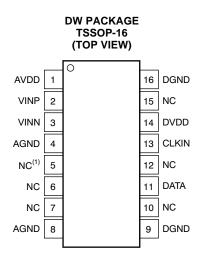
(2) Maximum values, including temperature drift, are ensured over the full specified temperature range.

(3) Ensured by design.

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

All minimum/maximum specifications at $T_A = -40^{\circ}$ C to +105°C, AVDD = 4.5V to 5.5V, DVDD = 2.7V to 5.5V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C, AVDD = 5V, and DVDD = 3.3V.


				AMC1204		
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
LVCMOS	S logic family		LVCMOS			
V _{IH}	High-level input voltage	DVDD = 2.7V to 3.6V	2		DVDD + 0.3	V
VIL	Low-level input voltage	DVDD = 2.7V to 3.6V	-0.3		0.8	V
DIGITAL	OUTPUTS ⁽³⁾					
C _{OUT}	Output capacitance			5		V
C _{LOAD}	Load capacitance				30	V
CMOS lo	ogic family			CMOS		
V _{OH}	High-level output voltage	$DVDD = 4.5V, I_{OH} = -100\mu A$	4.4			V
V _{OL}	Low-level output voltage	DVDD = 4.5V, I _{OL} = +100µA			0.5	V
LVCMOS	S logic family			LVCMOS		
		I _{OH} = 20μA	DVDD - 0.1			V
V _{OH}	High-level output voltage	$I_{OH} = -4mA,$ 2.7V \leq DVDD \leq 3.6V	DVDD - 0.4			V
		$I_{OH} = -4mA,$ 4.5V \leq DVDD \leq 5.5V	DVDD – 0.8			V
		I _{OL} = 20μA			0.1	V
V _{OL}	Low-level output voltage	I _{OL} = 4mA			0.4	V
POWER	SUPPLY					
AVDD	High-side supply voltage		4.5	5	5.5	V
DVDD	Controller-side supply voltage		2.7	3.3	5.5	V
I _{AVDD}	High-side supply current	4.5V ≤ AVDD ≤ 5.5V		11	16	mA
		2.7V ≤ DVDD ≤ 3.6V		2	4	mA
IDVDD	Controller-side supply current	$4.5V \le DVDD \le 5.5V$		2.8	5	mA
PD	Power dissipation	AVDD = 5.5V, DVDD = 3.6V		61.6	102.4	mW

TEXAS INSTRUMENTS

www.ti.com

SBAS512B - APRIL 2011 - REVISED AUGUST 2011

PIN CONFIGURATION

(1) NC = no internal connection.

PIN DESCRIPTIONS

PIN NAME	PIN#	FUNCTION	DESCRIPTION
AVDD	1	Power	High-side power supply
VINP	2	Analog input	Noninverting analog input
VINN	3	Analog input	Inverting analog input
AGND	4, 8 ⁽¹⁾	Power	High-side ground
DGND	9, 16	Power	Controller-side ground
DATA	11	Digital output	Modulator data output
CLKIN	13	Digital input	Modulator clock input
DVDD	14	Power	Controller-side power supply
NC	5, 6, 7, 10, 12, 15	_	No internal connection; can be tied to any potential or left unconnected

(1) Both pins are connected internally via a low-impedance path; thus, only one of the pins must be tied to the ground plane.

TIMING INFORMATION

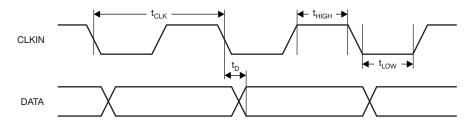
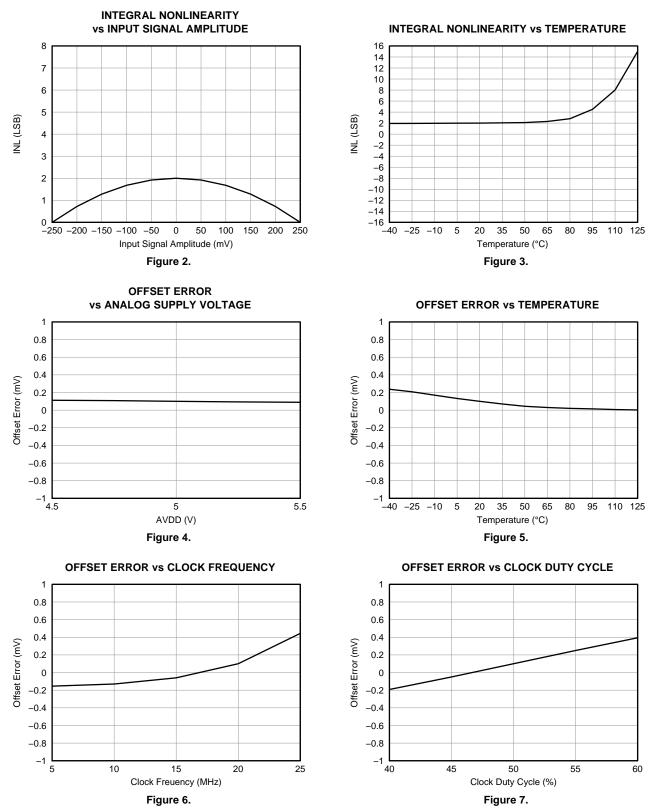


