

SBAS533-MARCH 2011

Dual-Channel, 12-/14-Bit, 65/125/160MSPS Ultralow-Power ADC

Check for Samples: ADS4222, ADS4225, ADS4226, ADS4242, ADS4245, ADS4246

FEATURES

www.ti.com

- Ultralow Power with Single 1.8V Supply, CMOS Output:
 - 211mW total power at 65MSPS
 - 326mW total power at 125MSPS
 - 391mW total power at 160MSPS
- **High Dynamic Performance:**
 - 82dBc SFDR at 170MHz
 - 71.2dBFS SNR at 170MHz
- Crosstalk: > 90dB at 185MHz
- Programmable Gain up to 6dB for SNR/SFDR Trade-off
- **DC Offset Correction**
- **Output Interface Options:**
 - 1.8V parallel CMOS interface
 - Double data rate (DDR) LVDS with programmable swing:
 - Standard swing: 350mV
 - Low swing: 200mV
- Supports Low Input Clock Amplitude Down to 200mV_{PP}
- Package: QFN-64 (9mm × 9mm)

APPLICATIONS

- Wireless Communications Infrastructure
- **Software Defined Radio**
- **Power Amplifier Linearization**

DESCRIPTION

The ADS422x/424x are low-speed variants of the ADS42xx ultralow-power family of dual-channel, 12-bit/14-bit analog-to-digital converters (ADCs). Innovative design techniques are used to achieve high-dynamic performance. while consuming extremely low power with 1.8V supply. This topology makes the ADS422x/424x well-suited for multi-carrier, wide-bandwidth communications applications.

The ADS422x/424x have gain options that can be used to improve SFDR performance at lower full-scale input ranges. These devices include a dc offset correction loop that can be used to cancel the ADC offset. Both DDR (double data rate) LVDS and parallel CMOS digital output interfaces are available in a compact QFN-64 PowerPAD™ package.

The devices include internal references while the traditional reference pins and associated decoupling capacitors have been eliminated. All devices are specified over the industrial temperature range (-40°C to +85°C).

		·····, · ····,		
	65MSPS	125MSPS	160MSPS	250MSPS
ADS422x 12-bit family	ADS4222	ADS4225	ADS4226	ADS4229
ADS424x 14-bit family	ADS4242	ADS4245	ADS4246	ADS4249

ADS424x/2x Family Comparison⁽¹⁾

(1) See for details on migrating from the ADS62P49 family.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments Incorporated.

All other trademarks are the property of their respective owners.

SBAS533-MARCH 2011

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	ECO PLAN ⁽²⁾	LEAD/BALL FINISH	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA		
ADS4222 ⁽³⁾	QFN-64	RGC	-40°C to +85°C	GREEN (RoHS, no	Cu/NiPdAu	AZ4222	ADS4222IRGCT	Tape and reel		
AD54222**	QFIN-04	RGC	-40 C 10 +85 C	Sb/Br)	Cu/NIPdAu	AZ4ZZZ	ADS4222IRGCR	Tape and reel		
ADS4225 ⁽³⁾	QFN-64	RGC	–40°C to +85°C	GREEN (RoHS, no	Cu/NiPdAu	AZ4225	ADS4225IRGCT	Tape and reel		
AD34223	QF11-04	KGC	-40 C 10 +65 C	Sb/Br)	Cu/NIFuAu	AL4225	ADS4225IRGCR	Tape and reel		
ADS4226	QFN-64	RGC	–40°C to +85°C	GREEN (RoHS, no	Cu/NiPdAu	AZ4226	ADS4226IRGCT	Tape and reel		
AD54226	QFIN-04	RGC	-40 C 10 +85 C	Sb/Br)	Cu/NIPdAu	AZ4220	ADS4226IRGCR	Tape and reel		
ADS4242 ⁽³⁾	QFN-64	RGC	-40°C to +85°C	GREEN (RoHS, no	Cu/NiDdAu	AZ4242	ADS4242IRGCT	Tape and reel		
AD54242**	QFIN-04	RGC	Sb/Br) Cu/NiPuAu A242-				Sb/Br) Sb/Br)		ADS4242IRGCR	Tape and reel
ADS4245 ⁽³⁾	QFN-64	RGC	40°C to 195°C	GREEN (RoHS, no	Cu/NiPdAu	AZ4245	ADS4245IRGCT	Tape and reel		
AD54245	QFIN-04	RGC	–40°C to +85°C	Sb/Br)	Cu/NIPdAu	AZ4245	ADS4245IRGCR	Tape and reel		
ADS4246 ⁽³⁾	QFN-64	RGC	-40°C to +85°C	GREEN (RoHS, no	Cu/NiDdAu	AZ4246	ADS4246IRGCT	Tape and reel		
AD34246	QF11-04	KGC	-40 C 10 +85 C	Sb/Br)			ADS4246IRGCR	Tape and reel		

ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

(2) Eco Plan is the planned eco-friendly classification. Green (RoHS, no Sb/Br): TI defines Green to mean Pb-Free (RoHS compatible) and free of Bromine- (Br) and Antimony- (Sb) based flame retardants. Refer to the Quality and Lead-Free (Pb-Free) Data web site for more information.

(3) Product preview device.

The ADS422x/424x are pin-compatible with the previous generation ADS62P49 data converter; this architecture enables easy migration. However, there are some important differences between the two device generations, summarized in Table 1.

Table 1. Migrating from the ADS62P49

ADS62P49 FAMILY	ADS422x/424x FAMILY
PINS	
Pin 22 is NC (not connected)	Pin 22 is AVDD
Pins 38 and 58 are DRVDD	Pins 38 and 58 are NC (do not connect pins)
Pins 39 and 59 are DRGND	Pins 39 and 59 are NC (do not connect pins)
SUPPLY	
AVDD is 3.3V	AVDD is 1.8V
DRVDD is 1.8V	No change
INPUT COMMON-MODE VOLTAGE	
VCM is 1.5V	VCM is 0.95V
SERIAL INTERFACE	
Protocol: 8-bit register address and 8-bit register data	No change in protocol New serial register map
EXTERNAL REFERENCE	
Supported	Not supported

2

Copyright © 2011, Texas Instruments Incorporated

www.ti.com

SBAS533 - MARCH 2011

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

		ADS422x/424x		
		MIN	МАХ	UNIT
Supply voltage range, AVDD		-0.3	2.1	V
Supply voltage range, DRVDD		-0.3	2.1	V
Voltage between AGND and DRGN	D	-0.3	0.3	V
Voltage between AVDD to DRVDD	(when AVDD leads DRVDD)	-2.4	2.4	V
Voltage between DRVDD to AVDD	(when DRVDD leads AVDD)	-2.4	2.4	V
	INP_A, INM_A, INP_B, INM_B	-0.3 (Minimum 1.9, AVDD + 0.3)	V
Voltage applied to input pins	CLKP, CLKM ⁽²⁾	-0.3	AVDD + 0.3	V
	RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3	-0.3	3.9	V
Operating free-air temperature range	e, T _A	-40	+85	°C
Operating junction temperature rang	ge, T _J		+125	°C
Storage temperature range, T _{stg}		65	+150	°C
ESD rating	Human body model (HBM)		2	kV

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3V|). This configuration prevents the ESD protection diodes at the clock input pins from turning on.

THERMAL INFORMATION

		ADS42xx	
	THERMAL METRIC ⁽¹⁾	RGC	UNITS
		64 PINS	
θ _{JA}	Junction-to-ambient thermal resistance	23.9	
θ _{JCtop}	Junction-to-case (top) thermal resistance	10.9	
θ_{JB}	Junction-to-board thermal resistance	4.3	°C/W
ΨJT	Junction-to-top characterization parameter	0.1	C/VV
Ψ_{JB}	Junction-to-board characterization parameter	4.4	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	0.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SBAS533-MARCH 2011

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range, unless otherwise noted.

		ADS	6422x/42	24x	
PA	RAMETER	MIN	NOM	MAX	UNIT
SUPPLIES				·	
Analog supply voltage, AVDD		1.7	1.8	1.9	V
Digital supply voltage, DRVDD		1.7	1.8	1.9	V
ANALOG INPUTS					
Differential input voltage range			2		V _{PP}
Input common-mode voltage		VCM	± 0.05		V
Maximum analog input frequency with 2VPP inp	ut amplitude ⁽¹⁾		400		MHz
Maximum analog input frequency with 1VPP inp	ut amplitude ⁽¹⁾		600		MHz
CLOCK INPUT					
Input clock sample rate (ADS4222/ADS4242)					
Low-speed mode enabled (by default after rese	t)	1		65	MSPS
Input clock sample rate (ADS4225/ADS4245)					
Low-speed mode enabled ⁽²⁾		1		80	MSPS
Low-speed mode disabled ⁽²⁾ (by default after re-	set)	80		125	MSPS
Input clock sample rate (ADS4226/ADS4246)					
Low-speed mode enabled ⁽²⁾		1		80	MSPS
Low-speed mode disabled ⁽²⁾ (by default after re-	set)	80		160	MSPS
	Sine wave, ac-coupled	0.2	1.5		V _{PP}
Input clock amplitude differential	LVPECL, ac-coupled		1.6		V _{PP}
(V _{CLKP} – V _{CLKM})	LVDS, ac-coupled		0.7		V _{PP}
	LVCMOS, single-ended, ac-coupled		1.5		V
Input clock duty cycle					
Low-speed mode disabled		35	50	65	%
Low-speed mode enabled		40	50	60	%
DIGITAL OUTPUTS					
Maximum external load capacitance from each	output pin to DRGND, C _{LOAD}		5		pF
Differential load resistance between the LVDS of	output pairs (LVDS mode), R _{LOAD}		100		Ω
HIGH-PERFORMANCE MODES ⁽³⁾⁽⁴⁾					
High-performance mode	Set the HIGH PERF MODE register bit to obtain best performance across sample clock and input signal frequencies. Register address = 03h, data = 03h				
High-frequency mode	Set the HIGH FREQ MODE CH A and HIGH FREQ MODE CH B register bits for high input signal frequencies greater than 200MHz. Register address = 4Ah, data = 01h Register address = 58h, data = 01h				
Operating free-air temperature, T _A		-40		+85	°C

(1) See the *Theory of Operation* section in the Application Information.

(2) See the Serial Interface Configuration section for details on programming the low-speed mode.

(3) It is recommended to use these modes to obtain best performance.

(4) See the Serial Interface Configuration section for details on register programming.

4

Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246

www.ti.com

SBAS533 - MARCH 2011

www.ti.com

ELECTRICAL CHARACTERISTICS: ADS4222/ADS4225/ADS4226

Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, -1dBFS differential analog input, LVDS interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range: $T_{MIN} = -40^{\circ}C$ to $T_{MAX} = +85^{\circ}C$, AVDD = 1.8V, and DRVDD = 1.8V.

			ADS4222 (65MSI	PS)	ADS4225 (125MSPS)			ADS4226 (160MSPS)			
PARAMETER		TEST CONDITIONS	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Resolution				12			12			12	Bits
		f _{IN} = 20MHz	70.9			70.8			70.5		dBFS
		f _{IN} = 70MHz	70.3			70.5			70.3		dBFS
Signal-to-noise ratio	SNR	$f_{IN} = 100MHz$	70.2			70.3			70.1		dBFS
		f _{IN} = 170MHz	69.9			69.9		67.5	69.5		dBFS
		$f_{IN} = 300MHz$	68.2			68.1			68.2		dBFS
		$f_{IN} = 20MHz$	70.8			70.7			70.4		dBFS
		$f_{IN} = 70MHz$	70.2			70.3			70.1		dBFS
Signal-to-noise and distortion ratio	SINAD	$f_{IN} = 100MHz$	70.1			70.1			69.8		dBFS
		f _{IN} = 170MHz	68.7			69.5		66.5	69.3		dBFS
		$f_{IN} = 300MHz$	67.2			67.5			67.6		dBFS
		$f_{IN} = 20MHz$	91.8			88.9			86.6		dBc
		f _{IN} = 70MHz	88.8			86.7			84.7		dBc
Spurious-free dynamic range	SFDR	f _{IN} = 100MHz	87.3			85.3			82.2		dBc
		f _{IN} = 170MHz	85.3			88.0		70	82.0		dBc
		f _{IN} = 300MHz	74			78.1			78.4		dBc
		f _{IN} = 20MHz	88.1			86.2			84.4		dBc
		f _{IN} = 70MHz	85.6			84.0			81.6		dBc
Total harmonic distortion	THD	f _{IN} = 100MHz	85.1			83.0			81.2		dBc
		f _{IN} = 170MHz	82.2			84.2		68.5	80.8		dBc
		f _{IN} = 300MHz	73.2			75.5			76.5		dBc
		f _{IN} = 20MHz	91.8			88.9			86.6		dBc
		f _{IN} = 70MHz	88.8			86.7			84.7		dBc
Second-harmonic distortion	HD2	f _{IN} = 100MHz	87.3			85.3			82.2		dBc
		f _{IN} = 170MHz	85.3			88.0		70	82.0		dBc
		f _{IN} = 300MHz	74.0			78.1			78.4		dBc
		f _{IN} = 20MHz	95.2			93.9			92.3		dBc
		f _{IN} = 70MHz	90.7			89.5			86.4		dBc
Third-harmonic distortion	HD3	f _{IN} = 100MHz	96.2		· · · · ·	89.4			93.2		dBc
		f _{IN} = 170MHz	87.0			90.8		70	94.2		dBc
		f _{IN} = 300MHz	81.9			81.6			80.7		dBc
		f _{IN} = 20MHz	98.9		·····	95.8			90.8		dBc
		f _{IN} = 70MHz	97.5			94.4			92.8		dBc
Worst spur		f _{IN} = 100MHz	95.2			93.9			89.8		dBc
(other than second and third har	monics)	f _{IN} = 170MHz	93.1			91.0		75	89.7		dBc
		$f_{IN} = 300 \text{MHz}$	92.7			89.4			91.7		dBc
		$f_1 = 46MHz, f_2 = 50MHz,$									
Two-tone intermodulation distortion	IMD	each tone at $-7dBFS$ $f_1 = 185MHz, f_2 = 190MHz,$	98			96.9			96.2		dBFS
		each tone at –7dBFS 20-MHz full-scale signal on	92.9			92.8			83.6		dBFS
Crosstalk		channel under observation; 170-MHz full-scale signal on other channel	95			95			95		dB
Input overload recovery		Recovery to within 1% (of full-scale) for 6dB overload with sine-wave input	1			1			1		Clock cycle
AC power-supply rejection ratio	PSRR	For 100mV _{PP} signal on AVDD supply, up to 10MHz	30			30			30		dB
Effective number of bits	ENOB	f _{IN} = 170MHz	11.1			11.3			11.2		LSBs
Differential nonlinearity	DNL	f _{IN} = 170MHz	±0.13		· · · · ·	±0.13		-0.8	±0.13	1.5	LSBs
Integrated nonlinearity	INL	f _{IN} = 170MHz	±0.5			±0.5			±0.5	3.5	LSBs