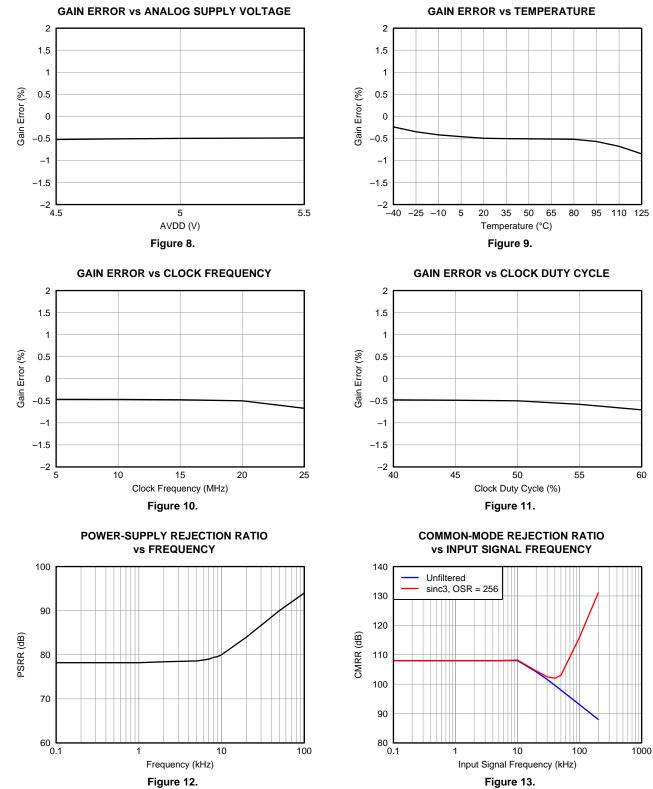
Figure 1. Modulator Output Timing

TIMING CHARACTERISTICS FOR Figure 1


Over recommended ranges of supply voltage and operating free-air temperature, unless otherwise noted.

	PARAMETER	MIN	TYP	MAX	UNIT
t _{CLK}	CLKIN clock period	45.5	50	200	ns
t _{HIGH}	CLKIN clock high time	20	25	120	ns
t _{LOW}	CLKIN clock low time	20	25	120	ns
t _D	Delayed falling edge of CLKIN to DATA valid	2		15	ns

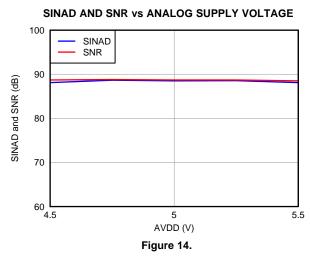
At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.

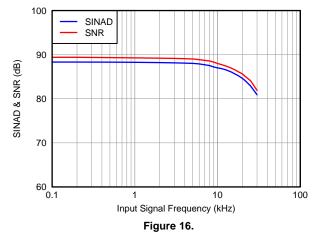


www.ti.com

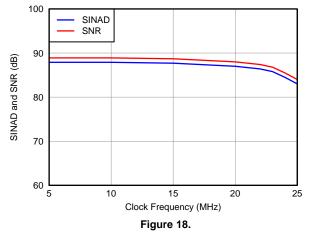
TYPICAL CHARACTERISTICS (continued)

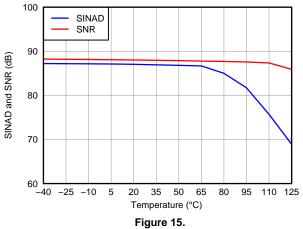
At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.

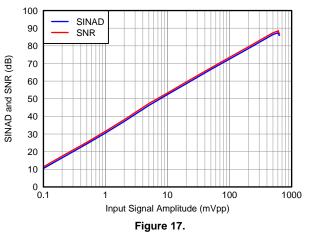



SBAS512B-APRIL 2011-REVISED AUGUST 2011

TYPICAL CHARACTERISTICS (continued)


At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.


SINAD AND SNR vs INPUT SIGNAL FREQUENCY



SINAD AND SNR vs TEMPERATURE

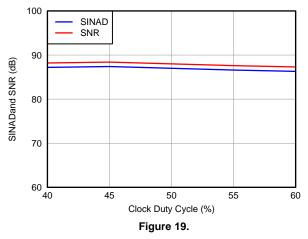
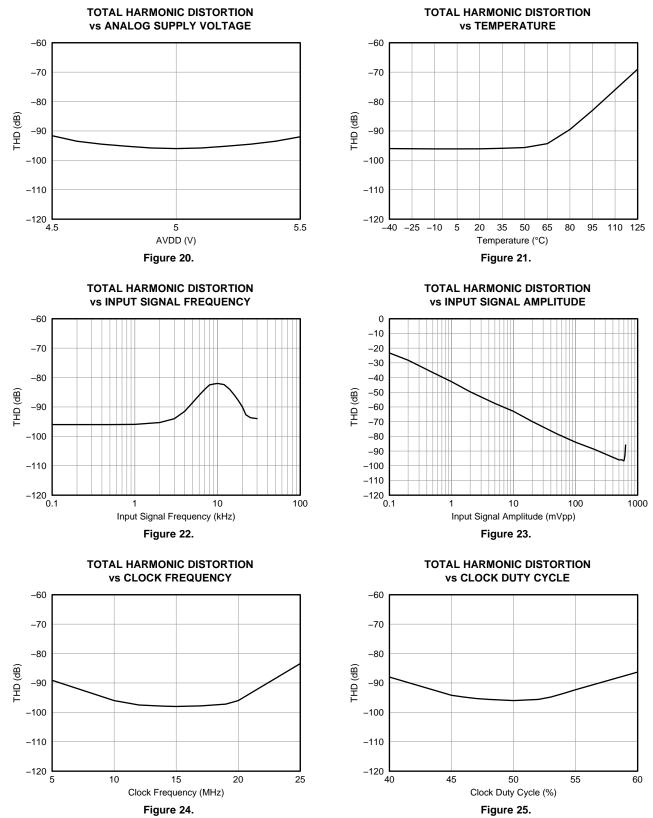


Figure 15.

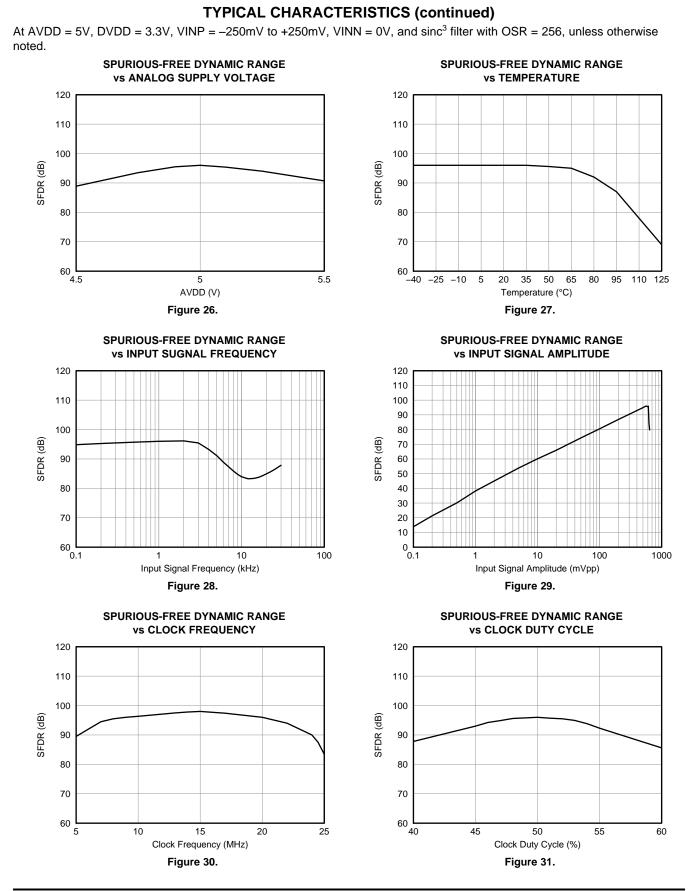
SINAD AND SNR vs INPUT SIGNAL AMPLITUDE

SINAD AND SNR vs CLOCK DUTY CYCLE

Copyright © 2011, Texas Instruments Incorporated

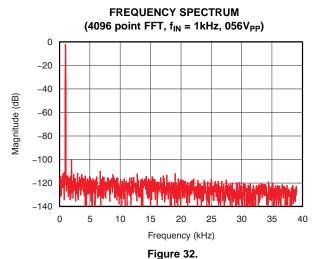


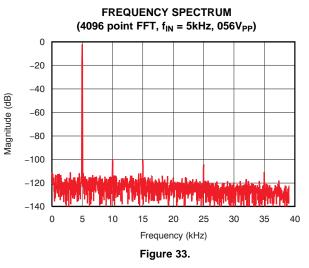
www.ti.com

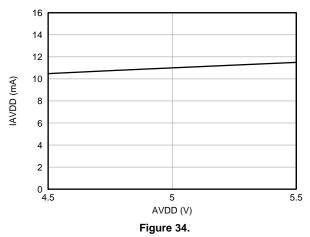

TYPICAL CHARACTERISTICS (continued)

At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.

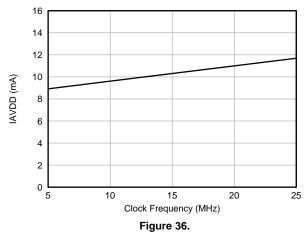
SBAS512B - APRIL 2011 - REVISED AUGUST 2011

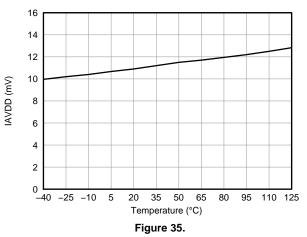

Copyright © 2011, Texas Instruments Incorporated

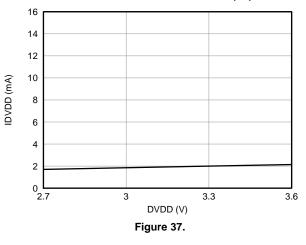



TYPICAL CHARACTERISTICS (continued)

At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.