Submit Documentation Feedback 5

www.ti.com

SBAS533-MARCH 2011

ELECTRICAL CHARACTERISTICS: ADS4242/ADS4245/ADS4246

Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, -1dBFS differential analog input, LVDS interface, and 0dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range: $T_{MIN} = -40$ °C to $T_{MAX} = +85$ °C, AVDD = 1.8V, and DRVDD = 1.8V.

PARAMETER			ADS4242	(65MSP	S)	ADS4245 (125MSPS)			ADS4246 (160MSPS)			
		TEST CONDITIONS	MIN TYP MAX			MIN TYP MAX			MIN TYP MAX			UNIT
Resolution					14			14			14	Bits
		$f_{IN} = 20MHz$		73.6			73.4			72.8		dBFS
		$f_{IN} = 70MHz$		72.5			72.9			72.5		dBFS
Signal-to-noise ratio	SNR	$f_{IN} = 100MHz$		72.3			72.6			72.2		dBFS
		f _{IN} = 170MHz		70.4			71.4			71.2		dBFS
		f _{IN} = 300MHz		69.4			69.3			69.4		dBFS
		f _{IN} = 20MHz		73.5			73.2			72.6		dBFS
		f _{IN} = 70MHz		72.3			72.6			72.1		dBFS
Signal-to-noise and distortion ratio	SINAD	f _{IN} = 100MHz		72.1			72.3			71.7		dBFS
		f _{IN} = 170MHz		70.2			71.2			70.8		dBFS
		f _{IN} = 300MHz		68.2			68.5			68		dBFS
		f _{IN} = 20MHz		91.8			88.9			86.6		dBc
		f _{IN} = 70MHz		88.8		· · ·	86.7			84.7		dBc
Spurious-free dynamic range	SFDR	f _{IN} = 100MHz		87.3			85.3			82.2		dBc
		f _{IN} = 170MHz		85.3		· · · · ·	88.0			82.0		dBc
		f _{IN} = 300MHz		74			78.1			78.4		dBc
		f _{IN} = 20MHz		88.1			86.2			84.4		dBc
		f _{IN} = 70MHz		85.6			84.0			81.6		dBc
Total harmonic distortion	THD	f _{IN} = 100MHz		85.1			83.0			81.2		dBc
		f _{IN} = 170MHz		82.2			84.2			80.8		dBc
		f _{IN} = 300MHz		73.2			75.5			76.5		dBc
		f _{IN} = 20MHz		91.8		· · ·	88.9			86.6		dBc
		f _{IN} = 70MHz		88.8		· · ·	86.7			84.7		dBc
Second-harmonic distortion	HD2	f _{IN} = 100MHz		87.3			85.3			82.2		dBc
		f _{IN} = 170MHz		85.3			88.0			82.0		dBc
		f _{IN} = 300MHz		74.0			78.1			78.4		dBc
		f _{IN} = 20MHz		95.2			93.9			92.3		dBc
		f _{IN} = 70MHz		90.7			89.5			86.4		dBc
Third-harmonic distortion	HD3	f _{IN} = 100MHz		96.2			89.4			93.2		dBc
	_	f _{IN} = 170MHz		87.0			90.8			94.2		dBc
		$f_{IN} = 300 \text{MHz}$		81.9		,	81.6			80.7		dBc
		f _{IN} = 20MHz		98.9		,	95.8			90.8		dBc
		f _{IN} = 70MHz		97.5		,	94.4			92.8		dBc
Worst spur		$f_{IN} = 100 MHz$		95.2		·	93.9			89.8		dBc
(other than second and third har	monics)	$f_{\rm IN} = 170 \rm MHz$		93.1			91.0			89.7		dBc
		$f_{\rm IN} = 300 \rm MHz$		92.7			89.4			91.7		dBc
		$f_1 = 46$ MHz, $f_2 = 50$ MHz,				······						
Two-tone intermodulation distortion	IMD	each tone at -7dBFS		98			96.9			96.2		dBFS
		$f_1 = 185MHz$, $f_2 = 190MHz$, each tone at $-7dBFS$		92.2			92.8			83.6		dBFS
Crosstalk		20-MHz full-scale signal on channel under observation; 170-MHz full-scale signal on other channel		95			95			95		dB
Input overload recovery		Recovery to within 1% (of full-scale) for 6dB overload with sine-wave input		1			1			1		Clock cycle
AC power-supply rejection ratio	PSRR	For 100mV _{PP} signal on AVDD supply, up to 10MHz		> 30			> 30			> 30		dB
Effective number of bits	ENOB	f _{IN} = 170MHz		11.4			11.5			11.5		LSBs
Differential nonlinearity	DNL	f _{IN} = 170MHz		±0.5			±0.5			±0.5		LSBs
Integrated nonlinearity	INL	f _{IN} = 170MHz		±2			±2			±2		LSBs

6

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

SBAS533 - MARCH 2011

www.ti.com

ELECTRICAL CHARACTERISTICS: GENERAL

Typical values are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, 50% clock duty cycle, and -1dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range: $T_{MIN} = -40$ °C to $T_{MAX} = +85$ °C, AVDD = 1.8V, and DRVDD = 1.8V.

PARAMETER	UNIT
LOG INPUTS	
rential input voltage range (0dB gain)	V _{PP}
rential input resistance (at 200MHz)	kΩ
rential input capacitance (at 200MHz)	pF
og input bandwidth 50 Ω source impedance, and 50 Ω termination)	MHz
og input common-mode current input pin of each channel)	µA/MSPS
mon-mode output voltage VCM	V
l output current capability	mA
ACCURACY	
et error	i mV
perature coefficient of offset error	mV/°C
error as a result of internal ence inaccuracy alone E _{GREF}	8 %FS
error of channel alone E _{GCHAN}	%FS
perature coefficient of E _{GCHAN}	∆%/°C
VER SUPPLY	
DD og supply current) mA
/DD but buffer supply current S interface, 350mV swing with 100 Ω external ination, f _{IN} = 2.5MHz	5 mA
/DD ut buffer supply current DS interface, 8pF external load capacitance, f _{IN} 5MHz ⁽¹⁾	mA
og power	mW
al power S interface, 350mV swing with 100Ω external ination, $f_{IN} = 2.5MHz$	mW
al power DS interface, 8pF external load capacitance ⁽¹⁾ 2.5MHz	mW
al power-down	i mW
$\frac{5MHz^{(1)}}{SMHz^{(1)}}$ og power al power S interface, 350mV swing with 100 Ω external ination, f _{IN} = 2.5MHz al power S interface, 8pF external load capacitance ⁽¹⁾ 2.5MHz	5

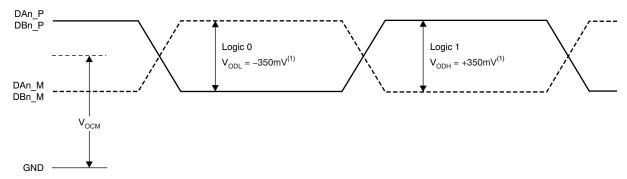
(1) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the supply voltage (see the CMOS Interface Power Dissipation section in the Application Information).

Submit Documentation Feedback 7

www.ti.com

SBAS533-MARCH 2011

DIGITAL CHARACTERISTICS


At AVDD = 1.8V and DRVDD = 1.8V, unless otherwise noted. DC specifications refer to the condition where the digital outputs do not switch, but are permanently at a valid logic level '0' or '1'.

			AI	DS422x/424x		
PA	RAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
DIGITAL INPUTS (RESET,	SCLK, SDATA, SEN, CTRL1, CTF	RL2, CTRL3) ⁽¹⁾	•			
High-level input voltage		All digital inputs support 1.8V	1.3			V
Low-level input voltage		and 3.3V CMOS logic levels			0.4	V
Ligh lovel input ourrest	SDATA, SCLK ⁽²⁾	V _{HIGH} = 1.8V		10		μA
High-level input current	SEN ⁽³⁾	V _{HIGH} = 1.8V		0		μA
	SDATA, SCLK	$V_{LOW} = 0V$		0		μA
Low-level input current	SEN	$V_{LOW} = 0V$		10		μA
DIGITAL OUTPUTS, CMOS	6 INTERFACE (DA[13:0], DB[13:0]	I, CLKOUT, SDOUT)				
High-level output voltage			DRVDD – 0.1	DRVDD		V
Low-level output voltage				0	0.1	V
Output capacitance (interna	I to device)					pF
DIGITAL OUTPUTS, LVDS	INTERFACE					
High-level output differential voltage	V _{ODH}	With an external 100Ω termination	270	350	430	mV
Low-level output differential voltage	V _{ODL}	With an external 100Ω termination	-430	-350	-270	mV
Output common-mode volta	ige V _{OCM}		0.9	1.05	1.25	V

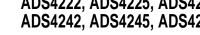
(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.

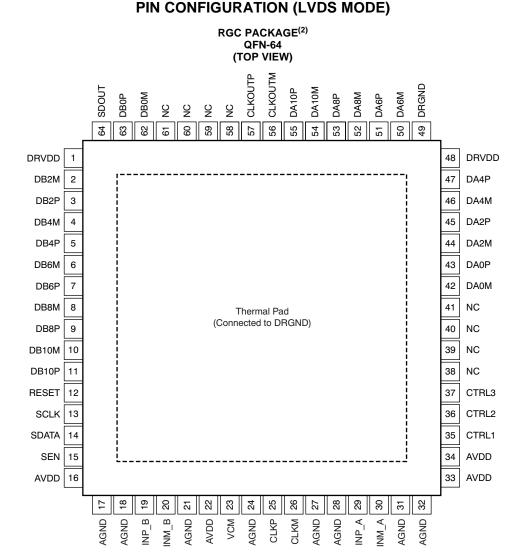
(2) SDATA, SCLK have internal $150k\Omega$ pull-down resistor.

(3) SEN has an internal 150kΩ pull-up resistor to AVDD. Because the pull-up is weak, SEN can also be driven by 1.8V or 3.3V CMOS buffers.

(1) With external 100Ω termination.

8


Figure 1. LVDS Output Voltage Levels


SBAS533 - MARCH 2011

www.ti.com

EXAS

INSTRUMENTS

(2) The PowerPAD is connected to DRGND.

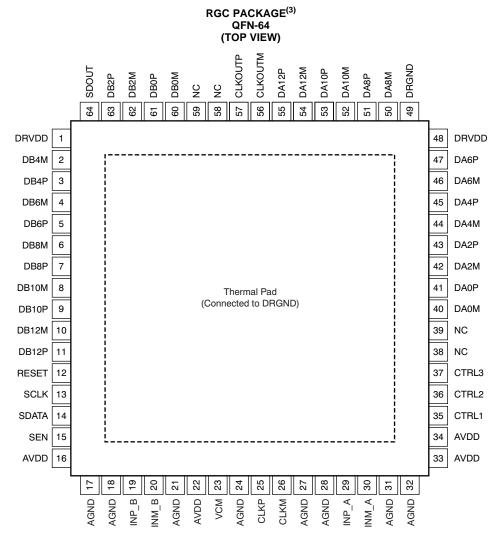

NOTE: NC = do not connect.