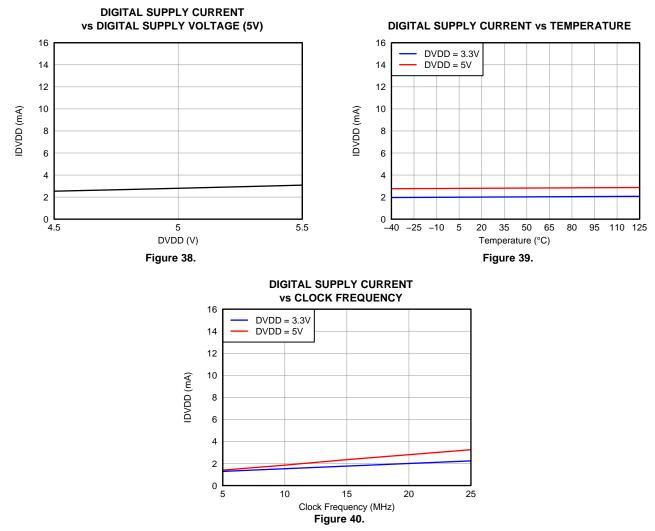



ANALOG SUPPLY CURRENT vs ANALOG SUPPLY VOLTAGE


ANALOG SUPPLY CURRENT vs CLOCK FREQUENCY

ANALOG SUPPLY CURRENT vs TEMPERATURE

DIGITAL SUPPLY CURRENT vs DIGITAL SUPPLY VOLTAGE (3V)



www.ti.com

TYPICAL CHARACTERISTICS (continued)

At AVDD = 5V, DVDD = 3.3V, VINP = -250mV to +250mV, VINN = 0V, and sinc³ filter with OSR = 256, unless otherwise noted.

SBAS512B-APRIL 2011-REVISED AUGUST 2011

GENERAL DESCRIPTION

The AMC1204 is a single-channel, second-order, delta-sigma ($\Delta\Sigma$) modulator designed for medium- to high-resolution analog-to-digital conversions. The isolated output of the converter (DATA) provides a stream of digital ones and zeros. The time average of this serial output is proportional to the analog input voltage.

Figure 41 shows a detailed block diagram of the AMC1204. The analog input range is tailored to directly accommodate a voltage drop across a shunt resistor used for current sensing. The SiO₂-based capacitive isolation barrier supports a high level of magnetic field immunity as described in the application report *ISO72x Digital Isolator Magnetic-Field Immunity* (SLLA181A, available for download at www.ti.com). The external clock input simplifies the synchronization of multiple current sense channels on system level. The extended frequency range of up to 20MHz supports higher performance levels compared to the other solutions available on the market.

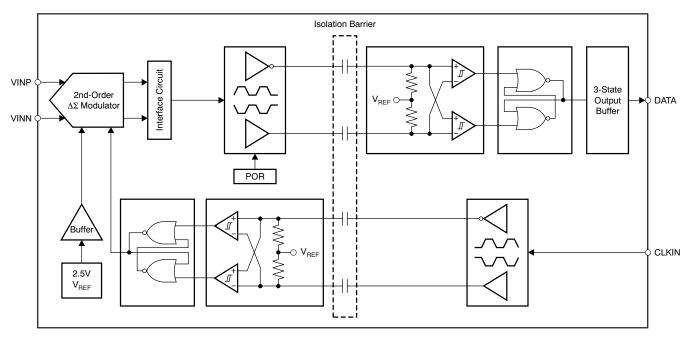


Figure 41. Detailed Block Diagram

THEORY OF OPERATION

The differential analog input of the AMC1204 is implemented with a switched-capacitor circuit. This switched-capacitor circuit implements a second-order modulator stage that digitizes the input signal into a 1-bit output stream. The externally-provided clock source at the CLKIN pin is used by the capacitor circuit and the modulator and should be in the range of 5MHz to 22MHz. The analog input signal is continuously sampled by the modulator and compared to an internal voltage reference. A digital stream, accurately representing the analog input voltage over time, appears at the output of the converter at the DATA pin.

ANALOG INPUT

The AMC1204 measures the differential input signal $V_{IN} = (VINP - VINN)$ against the internal reference of 2.5V using internal capacitors that are continuously charged and discharged. Figure 42 shows the simplified schematic of the ADC input circuitry; the right side of Figure 42 illustrates the input circuitry with the capacitors and switches replaced by an equivalent circuit.

In Figure 42, the S₁ switches close during the input sampling phase. With the S₁ switches closed, C_{DIFF} charges to the voltage difference across VINP and VINN. For the discharge phase, both S₁ switches open first and then both S₂ switches close. C_{DIFF} discharges approximately to AGND + 0.8V during this phase. This two-phase sample/discharge cycle repeats with a period of $t_{CLKIN} = 1/f_{CLKIN}$. fc the operating frequency of the modulator. The capacitors C_{IP} and C_{IN} are of parasitic nature and caused by bonding wires and the internal ESD protection structure.

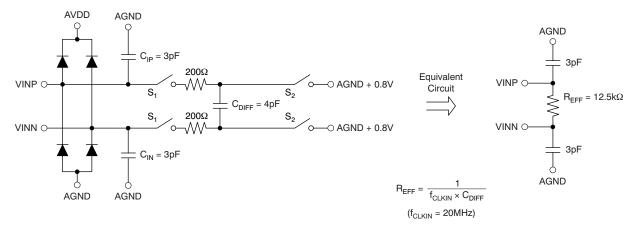


Figure 42. Equivalent Analog Input Circuit

The input impedance becomes a consideration in designs with high input signal source impedance. This high impedance may cause degradation in gain, linearity, and THD. The importance of this effect, however, depends on the desired system performance. This input stage provides the mechanism to achieve low system noise, high common-mode rejection (105dB), and excellent power-supply rejection.

There are two restrictions on the analog input signals VINP and VINN. First, if the input voltage exceeds the range AGND – 0.5V to AVDD + 0.3V, the input current must be limited to 10mA because the input protection diodes on the front end of the converter begin to turn on. In addition, the linearity and the noise performance of the device are ensured only when the differential analog input voltage remains within ±250mV.

MODULATOR

www.ti.com

The modulator topology of the AMC1204 is fundamentally a second-order, switched-capacitor, $\Delta\Sigma$ modulator, such as the one conceptualized in Figure 43. The analog input voltage (X_(t)) and the output of the 1-bit digital-to-analog converter (DAC) are differentiated, providing an analog voltage (X₂) at the input of the first integrator or modulator stage. The output of the first integrator is further differentiated with the DAC output; the resulting voltage (X₃) feeds the input of the second integrator stage. When the value of the integrated signal (X₄) at the output of the second stage equals the comparator reference voltage, the output of the comparator switches from high to low, or vice versa, depending on its previous state. In this case, the 1-bit DAC responds on the next clock pulse by changing its analog output voltage (X₆), causing the integrators to progress in the opposite direction, while forcing the value of the integrator output to track the average of the input.

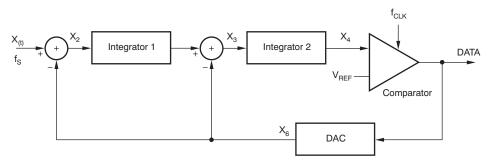


Figure 43. Block Diagram of a Second-Order Modulator

The modulator shifts the quantization noise to high frequencies, as shown in Figure 44; therefore, a low-pass digital filter should be used at the output of the device to increase the overall performance. This filter is also used to convert from the 1-bit data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). A digital signal processor (DSP), microcontroller (μ C), or field programmable gate array (FPGA) can be used to implement the filter. Another option is to use a suitable application-specific device such as the AMC1210, a four-channel digital sinc-filter.

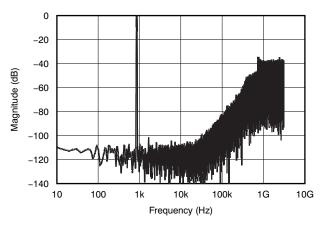


Figure 44. Quantization Noise Shaping

DIGITAL OUTPUT

A differential input signal of 0V ideally produces a stream of ones and zeros that are high 50% of the time and low 50% of the time. A differential input of +250mV produces a stream of ones and zeros that are high 78.1% of the time. A differential input of -250mV produces a stream of ones and zeros that are high 21.9% of the time. This is also the specified linear input range of the modulator with the performance as specified in this data sheet. The range between 250mV and 320mV (absolute values) is the non-linear range of the modulator. The output of the modulator clipps with a stream of only zeros with an input less than or equal to -320mV or with a stream of only ones with an input greater than or equal to 320mV. The input voltage versus the output modulator signal is shown in Figure 45.

The system clock of the AMC1204 is typically 20MHz and is provided externally at the CLKIN pin. The data are synchronously provided at 20MHz at the DATA output pin. The data are changing at the falling edge of CLKIN; for more details see the Timing Information section.

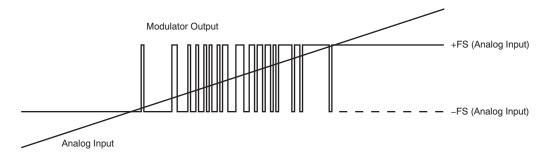
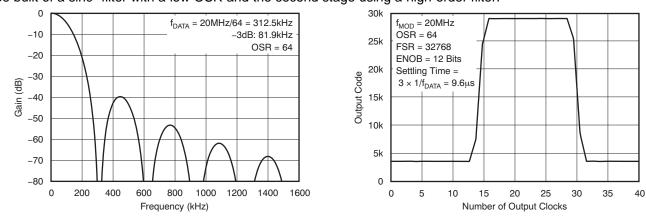


Figure 45. Analog Input versus AMC1204 Modulator Output

FILTER USAGE

The modulator generates a bit stream that is processed by a digital filter to obtain a digital word similar to a conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, built with minimal effort and hardware, is a sinc³-type filter, as shown in Equation 1:


$$H(z) = \left(\frac{1 - z^{-OSR}}{1 - z^{-1}}\right)^{3}$$
(1)

This filter provides the best output performance at the lowest hardware size (count of digital gates). For an oversampling rate (OSR) in the range of 16 to 256, this filter is a good choice. All the characterization in this document is also done with a sinc³ filter with OSR = 256 and an output word width of 16 bits.

www.ti.com

In a sinc³ filter response (shown in Figure 46 and Figure 47), the location of the first notch occurs at the frequency of output data rate $f_{DATA} = f_{CLK}/OSR$. The –3dB point is located at half the Nyquist frequency or $f_{DATA}/4$. For some applications, it may be necessary to use another filter type with different frequency response. Performance can be improved, for example, by using a cascaded filter structure. The first decimation stage could be built of a sinc³ filter with a low OSR and the second stage using a high-order filter.