Figure 2. ADS4222/ADS4225/ADS4226 LVDS Pinout

SBAS533-MARCH 2011

EXAS NSTRUMENTS

www.ti.com

(3) The PowerPAD is connected to DRGND. NOTE: NC = do not connect.

Figure 3. ADS4242/ADS4245/ADS4246 LVDS Pinout

Pin Descriptions (LVDS Mode)

PIN NAME	PIN NUMBER	# OF PINS	FUNCTION	DESCRIPTION
AVDD	16, 22, 33, 34	4	Input	Analog power supply
AGND	17, 18, 21, 24, 27, 28, 31, 32	8	Input	Analog ground
CLKP	25	1	Input	Differential clock positive input
CLKM	26	1	Input	Differential clock negative input
INP_A	29	1	Input	Differential analog positive input, channel A
INM_A	30	1	Input	Differential analog negative input, channel A
INP_B	19	1	Input	Differential analog positive input, channel B
INM_B	20	1	Input	Differential analog negative input, channel B
VCM	23	1	Output	This pin outputs the common-mode voltage (0.95V) that can be used externally to bias the analog input pins

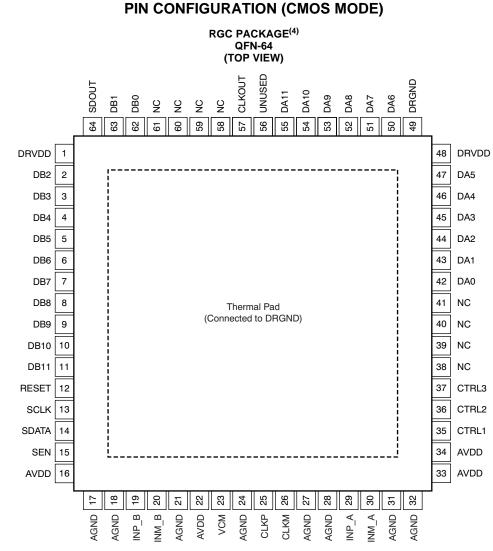
10

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

www.ti.com

SBAS533 - MARCH 2011

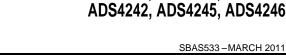

Pin Descriptions (LVDS Mode) (continued)

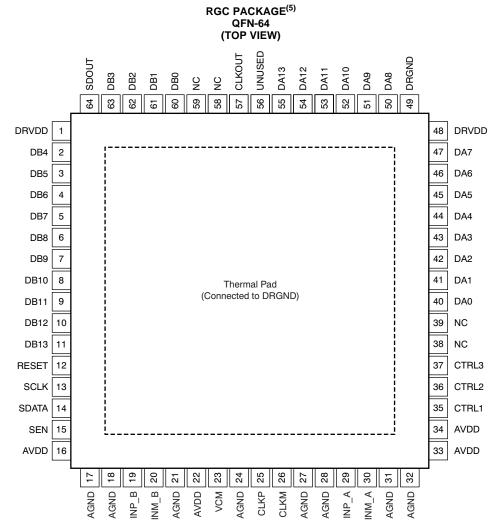
PIN NAME	PIN NUMBER	# OF PINS	FUNCTION	DESCRIPTION
RESET	12	1	Input	Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized through a hardware RESET by applying a high pulse on this pin or by using the software reset option; refer to the <i>Serial Interface Configuration</i> section. In parallel interface mode, the RESET pin must be permanently tied high. SCLK and SEN are used as parallel control pins in this mode. This pin has an internal 150k Ω pull-down resistor.
SCLK	13	1	Input	This pin functions as a serial interface clock input when RESET is low. It controls the low-speed mode selection when RESET is tied high; see Table 5 for detailed information. This pin has an internal $150k\Omega$ pull-down resistor.
SDATA	14	1	Input	Serial interface data input; this pin has an internal $150k\Omega$ pull-down resistor.
SEN	15	1	Input	This pin functions as a serial interface enable input when RESET is low. It controls the output interface and data format selection when RESET is tied high; see Table 6 for detailed information. This pin has an internal 150k Ω pull-up resistor to AVDD.
SDOUT	64	1	Output	This pin functions as a serial interface register readout when the READOUT bit is enabled. When READOUT = 0, this pin forces a logic low and is not put in 3-state.
CTRL1	35	1	Input	Digital control input pins. Together, they control the various power-down modes.
CTRL2	36	1	Input	Digital control input pins. Together, they control the various power-down modes.
CTRL3	37	1	Input	Digital control input pins. Together, they control the various power-down modes.
CLKOUTP	57	1	Output	Differential output clock, true
CLKOUTM	56	1	Output	Differential output clock, complement
DA0P, DA0M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data pair, D0 and D1 multiplexed
DA2P, DA2M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data D2 and D3 multiplexed
DA4P, DA4M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data D4 and D5 multiplexed
DA6P, DA6M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data D6 and D7 multiplexed
DA8P, DA8M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data D8 and D9 multiplexed
DA10P, DA10M	Refer to Figure 2 and Figure 3	2	Output	Channel A differential output data D10 and D11 multiplexed
DA12P, DA12M	Refer to Figure 3	2	Output	Channel A differential output data D12 and D13 multiplexed (ADS424x only)
DB0P, DB0M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data pair, D0 and D1 multiplexed
DB2P, DB2M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data D2 and D3 multiplexed
DB4P, DB4M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data D4 and D5 multiplexed
DB6P, DB6M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data D6 and D7 multiplexed
DB8P, DB8M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data D8 and D9 multiplexed
DB10P, DB10M	Refer to Figure 2 and Figure 3	2	Output	Channel B differential output data D10 and D11 multiplexed
DB12P, DB12M	Refer to Figure 3	2	Output	Channel B differential output data D12 and D13 multiplexed (ADS424x only)
DRVDD	1, 48	2	Input	Output buffer supply
DRGND	49, PAD	2	Input	Output buffer ground
NC	Refer to Figure 98, Figure 99, Figure 116, and Figure 117	8 (ADS422x) 4 (ADS424x)	_	Do not connect

SBAS533-MARCH 2011

www.ti.com

(4) The PowerPAD is connected to DRGND.NOTE: NC = do not connect.


Figure 4. ADS4222/ADS4225/ADS4226 CMOS Pinout


13

www.ti.com

EXAS

NSTRUMENTS

(5) The PowerPAD is connected to DRGND.

NOTE: NC = do not connect.

Figure 5. ADS4242/ADS4245/ADS4246 CMOS Pinout

www.ti.com

Pin Descriptions (CMOS Mode)

PIN NAME	PIN NUMBER	# OF PINS	FUNCTION	
AVDD	16, 22, 33, 34	4	Input	Analog power supply
AGND	17, 18, 21, 24, 27, 28, 31, 32	8	Input	Analog ground
CLKP	25	1	Input	Differential clock positive input
CLKM	26	1	Input	Differential clock negative input
INP_A	29	1	Input	Differential analog positive input, channel A
INM_A	30	1	Input	Differential analog negative input, channel A
INP_B	19	1	Input	Differential analog positive input, channel B
INM_B	20	1	Input	Differential analog negative input, channel B
VCM	23	1	Output	This pin outputs the common-mode voltage (0.95V) that can be used externally to bias the analog input pins
RESET	12	1	Input	Serial interface RESET input. When using the serial interface mode, the internal registers must be initialized through a hardware RESET by applying a high pulse on this pin or by using the software reset option; refer to the <i>Serial Interface Configuration</i> section. In parallel interface mode, the RESET pin must be permanently tied high. SDATA and SEN are used as parallel control pins in this mode. This pin has an internal 150k Ω pull-down resistor.
SCLK	13	1	Input	This pin functions as a serial interface clock input when RESET is low. It controls the low-speed mode when RESET is tied high; see Table 5 for detailed information. This pin has an internal $150k\Omega$ pull-down resistor.
SDATA	14	1	Input	Serial interface data input; this pin has an internal $150k\Omega$ pull-down resistor.
SEN	15	1	Input	This pin functions as a serial interface enable input when RESET is low. It controls the output interface and data format selection when RESET is tied high; see Table 6 for detailed information. This pin has an internal $150k\Omega$ pull-up resistor to AVDD.
SDOUT	64	1	Output	This pin functions as a serial interface register readout when the READOUT bit is enabled. When READOUT = 0, this pin forces a logic low and is not put in 3-state.
CTRL1	35	1	Input	Digital control input pins. Together, they control various power-down modes.
CTRL2	36	1	Input	Digital control input pins. Together, they control various power-down modes.
CTRL3	37	1	Input	Digital control input pins. Together, they control various power-down modes.
CLKOUT	57	1	Output	CMOS output clock
DA0 to DA11	Refer to Figure 4 and Figure 5	12	Output	Channel A ADC output data bits, CMOS levels
DA12 to DA13	Refer to Figure 5	2	Output	Channel A ADC output data bits, CMOS levels (ADS424x only)
DB0 to DB11	Refer to Figure 4 and Figure 5	12	Output	Channel B ADC output data bits, CMOS levels
DB12 to DB13	Refer to Figure 5	2	Output	Channel B ADC output data bits, CMOS levels (ADS424x only)
DRVDD	1, 48	2	Input	Output buffer supply
DRGND	49, PAD	2	Input	Output buffer ground
NC		1		Do not connect
UNUSED	56	1	—	This pin is not used in the CMOS interface

Copyright © 2011, Texas Instruments Incorporated

SBAS533 - MARCH 2011

www.ti.com

FUNCTIONAL BLOCK DIAGRAM

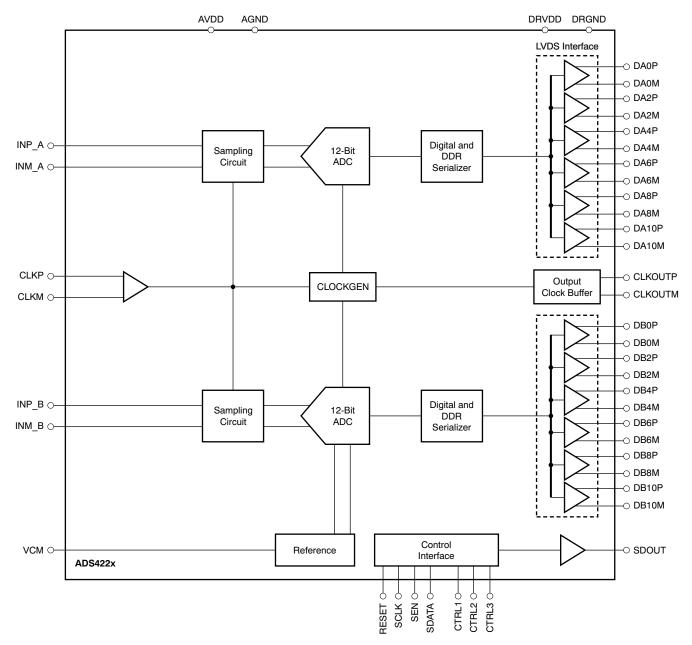


Figure 6. ADS4222/25/26 Block Diagram

SBAS533-MARCH 2011

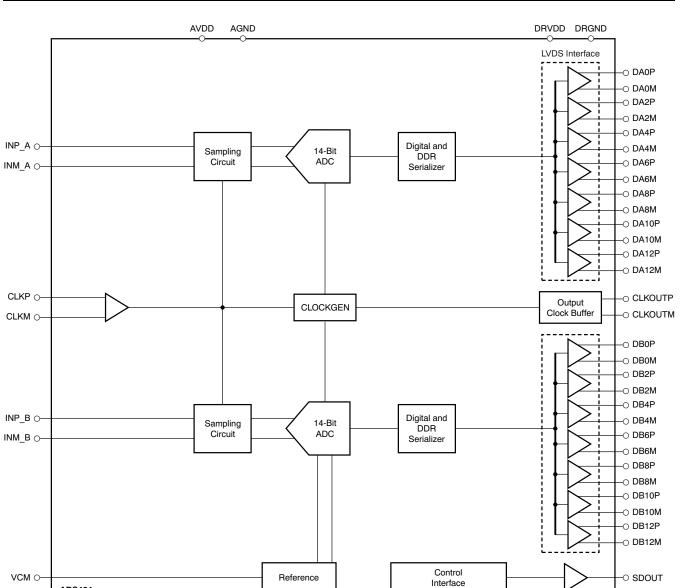


Figure 7. ADS4242/45/46 Block Diagram

ADS424x

CTRL2 O-CTRL3 O-

SCLK O-

RESET O-

SDATA O-CTRL1 O-

SEN O

Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246

www.ti.com

SBAS533-MARCH 2011

www.ti.com

STRUMENTS

TIMING CHARACTERISTICS: LVDS AND CMOS MODES⁽¹⁾

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8V, sampling frequency = 160MSPS, sine wave input clock, $1.5V_{PP}$ clock amplitude, $C_{LOAD} = 5pF^{(2)}$, and $R_{LOAD} = 100\Omega^{(3)}$, unless otherwise noted. Minimum and maximum values are across the full temperature range: $T_{MIN} = -40^{\circ}$ C to $T_{MAX} = +85^{\circ}$ C, AVDD = 1.8V, and DRVDD = 1.7V to 1.9V.

	PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
t _A	Aperture delay		0.5	0.8	1.1	ns
	Aperture delay matching	Between the two channels of the same device		±70		ps
	Variation of aperture delay	Between two devices at the same temperature and DRVDD supply		±150		ps
tj	Aperture jitter			140		f _S rms
	Wekeup time	Time to valid data after coming out of STANDBY mode		50	100	μs
	Wakeup time	Time to valid data after coming out of GLOBAL power-down mode		100	500	μs
	ADC latency ⁽⁴⁾	Default latency after reset		16		Clock cycles
		Digital functions enabled (EN DIGITAL = 1)		24	1.1	Clock cycles
DDR LVD	OS MODE ⁽⁵⁾					
t _{SU}	Data setup time	Data valid ⁽⁶⁾ to zero-crossing of CLKOUTP	1.5	2.0		ns
t _H	Data hold time	Zero-crossing of CLKOUTP to data becoming invalid $^{\rm (6)}$	0.35	0.6		ns
t _{PDI}	Clock propagation delay	Input clock rising edge cross-over to output clock rising edge cross-over	5.0	6.1	7.5	ns
	LVDS bit clock duty cycle	Duty cycle of differential clock, (CLKOUTP-CLKOUTM)		49		%
t _{RISE} , t _{FALL}	Data rise time, Data fall time	Rise time measured from -100 mV to $+100$ mV Fall time measured from $+100$ mV to -100 mV $1MSPS \le Sampling frequency \le 160MSPS$		0.13		ns
t _{CLKRISE} , t _{CLKFALL}	Output clock rise time, Output clock fall time	Rise time measured from -100 mV to $+100$ mV Fall time measured from $+100$ mV to -100 mV $1MSPS \le Sampling frequency \le 160MSPS$		0.13		ns
PARALLE	EL CMOS MODE	· · · · · · · · · · · · · · · · · · ·				
t _{SU}	Data setup time	Data valid ⁽⁷⁾ to zero-crossing of CLKOUT	1.6	2.5		ns
t _H	Data hold time	Zero-crossing of CLKOUT to data becoming invalid ⁽⁷⁾	2.3	2.7		ns
t _{PDI}	Clock propagation delay	Input clock rising edge cross-over to output clock rising edge cross-over	4.5	6.4	8.5	ns
	Output clock duty cycle	Duty cycle of output clock, CLKOUT $1MSPS \le Sampling frequency \le 160MSPS$		46		%
t _{RISE} , t _{FALL}	Data rise time, Data fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD $1MSPS \le Sampling frequency \le 160MSPS$		1		ns
t _{CLKRISE} , t _{CLKFALL}	Output clock rise time Output clock fall time	Rise time measured from 20% to 80% of DRVDD Fall time measured from 80% to 20% of DRVDD $1MSPS \le Sampling frequency \le 160MSPS$		1		ns

(1) Timing parameters are ensured by design and characterization and not tested in production.

(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground

(3) R_{LOAD} is the differential load resistance between the LVDS output pair.

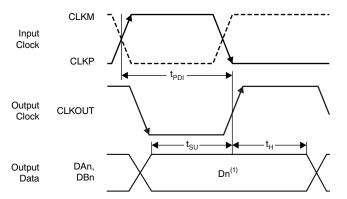
(4) At higher frequencies, t_{PDI} is greater than one clock period and overall latency = ADC latency + 1.

(5) Measurements are done with a transmission line of 100Ω characteristic impedance between the device and the load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.

(6) Data valid refers to a logic high of +100mV and a logic low of -100mV.

(7) Data valid refers to a logic high of 1.26V and a logic low of 0.54V

SBAS533-MARCH 2011


www.ti.com

				ings at Lo	wer oump	ing ricqu				
SAMPLING FREQUENCY	SETUP TIME (ns)			HOLD TIME (ns)			t _{PDI} , CLOCK PROPAGATION DELAY (ns)			
(MSPS)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
65	5.9	6.6		0.35	0.6		5.0	6.1	7.5	
80	4.5	5.2		0.35	0.6		5.0	6.1	7.5	
105	3.1	3.6		0.35	0.6		5.0	6.1	7.5	
125	2.3	2.9		0.35	0.6		5.0	6.1	7.5	
150	1.7	2.2		0.35	0.6		5.0	6.1	7.5	

Table 2. LVDS Timings at Lower Sampling Frequencies

Table 3. CMOS Timings at Lower Sampling Frequencies

		TIMINGS SPECIFIED WITH RESPECT TO CLKOUT								
SAMPLING FREQUENCY (MSPS)	SETUP TIME (ns)			HOLD TIME (ns)			t _{PDI} , CLOCK PROPAGATION DELAY (ns)			
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
65	6.1	7.2		6.7	7.1		4.5	6.4	8.5	
80	4.7	5.8		5.3	5.8		4.5	6.4	8.5	
105	3.4	4.3		3.8	4.3		4.5	6.4	8.5	
125	2.7	3.6		3.1	3.6		4.5	6.4	8.5	
150	1.9	2.8		2.5	2.9		4.5	6.4	8.5	

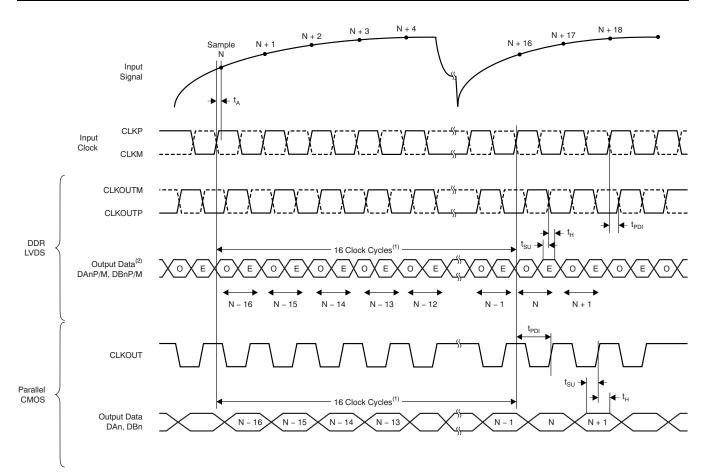
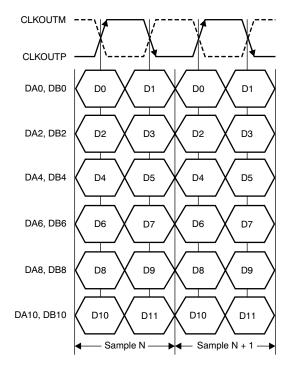

(1) Dn = bits D0, D1, D2, etc. of channels A and B.

Figure 8. CMOS Interface Timing Diagram

www.ti.com

SBAS533 - MARCH 2011

(1) ADC latency after reset. At higher sampling frequencies, t_{PDI} is greater than one clock cycle, which then makes the overall latency = ADC latency + 1.


(2) E = even bits (D0, D2, D4, etc.); O = odd bits (D1, D3, D5, etc.).

SBAS533-MARCH 2011

www.ti.com

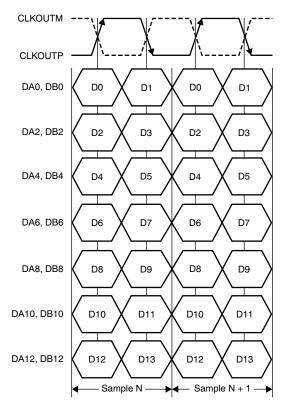


Figure 11. ADS4242/45/46 LVDS Interface Timing Diagram

SBAS533-MARCH 2011

www.ti.com

DEVICE CONFIGURATION

The ADS422x/424x can be configured independently using either parallel interface control or serial interface programming.

PARALLEL CONFIGURATION ONLY

To put the device into parallel configuration mode, keep RESET tied high (AVDD). Then, use the SEN, SCLK, CTRL1, CTRL2, and CTRL3 pins to directly control certain modes of the ADC. The device can be easily configured by connecting the parallel pins to the correct voltage levels (as described in Table 4 to Table 7). There is no need to apply a reset and SDATA can be connected to ground.

In this mode, SEN and SCLK function as parallel interface control pins. Some frequently-used functions can be controlled using these pins. Table 4 describes the modes controlled by the parallel pins.

PIN	CONTROL MODE
SCLK	Low-speed mode selection
SEN	Output data format and output interface selection
CTRL1	
CTRL2	Together, these pins control the power-down modes
CTRL3	

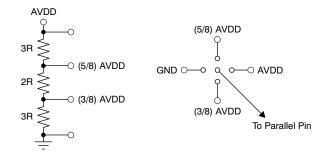
Table 4. Parallel Pin Definition

SERIAL INTERFACE CONFIGURATION ONLY

To enable this mode, the serial registers must first be reset to the default values and the RESET pin must be kept low. SEN, SDATA, and SCLK function as serial interface pins in this mode and can be used to access the internal registers of the ADC. The registers can be reset either by applying a pulse on the RESET pin or by setting the RESET bit high. The *Serial Register Map* section describes the register programming and the register reset process in more detail.

USING BOTH SERIAL INTERFACE AND PARALLEL CONTROLS

For increased flexibility, a combination of serial interface registers and parallel pin controls (CTRL1 to CTRL3) can also be used to configure the device. To enable this option, keep RESET low. The parallel interface control pins CTRL1 to CTRL3 are available. After power-up, the device is automatically configured according to the voltage settings on these pins (see Table 7). SEN, SDATA, and SCLK function as serial interface digital pins and are used to access the internal registers of the ADC. The registers must first be reset to the default values either by applying a pulse on the RESET pin or by setting the RESET bit to '1'. After reset, the RESET pin must be kept low. The *Serial Register Map* section describes register programming and the register reset process in more detail.


Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback 21

SBAS533-MARCH 2011

PARALLEL CONFIGURATION DETAILS

The functions controlled by each parallel pin are described in Table 5, Table 6, and Table 7. A simple way of configuring the parallel pins is shown in Figure 12.

Figure 12. Simple Scheme to Configure the Parallel Pins

Table 5. SCLK Control Pin

VOLTAGE APPLIED ON SCLK	DESCRIPTION
Low	Low-speed mode is disabled
High	Low-speed mode is enabled ⁽¹⁾

(1) Low-speed mode is enabled in the ADS4222/42 by default.

Table 6. SEN Control Pin

VOLTAGE APPLIED ON SEN	DESCRIPTION
0 (+50mV/0mV)	Twos complement and parallel CMOS output
(3/8) AVDD (±50mV)	Offset binary and parallel CMOS output
(5/8) 2AVDD (±50mV)	Offset binary and DDR LVDS output
AVDD (0mV/–50mV)	Twos complement and DDR LVDS output

Table 7. CTRL1, CTRL2, and CTRL3 Pins

CTRL1	CTRL2	CTRL3	DESCRIPTION
Low	Low	Low	Normal operation
Low	Low	High	Not available
Low	High	Low	Not available
Low	High	High	Not available
High	Low	Low	Global power-down
High	Low	High	Channel A standby, channel B is active
High	High	Low	Not available
High	High	High	MUX mode of operation, channel A and B data are multiplexed and output on the DB[13:0] pins.

22

Copyright © 2011, Texas Instruments Incorporated

Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246

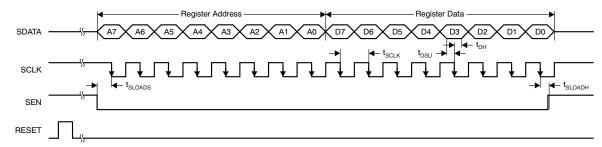
ISTRUMENTS

www.ti.com

XAS

SBAS533-MARCH 2011

www.ti.com


SERIAL INTERFACE DETAILS

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. Serial shift of bits into the device is enabled when SEN is low. Serial data SDATA are latched at every SCLK falling edge when SEN is active (low). The serial data are loaded into the register at every 16th SCLK falling edge when SEN is low. When the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in multiples of 16-bit words within a single active SEN pulse. The first eight bits form the register address and the remaining eight bits are the register data. The interface can work with SCLK frequencies from 20MHz down to very low speeds (of a few hertz) and also with non-50% SCLK duty cycle.

Register Initialization

After power-up, the internal registers must be initialized to the default values. Initialization can be accomplished in one of two ways:

- 1. Either through hardware reset by applying a high pulse on the RESET pin (of width greater than 10ns), as shown in Figure 13; or
- 2. By applying a software reset. When using the serial interface, set the RESET bit high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.