The effective number of bits (ENOB) is often used to compare the performance of ADCs and $\Delta\Sigma$ modulators. Figure 48 illustrates the ENOB of the AMC1204 with different oversampling ratios. In this data sheet, this number is calculated from SNR using Equation 2:

$$SNR = 1.76dB + 6.02dB \times ENOB$$

(2)

In motor control applications, a very fast response time for overcurrent detection is required. The time for fully settling the filter depends on its order; that is, a sinc³ filter requires three data clocks for full settling (with $f_{DATA} = f_{CLK}/OSR$). Therefore, for overcurrent protection, filter types other than sinc³ might be a better choice; an alternative is the sinc² filter. Figure 49 compares the settling times of different filter orders with sincfast being a modified sinc² filter with behavior as shown in Equation 3.

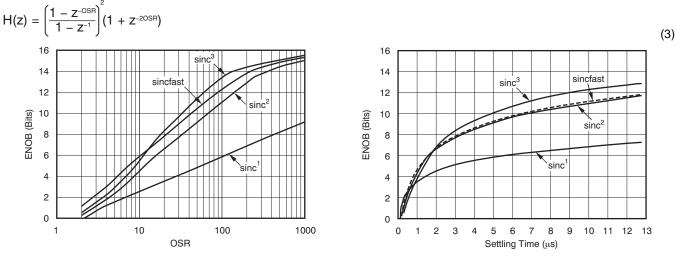


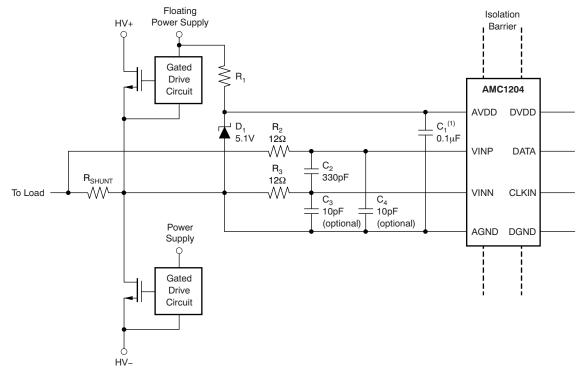
Figure 48. Measured Effective Number of Bits versus Oversampling Ratio

Figure 47. Pole Response of the Sinc³ Filter

SBAS512B-APRIL 2011-REVISED AUGUST 2011

An example code for an implementation of a sinc³ filter in an FPGA follows. For more information, see the application note *Combining ADS1202 with FPGA Digital Filter for Current Measurement in Motor Control Applications (SBAA094)*, available for download at www.ti.com.

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity FLT is
  port(RESN, MOUT, MCLK, CNR : in std_logic;
      CN5 : out std_logic_vector(23 downto 0));
end FLT;
architecture RTL of FLT is
  signal DN0, DN1, DN3, DN5 : std_logic_vector(23 downto 0);
  signal CN1, CN2, CN3, CN4 : std_logic_vector(23 downto 0);
  signal DELTA1 : std_logic_vector(23 downto 0);
begin
process(MCLK, RESn)
 begin
    if RESn = '0' then
     DELTA1 <= (others => '0');
    elsif MCLK'event and MCLK = '1' then
      if MOUT = '1' then
        DELTA1 <= DELTA1 + 1;
      end if;
    end if;
  end process;
process(RESN, MCLK)
  begin
    if RESN = '0' then
      CN1 <= (others => '0');
      CN2 <= (others => '0');
    elsif MCLK'event and MCLK = '1' then
      CN1 <= CN1 + DELTA1;
     CN2 \leq CN2 + CN1;
    end if;
  end process;
process(RESN, CNR)
  begin
    if RESN = '0' then
     DN0 <= (others => '0');
     DN1 <= (others => '0');
     DN3 <= (others => '0');
     DN5 <= (others => '0');
    elsif CNR'event and CNR = '1' then
      DNO <= CN2;
     DN1 \leq DN0;
      DN3 <= CN3;
     DN5 <= CN4;
    end if;
  end process;
CN3 <= DN0 - DN1;
CN4 <= CN3 - DN3;
CN5 <= CN4 - DN5;
end RTL;
```



SBAS512B - APRIL 2011 - REVISED AUGUST 2011

APPLICATION INFORMATION

A typical operation of the AMC1204 in a motor control application is shown in Figure 50. Measurement of the motor phase current is done via the shunt resistor R_{SHUNT} (in this case, a two-terminal shunt). For better performance, the differential signal is filtered using RC filters (components R_2 , R_3 , and C_2). Optionally, C_3 and C_4 can be used to reduce charge dumping from the inputs. In this case, care should be taken when choosing the quality of these capacitors—mismatch in values of these capacitors leads to a common-mode error at the input of the modulator.

The high-side power supply for the AMC1204 (AVDD) is derived from the power supply of the upper gate driver. For lowest cost, a zener diode can be used to limit the voltage to 5V ±10%. A decoupling capacitor of 0.1 μ F is recommended for filtering this power-supply path. This capacitor (C₁ in Figure 50) should be placed as close as possible to the AVDD pin for best performance. If better filtering is required, an additional 1 μ F to 10 μ F capacitor can be used. The floating ground reference AGND is derived from the end of the shunt resistor, which is connected to the negative input of the AMC1204 (VINN). If a four-terminal shunt is used, the inputs of AMC1204 are connected to the inner leads, while AGND is connected to one of the outer leads of the shunt. Both digital signals, CLKIN and DATA, can be directly connected to a digital filter (for example, the AMC1210); see Figure 51.

(1) Place C_1 close to the AMC1204.

Figure 50. Typical Application Diagram

SBAS512B-APRIL 2011-REVISED AUGUST 2011

Figure 51 shows an example of two AMC1204s and one ADS1209 (a dual-channel, 10MHz, non-isolated modulator) connected to an AMC1210, building the entire analog front-end of a resolver-based motor control application.

For detailed information on the ADS1209 and AMC1210, visit the respective device product folders at www.ti.com.

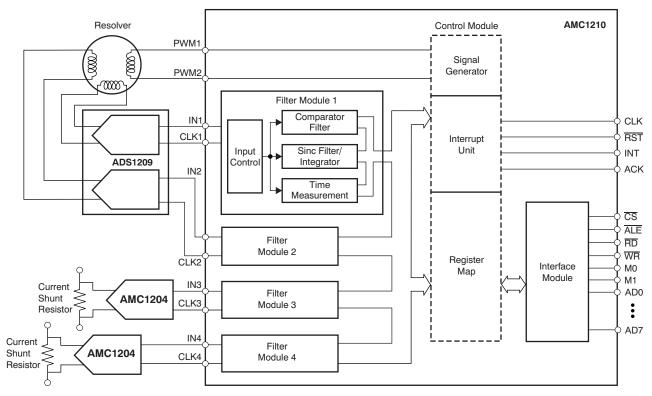
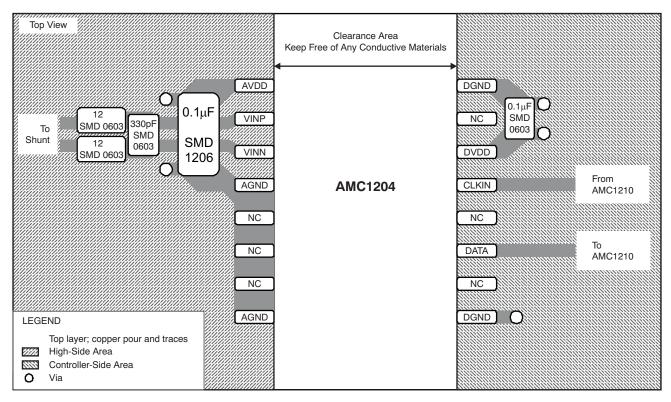
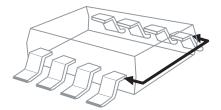
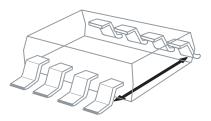


Figure 51. Example of a Resolver-Based Motor Control Analog Front-End

A layout recommendation showing the critical placement of the decoupling capacitor on the high-side and placement of the other components required by the AMC1204 is presented in Figure 52.


Figure 52. Recommended Layout

ISOLATION GLOSSARY

Creepage Distance: The shortest path between two conductive input to output leads measured along the surface of the insulation. The shortest distance path is found around the end of the package body.

Clearance: The shortest distance between two conductive input to output leads measured through air (line of sight).

Input-to-Output Barrier Capacitance: The total capacitance between all input terminals connected together, and all output terminals connected together.