Figure 13. Serial Interface Timir	۱g
-----------------------------------	----

	PARAMETER	MIN	ТҮР	MAX	UNIT
f _{SCLK}	SCLK frequency (equal to 1/t _{SCLK})	> DC		20	MHz
t _{SLOADS}	SEN to SCLK setup time	25			ns
t _{SLOADH}	SCLK to SEN hold time	25			ns
t _{DSU}	SDATA setup time	25			ns
t _{DH}	SDATA hold time	25			ns

Table 8. Serial Interface Timing Characteristics ⁽¹	Table 8.	Serial Interface	Timing Charac	teristics ⁽¹
--	----------	------------------	---------------	-------------------------

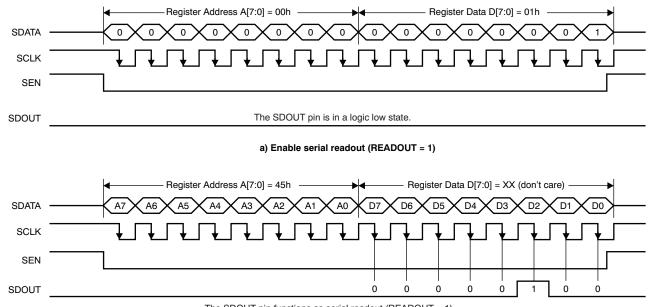
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: $T_{MIN} = -40^{\circ}C$ to $T_{MAX} = +85^{\circ}C$, AVDD = 1.8V, and DRVDD = 1.8V, unless otherwise noted.

Serial Register Readout

The device includes a mode where the contents of the internal registers can be read back. This readback mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the ADC. To use readback mode, follow this procedure:

- 1. Set the READOUT register bit to '1'. This setting disables any further writes to the registers.
- 2. Initiate a serial interface cycle specifying the address of the register (A7 to A0) whose content has to be read.
- 3. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin (pin 64).
- 4. The external controller can latch the contents at the SCLK falling edge.
- 5. To enable register writes, reset the READOUT register bit to '0'.

The serial register readout works with both CMOS and LVDS interfaces on pin 64.


Copyright © 2011, Texas Instruments Incorporated

SBAS533-MARCH 2011

www.ti.com

When READOUT is disabled, the SDOUT pin is in a logic low state. If serial readout is not used, the SDOUT pin must float.

The SDOUT pin functions as serial readout (READOUT = 1).

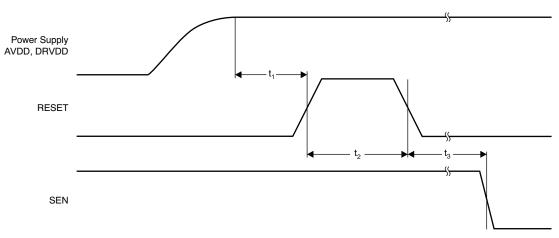

b) Read contents of Register 45h. This register has been initialized with 04h (device is put into global power-down mode.)

Figure 14. Serial Readout Timing Diagram

Table 9. Reset Timing (Only when Serial Interface is Used)⁽¹⁾

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
t ₁	Power-on delay	Delay from AVDD and DRVDD power-up to active RESET pulse	1			ms
	Reset pulse width	Active RESET signal pulse width	10			ns
¹ 2					1	μs
t ₃	Register write delay	Delay from RESET disable to SEN active	100			ns

(1) Typical values at +25°C; minimum and maximum values across the full temperature range: $T_{MIN} = -40$ °C to $T_{MAX} = +85$ °C, unless otherwise noted.

NOTE: A high pulse on the RESET pin is required in the serial interface mode when initialized through a hardware reset. For parallel interface operation, RESET must be permanently tied high.

Figure 15. Reset Timing Diagram

SBAS533 - MARCH 2011

www.ti.com

XAS

STRUMENTS

SERIAL REGISTER MAP

Table 10 summarizes the functions supported by the serial interface.

REGISTER ADDRESS				REGIST	ER DATA			
A[7:0] (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
00	0	0	0	0	0	0	RESET	READOUT
01		1	LVDS	SWING	1		0	0
03	0	0	0	0	0	0	HIGH PI	ERF MODE
25		CH A	GAIN	1	0 CH		A TEST PATTE	RNS
29	0	0	0	DATA F	ORMAT	0	0	0
2B		CH B	GAIN	1	0 CH		B TEST PATTE	RNS
3D	0	0	ENABLE OFFSET CORR	0	0	0	0	0
3F	0	0		•	CUSTOM PA	FTERN D[13:8]		•
40				CUSTOM PA	TTERN D[7:0]			
41	LVDS	CMOS	CMOS CLKOUT STRENGTH 0 0			DIS	OBUF	
42	CLKOUT F	ALL POSN	CLKOUT F	JT RISE POSN EN DIGITAL 0		0	0	
45	STBY	LVDS CLKOUT STRENGTH	LVDS DATA STRENGTH	0	0	PDN GLOBAL	0	0
4A	0	0	0	0	0	0	0	HIGH FREQ MODE CH B ⁽²⁾
58	0	0	0	0	0	0	0	HIGH FREQ MODE CH A ⁽²⁾
BF			CH A OFFSE	T PEDESTAL			0	0
C1			CH B OFFSE	T PEDESTAL			0	0
CF	FREEZE OFFSET CORR	0		OFFSET CORR TIME CONSTANT			0	0
DB	0	0	0	0	0	0	0	LOW SPEED MODE CH B ⁽³⁾
EF	0	0	0	EN LOW SPEED MODE ⁽³⁾	0	0	0	0
F1	0	0	0	0	0	0	EN LVE	DS SWING
F2	0	0	0	0	LOW SPEED MODE CH A ⁽³⁾	0	0	0

Multiple functions in a register can be programmed in a single write operation. All registers default to '0' after reset. (1)

These bits improve SFDR on high frequencies. The frequency limit is 200MHz. Low-speed mode is not applicable for the ADS4222 and ADS4242. (2) (3)

SBAS533-MARCH 2011

Regi	ster Address	00h (Default =	: 00h)
5	4	3	2
0	0	0	0

7	6	5	4	3	2	1	0
0	0	0	0	0	0	RESET	READOUT

Bits[7:2] Always write '0'

Bit 1 **RESET: Software reset applied**

DESCRIPTION OF SERIAL REGISTERS

This bit resets all internal registers to the default values and self-clears to 0 (default = 1).

Bit 0 **READOUT: Serial readout**

This bit sets the serial readout of the registers.

0 = Serial readout of registers disabled; the SDOUT pin is placed in a logic low state. 1 = Serial readout enabled; the SDOUT pin functions as a serial data readout with CMOS logic

levels running from the DRVDD supply. See the Serial Register Readout section.

Register Address 01h (Default = 00h)

		J		• • • • • • •				
7	6	5	4	3	2	1	0	
	6 5 4 3 2 LVDS SWING		0	0				

Bits[7:2] LVDS SWING: LVDS swing programmability

These bits program the LVDS swing. Set the EN LVDS SWING bit to '1' before programming swing.

 $000000 = Default LVDS swing; \pm 350 mV$ with external 100Ω termination

011011 = LVDS swing increases to ±410mV

110010 = LVDS swing increases to ±465mV

010100 = LVDS swing increases to ±570mV

111110 = LVDS swing increases to ±200mV

001111 = LVDS swing increases to ±125mV

Bits[1:0] Always write '0'

Register Address 03h (Default = 00h)

7	6	5	4	3	2	1	0
0	0	0	0	0	0	HIGH PERF MODE	

Always write '0' Bits[7:2]

Bits[1:0] HIGH PERF MODE: High-performance mode

00 = Default performance

01 = Do not use

10 = Do not use

11 = Obtain best performance across sample clock and input signal frequencies

26

SBAS533-MARCH 2011 www.ti.com Register Address 25h (Default = 00h) 7 5 4 3 6 2 1 0 CH A GAIN 0 CH A TEST PATTERNS Bits[7:4] CH A GAIN: Channel A gain programmability These bits set the gain programmability in 0.5dB steps for channel A. 0000 = 0dB gain (default after reset) 0001 = 0.5dB gain 0010 = 1dB gain 0011 = 1.5dB gain 0100 = 2dB gain 0101 = 2.5dB gain 0110 = 3dB gain 0111 = 3.5dB gain 1000 = 4dB gain 1001 = 4.5dB gain 1010 = 5dB gain 1011 = 5.5dB gain 1100 = 6dB gain Bit 3 Always write '0' CH A TEST PATTERNS: Channel A data capture Bits[2:0] These bits verify data capture for channel A. 000 = Normal operation 001 = Outputs all 0s 010 = Outputs all 1s 011 = Outputs toggle pattern. For the ADS424x, output data D[13:0] are an alternating sequence of 10101010101010 and 01010101010101. For the ADS422x, the output data D[11:0] are an alternating sequence of 101010101010 and 010101010101. 100 = Outputs digital ramp. For the ADS424x, output data increment by one LSB (14-bit) every clock cycle from code 0 to code 16383. For the ADS422x, output data increment by one LSB (12-bit) every fourth clock cycle from code 0 to code 4095. 101 = Outputs custom pattern; use registers 3Fh and 40h to set the custom pattern 110 = Unused 111 = Unused

Register Address 29h (Default = 00h)

7	6	5	4	3	2	1	0
0	0	0	DATA F	ORMAT	0	0	0

Bits[7:5] Always write '0'

Bits[4:3] DATA FORMAT: Data format selection

- 00 = Twos complement
- 01 = Twos complement
- 10 = Twos complement
- 11 = Offset binary

Bits[2:0] Always write '0'

Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback 27

BAS533-MAF		aton Aslahaaa (004)		www.ti
7	6 5	ister Address 2 4	3	= UUN) 2	1	0
	CH B GAIN	4	0		CH B TEST PATTERNS	
its[7:4]	CH B GAIN: Channel B gai	in programmat	oility			
	These bits set the gain prog		-	r channel	В.	
	0000 = 0dB gain (default after $0001 = 0.5dB gain0010 = 1dB gain0011 = 1.5dB gain0100 = 2dB gain0101 = 2.5dB gain0101 = 3dB gain0111 = 3.5dB gain1000 = 4dB gain1001 = 4.5dB gain1010 = 5dB gain1011 = 5.5dB gain$,				
:4 0	1100 = 6dB gain Always write '0'					
it 3 its[2:0]	CH B TEST PATTERNS: CI	hannal R data	oonturo			
	These bits verify data captur 000 = Normal operation 001 = Outputs all 0s 010 = Outputs all 1s 011 = Outputs toggle pattern For the ADS424x, output dat 01010101010101. For the ADS422x, the output 010101010101. 100 = Outputs digital ramp. For the ADS424x, output dat	re for channel B n. ta D[13:0] are a t data D[11:0] a	n alternating re an alternat	ing seque	ence of 101010101010) and
	16383. For the ADS422x, output day	ta increment by	one LSB (12	-bit) every	fourth clock cycle fro	m code
	to code 4095. 101 = Outputs custom patter 110 = Unused	rn; use registers	s 3Fh and 40h	n to set th	e custom pattern	

111 = Unused

Copyright © 2011, Texas Instruments Incorporated

SBAS533-MARCH 2011

www.ti.com

Register Address 3Dh (Default = 00h)

7	6	5	4	3	2	1	0	
0	0	ENABLE OFFSET CORR	0	0	0	0	0	

Bits[7:6] Always write '0'

Bit 5 ENABLE OFFSET CORR: Offset correction setting

This bit enables the offset correction.

0 = Offset correction disabled

1 = Offset correction enabled

Bits[4:0] Always write '0'

Register Address 3Fh (Default = 00h)

7	6	5	4	3	2	1	0
0	0	CUSTOM PATTERN D13	CUSTOM PATTERN D12	CUSTOM PATTERN D11	CUSTOM PATTERN D10	CUSTOM PATTERN D9	CUSTOM PATTERN D8

Bits[7:6] Always write '0'

Bits[5:0] CUSTOM PATTERN D[13:8]

These are the six upper bits of the custom pattern available at the output instead of ADC data. Note that for the ADS424x, the custom pattern is 14-bit. The ADS422x custom pattern is 12-bit.

Register Address 40h (Default = 00h)

7	6	5	4	3	2	1	0
CUSTOM							
PATTERN D7	PATTERN D6	PATTERN D5	PATTERN D4	PATTERN D3	PATTERN D2	PATTERN D1	PATTERN D0

Bits[7:0] CUSTOM PATTERN D[7:0]

These are the eight upper bits of the custom pattern available at the output instead of ADC data. Note that for the ADS424x, the custom pattern is 14-bit. The ADS422x custom pattern is 12-bit; use the CUSTOM PATTERN D[13:2] register bits.

SBAS533-MARCH 2011

www.ti.com

ISTRUMENTS

FXAS

Register	∆ddress	41h	(Default = 00h)	
Negisiei	Audiess	4111	(Delault – VVII)	

7	6	5	4	3	2	1	0
	CMOS	CMOS CLKOL	CMOS CLKOUT STRENGTH		0		OBUF

Bits[7:6] LVDS CMOS: Interface selection

These bits select the interface.

00 = DDR LVDS interface

01 = DDR LVDS interface

10 = DDR LVDS interface

11 = Parallel CMOS interface

Bits[5:4] CMOS CLKOUT STRENGTH

These bits control the strength of the CMOS output clock.

- 00 = Maximum strength (recommended)
- 01 = Medium strength
- 10 = Low strength

11 = Very low strength

Bits[3:2] Always write '0'

Bits[1:0] DIS OBUF

These bits power down data and clock output buffers for both the CMOS and LVDS output interface. When powered down, the output buffers are in 3-state.

00 = Default

01 = Power-down data output buffers for channel B

10 = Power-down data output buffers for channel A

11 = Power-down data output buffers for both channels as well as the clock output buffer

Register Address 42h (Default = 00h)

7	6	5	4	3	2	1	0
CLKOUT FAI	L POSN	CLKOUT I	RISE POSN	EN DIGITAL	0	0	0

Bits[7:6] CLKOUT FALL POSN

- 00 = Default
- 01 = Do not use

10 = The falling edge of the output clock advances by 650ps

11 = The falling edge of the output clock advances by 1.1ns

Bits[5:6] CLKOUT RISE POSN

00 = Default

01 = The rising edge of the output clock advances by 650ps

10 = The rising edge of the output clock is delayed by 650ps

11 = Do not use

Bit 3 EN DIGITAL: Digital function enable

0 = AII digital functions disabled

1 = All digital functions (such as test patterns, gain, and offset correction) enabled

Bits[2:0] Always write '0'

ww.ti.com								SBAS533-N	ARCH 2
			F	Register Addres	s 45h (Def	ault = 00h)		
7		6	3	5	4	3	2	1	0
STB	(LVDS C STRE		LVDS DATA STRENGTH	0	0	PDN GLOE	BAL 0	0
Bit 7	STBY	: Standby	y setting	l					
		ormal ope		ut in standby; wa	akeup time	from this m	node is fast (t	ypically 50µs).	
Bit 6	LVDS	CLKOUT	STREN	GTH: LVDS out	put clock	buffer stre	ength setting		
				ouffer at default s ouffer has double					
Bit 5	LVDS	LVDS DATA STRENGTH							
				rs at default strer rs have double s	•				
Bits[4:3]	Alway	Always write '0'							
Bit 2	PDN (GLOBAL							
	1 = To		[.] down; a	II ADC channels n this mode is slo			and output bu	ffers are power	ed
Bits[1:0]	Alway	vs write '0)'						
			F	Register Addres	s 4Ah (De	fault = 00h	1)		
7	6	i	5	4	3	2	1	0	
0	0		0	0	0	0	0	HIGH FREQ MOI	DE CH I
Bits[7:1]	Alway	vs write '0)'						
Bit O	HIGH	FREQ M	ODE CH	B: High-freque	ncy mode	for channe	el B		
	0 = De	efault		gh input frequen	-				

Register Address 58h (Default = 00h)

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	HIGH FREQ MODE CH A

Bits[7:1] Always write '0'

Bit 0 HIGH FREQ MODE CH A: High-frequency mode for channel A

0 = Default

1 = Use this mode for high input frequencies

Copyright © 2011, Texas Instruments Incorporated

Submit Documentation Feedback 31

SBAS533-MARCH 2011

BAS533 – MARCH 2011								1
		Regis	ter Address B	Fh (Default =	= 00h)			
7	6	5	4	3	2	1	0	
		CH A OFFSE	T PEDESTAL			0	0	

Bits[7:2] CH A OFFSET PEDESTAL: Channel A offset pedestal selection

When the offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A pedestal can be added to the final converged value by programming these bits. See the Offset Correction section. Channels can be independently programmed for different offset pedestals by choosing the relevant register address.

For the ADS424x, the pedestal ranges from -32 to +31, so the output code can vary from midcode-32 to midcode+32 by adding pedestal D7-D2.

For the ADS422x, the pedestal ranges from -8 to +7, so the output code can vary from midcode-8 to midcode+7 by adding pedestal D7-D4.

ADS422x (Program Bits D[7:4])	ADS424x (Program Bits D[7:2])
0111 = Midcode+7	011111 = Midcode+31
0110 = Midcode+6	011110 = Midcode+30
0101 = Midcode+5	011101 = Midcode+29
0000 = Midcode	000000 = Midcode
1111 = Midcode-1	111111 = Midcode-1
1110 = Midcode-2	111110 = Midcode-2
1101 = Midcode-3	111101 = Midcode-3
1000 = Midcode-8	100000 = Midcode-32
s write '0'	

Bits[1:0] Always write '0

32

33

www.ti.com SBAS533 – MARCH 2							
		Regis	ster Address (C1h (Default :	= 00h)		
7	6	5	4	3	2	1	0
		CH B OFFSE	T PEDESTAL			0	0

Bits[7:2] CH B OFFSET PEDESTAL: Channel B offset pedestal selection

When offset correction is enabled, the final converged value after the offset is corrected is the ADC midcode value. A pedestal can be added to the final converged value by programming these bits; see the *Offset Correction* section. Channels can be independently programmed for different offset pedestals by choosing the relevant register address.

For the ADS422x, the pedestal ranges from -8 to +7, so the output code can vary from midcode-8 to midcode+7 by adding pedestal D[7:4]. For the ADS424x, the pedestal ranges from -32 to +31, so the output code can vary from midcode-32 to midcode+32 by adding pedestal D[7:2].

ADS422x (Program Bits D[7:4])	ADS424x (Program Bits D[7:2])
0111 = Midcode+7	011111 = Midcode+31
0110 = Midcode+6	011110 = Midcode+30
0101 = Midcode+5	011101 = Midcode+29
0000 = Midcode	 000000 = Midcode
1111 = Midcode-1	111111 = Midcode-1
1110 = Midcode-2	111110 = Midcode-2
1101 = Midcode-3	111101 = Midcode-3
1000 = Midcode-8	100000 = Midcode-32
lwavs write 'N'	

Bits[1:0] Always write '0

EXAS NSTRUMENTS

522 MADOLI 2044 SBA

SBAS533-MAR	CH 2011							w	/ww.ti.com
		l	Register Add	dress CFh ([Default = 00h	ı)			
-	7	6	5	4	3		2	1	0
FREEZE OF	FSET CORR	0		OFFSET COR	R TIME CONST	ANT		0	0
Bit 7	FREEZE O	FFSET COR	R: Freeze of	ffset correct	ion setting				
	0 = Estimati 1 = Estimati	on of offset on of offset	offset correct correction is correction is is used for o	not frozen (tł frozen (the E	ne EN OFFSE N OFFSET (CORR bit mu	ist be set);	when	
Bit 6	Always wri	te '0'							
Bits[5:2]	OFFSET CO	ORR TIME (CONSTANT						
	The offset c section.	orrection loc	op time const	ant in numbe	r of clock cyc	cles. Refer to	the Offse	t Corre	ection
Bits[1:0]	Always wri	te '0'							
		1	Register Add	dress DBh (I	Default = 00h	1)			
7	6	5	4	3	2	1		0	
0	0	0	0	0	0	0	LOW SPE	ED MOD	DE CH B

Always write '0' Bits[7:1]

Bit 0 LOW SPEED MODE CH B: Channel B low-speed mode enable

This bit enables the low-speed mode for channel B. Set the EN LOW SPEED MODE bit to '1' before using this bit.

0 = Low-speed mode is disabled for channel B

1 = Low-speed mode is enabled for channel B

Register Address EFh (Default = 00h)

7	6	5	4	3	2	1	0
0	0	0	EN LOW SPEED MODE	0	0	0	0

Bits[7:5] Always write '0'

Bit 4 EN LOW SPEED MODE: Enable control of low-speed mode through serial register bits (ADS42x5 and ADS42x6 only)

This bit enables the control of the low-speed mode using the LOW SPEED MODE CH B and LOW SPEED MODE CH A register bits.

0 = Low-speed mode is disabled

1 = Low-speed mode is controlled by serial register bits

Bits[3:0] Always write '0'

34 Submit Documentation Feedback

SBAS533-MARCH 2011

Register Address F1h (Default = 00h)												
7	6	5	4	3	2	1	0					
0	0	0	0	0	0	EN LVDS SWING						
Bits[7:2]	Always write '0'											
lits[1:0]	EN LVDS SWING: LVDS swing enable											
	These bits enable LVDS swing control using the LVDS SWING register bits. 00 = LVDS swing control using the LVDS SWING register bits is disabled 01 = Do not use 10 = Do not use 11 = LVDS swing control using the LVDS SWING register bits is enabled											

7	6	5	4	3	2	1	0
0	0	0	0	LOW SPEED MODE CH A	0	0	0

Bits[7:4] Always write '0'

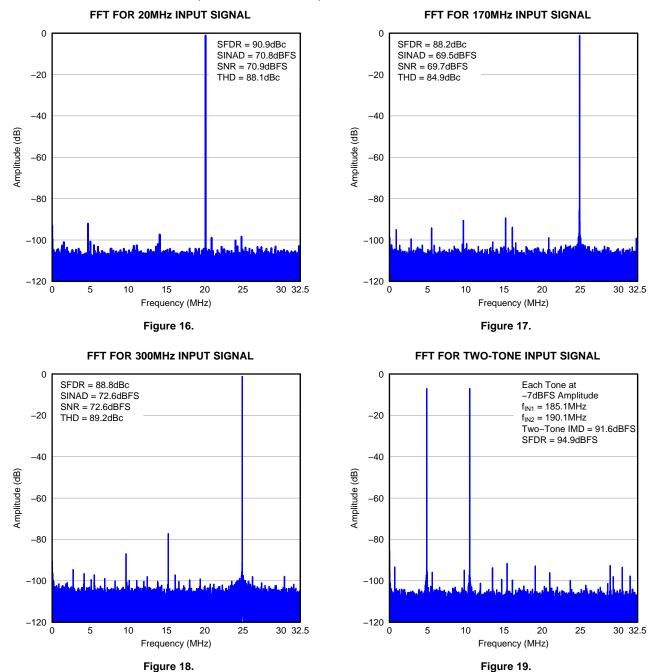
Bit 3 LOW SPEED MODE CH A: Channel A low-speed mode enable

This bit enables the low-speed mode for channel A. Set the EN LOW SPEED MODE bit to '1' before using this bit.

0 = Low-speed mode is disabled for channel A

1 = Low-speed mode is enabled for channel A

Bits[2:0] Always write '0'

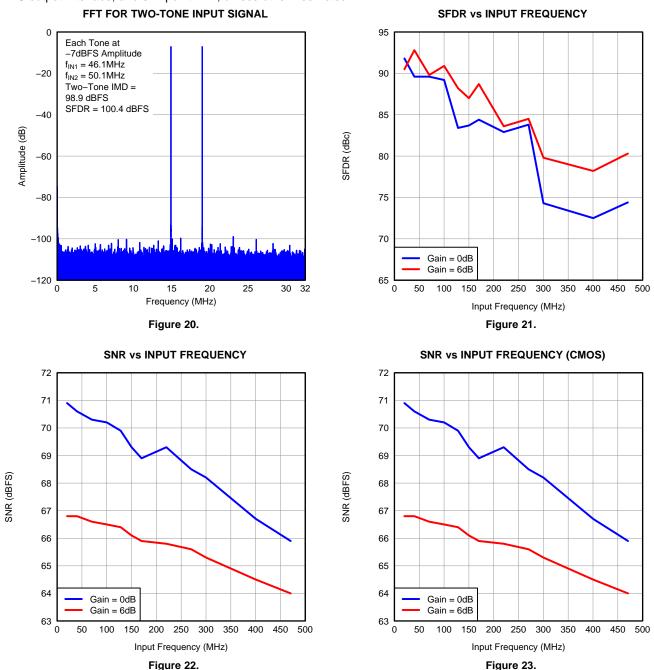


www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4222

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.


SBAS533 - MARCH 2011

37

www.ti.com

TYPICAL CHARACTERISTICS: ADS4222 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4222 (continued)

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

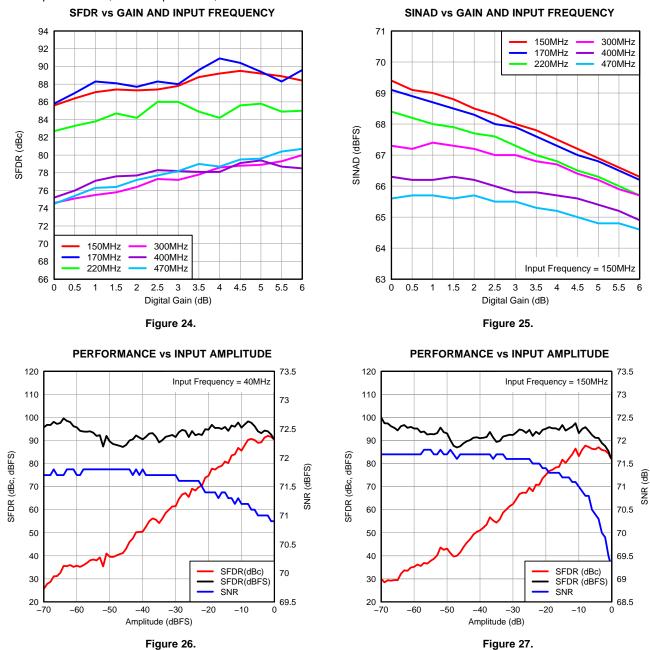
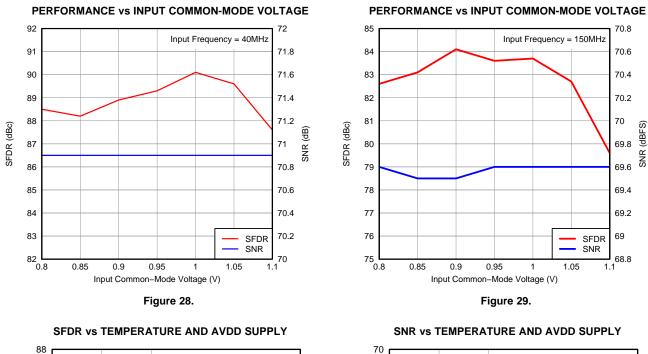
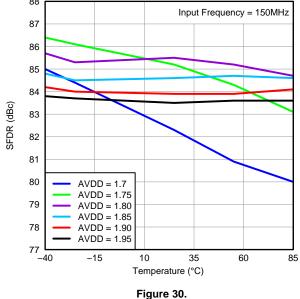


Figure 26.

Submit Documentation Feedback

SBAS533 - MARCH 2011


www.ti.com

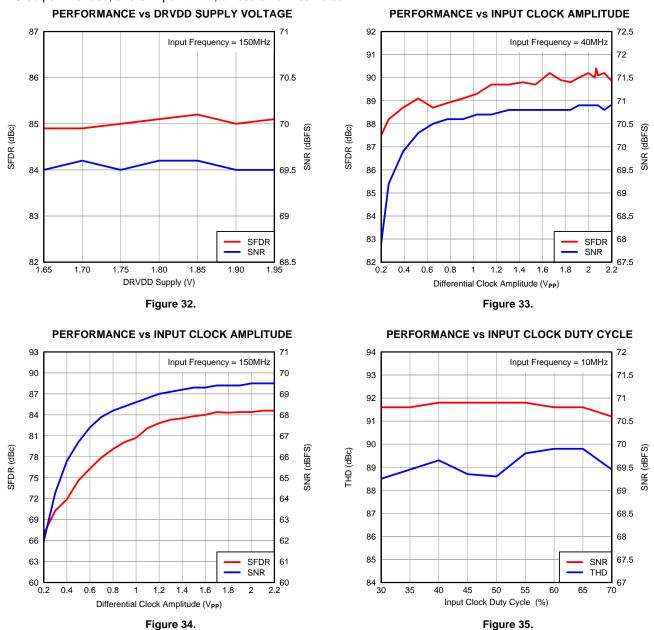

XAS

ISTRUMENTS

TYPICAL CHARACTERISTICS: ADS4222 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

70 Input Frequency = 150MHz 69.8 69.5 SNR (dBFS) 69.2 AVDD = 1.7 AVDD = 1.75 69 AVDD = 1.80 AVDD = 1.85 AVDD = 1.90 AVDD = 1.95 68.8 40 -15 10 35 60 85 Temperature (°C) Figure 31.


TEXAS INSTRUMENTS

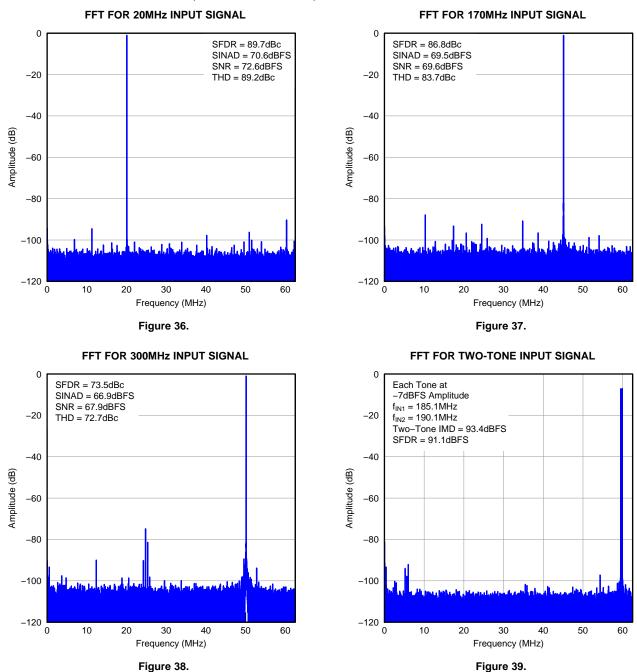
SBAS533-MARCH 2011

40

TYPICAL CHARACTERISTICS: ADS4222 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

www.ti.com

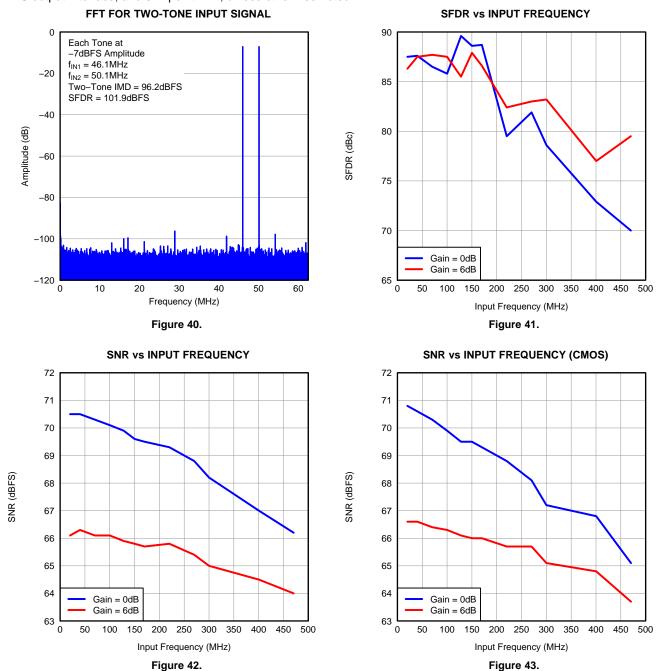

SBAS533 - MARCH 2011

41

www.ti.com

TYPICAL CHARACTERISTICS: ADS4225

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.



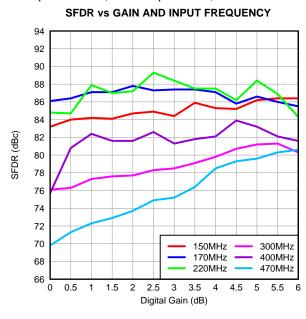
SBAS533-MARCH 2011

42

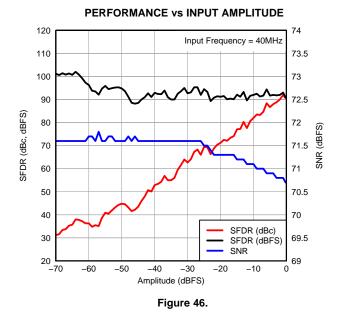
At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

TEXAS INSTRUMENTS

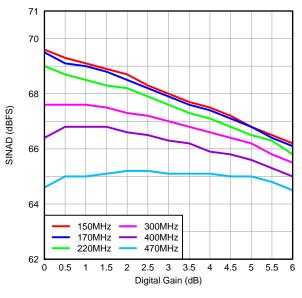
www.ti.com

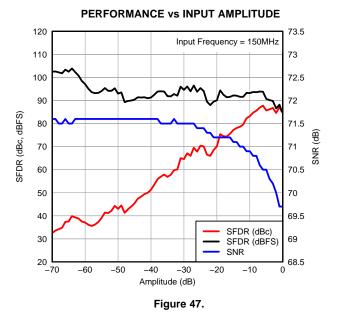


SBAS533 - MARCH 2011

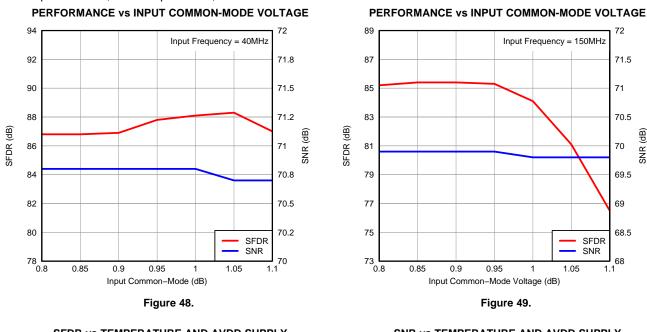

www.ti.com

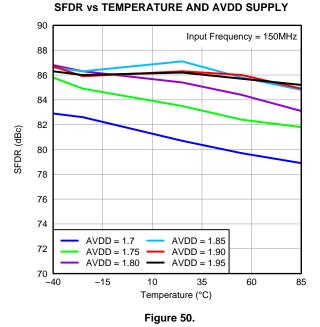
TYPICAL CHARACTERISTICS: ADS4225 (continued)


At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

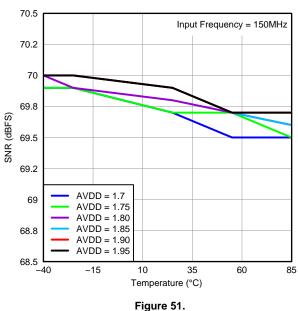


SINAD vs GAIN AND INPUT FREQUENCY




www.ti.com

SBAS533-MARCH 2011

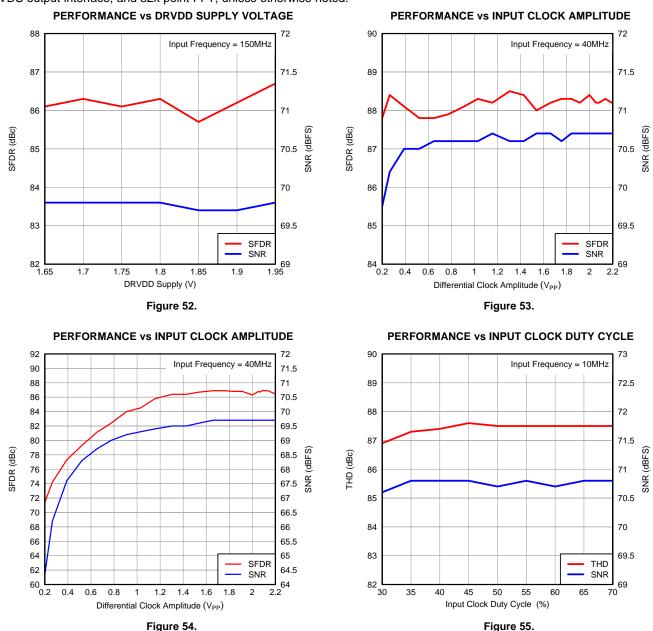

TYPICAL CHARACTERISTICS: ADS4225 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

SNR vs TEMPERATURE AND AVDD SUPPLY

SBAS533 - MARCH 2011

45


www.ti.com

XAS

STRUMENTS

TYPICAL CHARACTERISTICS: ADS4225 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

SBAS533-MARCH 2011

www.ti.com

TYPICAL CHARACTERISTICS: ADS4226

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

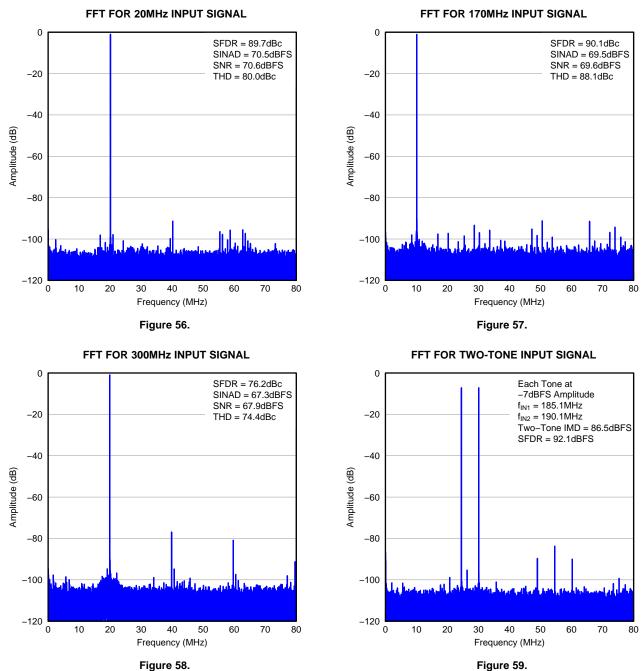
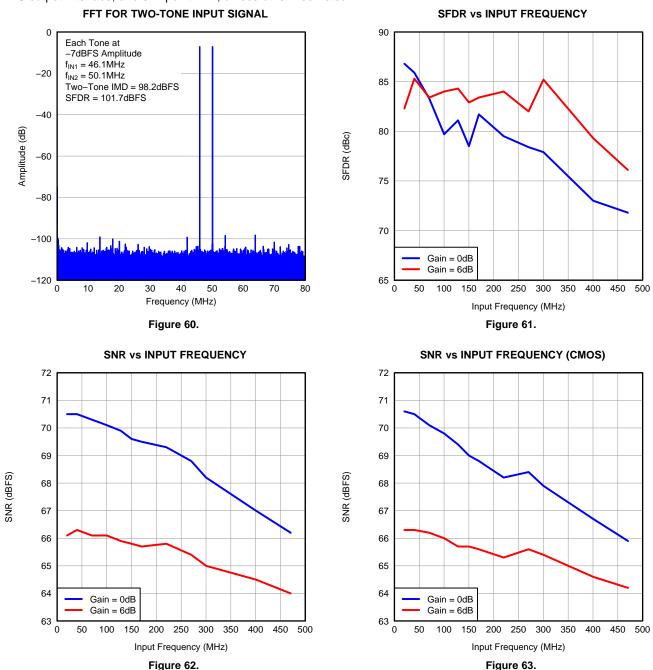


Figure 58.


SBAS533 - MARCH 2011

47

www.ti.com

TYPICAL CHARACTERISTICS: ADS4226 (continued)

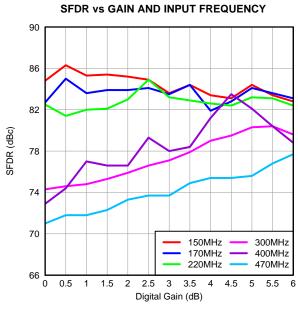
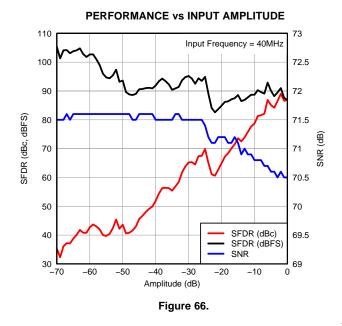
At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

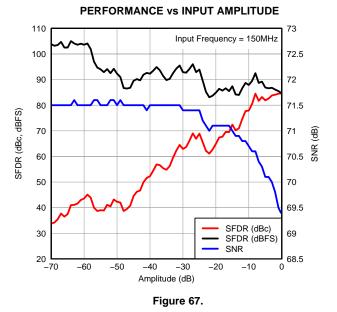
www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4226 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.


Figure 64.

70 69 68 67 SINAD (dBFS) 66 65 64 300MHz 150MHz 63 170MHz 400MHz 220MHz 470MHz 62 2.5 3 3.5 0 0.5 1 1.5 2 4 4.5 5 5.5 6 Digital Gain (dB)

SINAD vs GAIN AND INPUT FREQUENCY

Figure 65.

SBAS533 - MARCH 2011

www.ti.com

TYPICAL CHARACTERISTICS: ADS4226 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

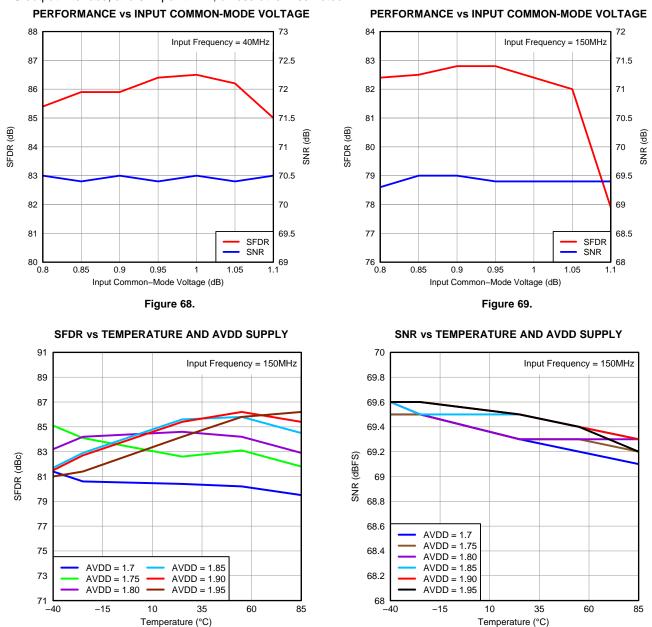


Figure 70.

Figure 71.

TEXAS INSTRUMENTS

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4226 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

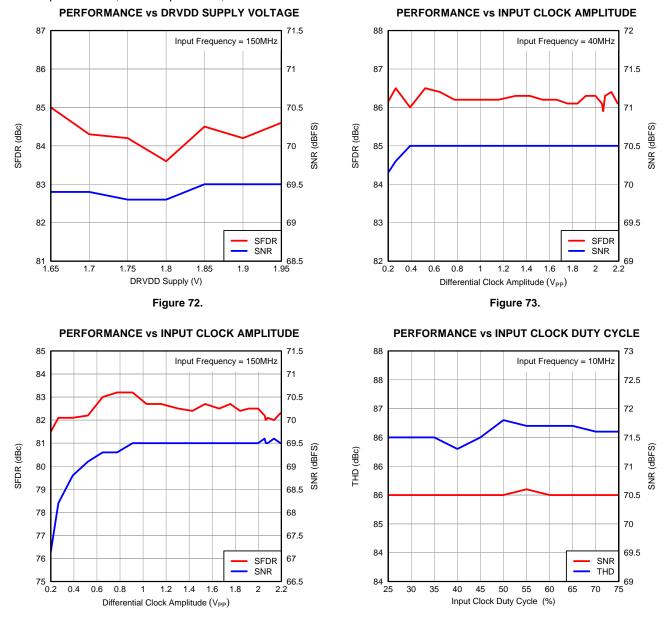
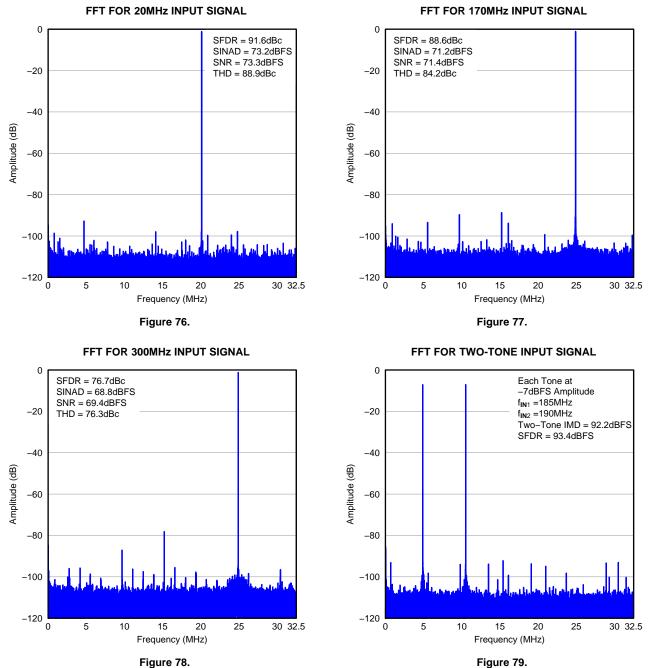


Figure 74.

Figure 75.

www.ti.com

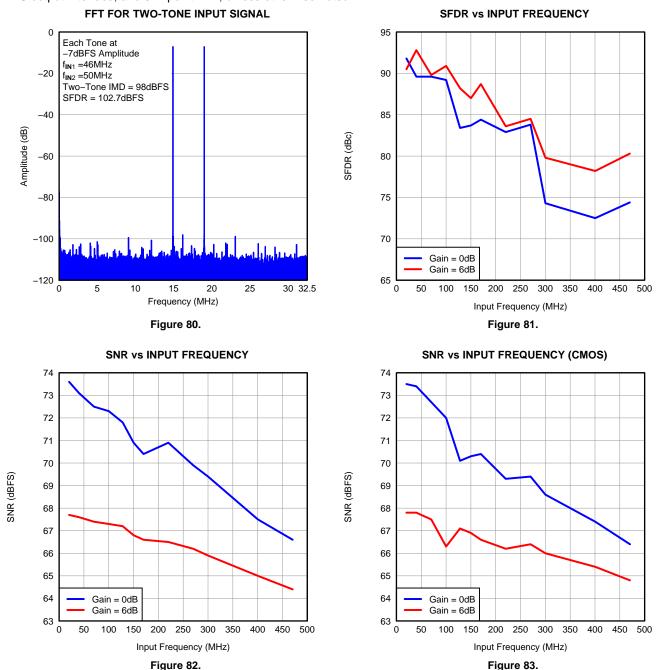
SBAS533 - MARCH 2011


www.ti.com

EXAS

NSTRUMENTS

TYPICAL CHARACTERISTICS: ADS4242


At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

www.ti.com

SBAS533 - MARCH 2011

www.ti.com

TYPICAL CHARACTERISTICS: ADS4242 (continued)

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

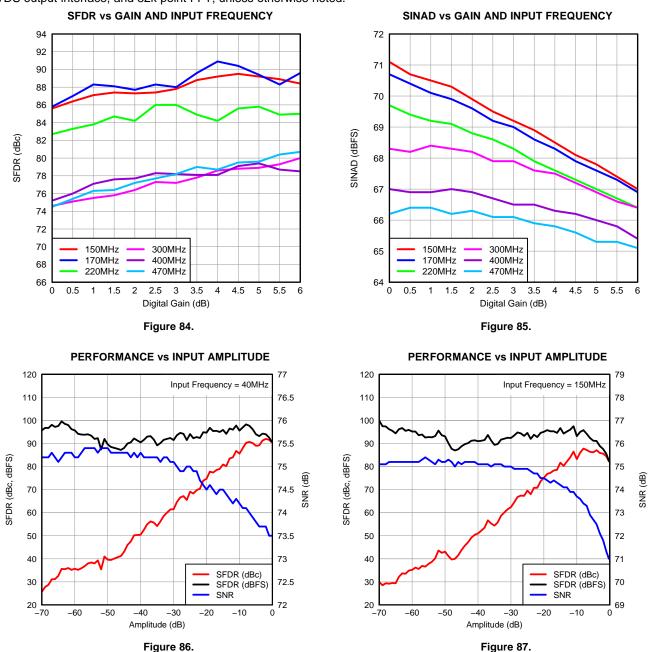
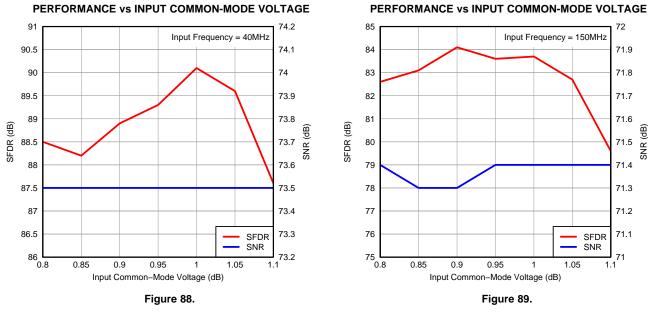
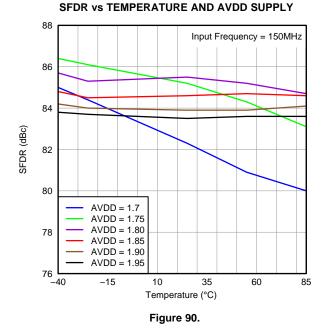


Figure 86.




www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4242 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

SNR vs TEMPERATURE AND AVDD SUPPLY

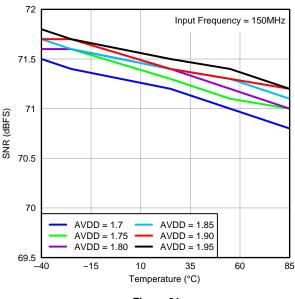
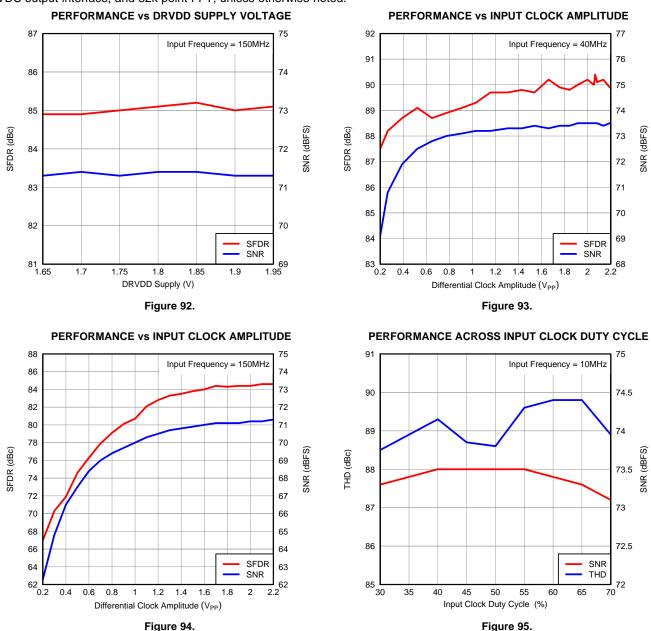


Figure 91.

SBAS533 - MARCH 2011