Input-to-Output Barrier Resistance: The total resistance between all input terminals connected together, and all output terminals connected together.

Primary Circuit: An internal circuit directly connected to an external supply mains or other equivalent source that supplies the primary circuit electric power.

Secondary Circuit: A circuit with no direct connection to primary power that derives its power from a separate isolated source.

Comparative Tracking Index (CTI): CTI is an index used for electrical insulating materials. It is defined as the numerical value of the voltage that causes failure by tracking during standard testing. Tracking is the process that produces a partially conducting path of localized deterioration on or through the surface of an insulating material as a result of the action of electric discharges on or close to an insulation surface. The higher CTI value of the insulating material, the smaller the minimum creepage distance.

Generally, insulation breakdown occurs either through the material, over its surface, or both. Surface failure may arise from flashover or from the progressive degradation of the insulation surface by small localized sparks. Such sparks are the result of the breaking of a surface film of conducting contaminant on the insulation. The resulting break in the leakage current produces an overvoltage at the site of the discontinuity, and an electric spark is generated. These sparks often cause carbonization on insulation material and lead to a carbon track between points of different potential. This process is known as tracking.

Insulation:

Operational insulation—Insulation needed for the correct operation of the equipment.

Basic insulation—Insulation to provide basic protection against electric shock.

Supplementary insulation—Independent insulation applied in addition to basic insulation in order to ensure protection against electric shock in the event of a failure of the basic insulation.

Double insulation—Insulation comprising both basic and supplementary insulation.

Reinforced insulation—A single insulation system that provides a degree of protection against electric shock equivalent to double insulation.

Pollution Degree:

Pollution Degree 1—No pollution, or only dry, nonconductive pollution occurs. The pollution has no influence on device performance.

Pollution Degree 2—Normally, only nonconductive pollution occurs. However, a temporary conductivity caused by condensation is to be expected.

Pollution Degree 3—Conductive pollution, or dry nonconductive pollution that becomes conductive because of condensation, occurs. Condensation is to be expected.

Pollution Degree 4—Continuous conductivity occurs as a result of conductive dust, rain, or other wet conditions.

Installation Category:

Overvoltage Category—This section is directed at insulation coordination by identifying the transient overvoltages that may occur, and by assigning four different levels as indicated in IEC 60664.

- 1. Signal Level: Special equipment or parts of equipment.
- 2. Local Level: Portable equipment, etc.
- 3. Distribution Level: Fixed installation.
- 4. Primary Supply Level: Overhead lines, cable systems.

Each category should be subject to smaller transients than the previous category.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (April 2011) to Revision B						
•	Changed value of V_{IOSM} parameter in IEC 61000-4-5 Ratings table	3				

Changes from Original (April 2011) to Revision A

•	Changed Analog input voltage at VINP, VINN parameter maximum specification in Absolute Maximum Ratings table	2
•	Changed Safety input, output, or supply current parameter maximum specification in IEC Safety Limiting Values table	. 3
•	Updated Figure 3	8
•	Updated Figure 22	11
•	Updated Figure 28	12

Page

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
AMC1204DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
AMC1204DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

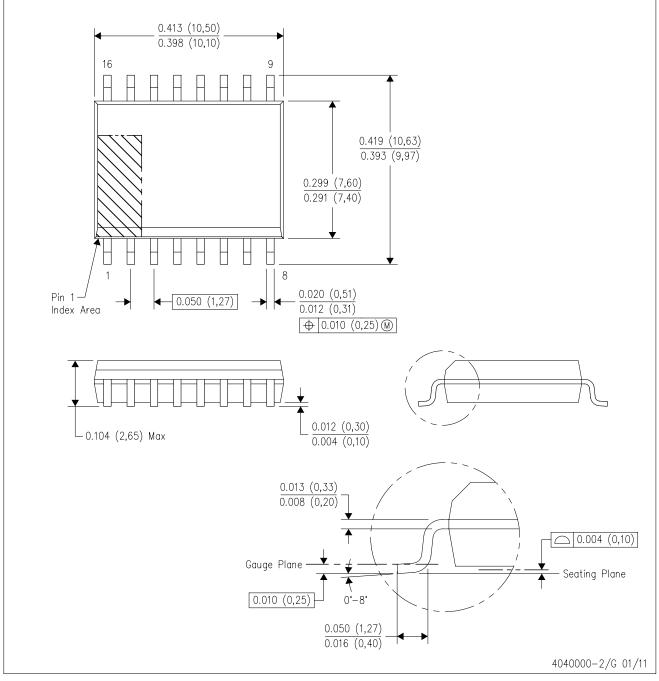
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

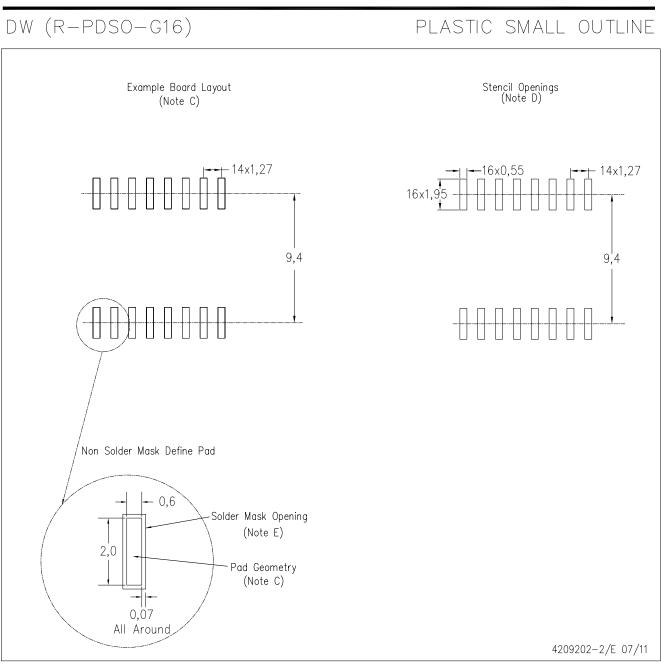
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connctivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated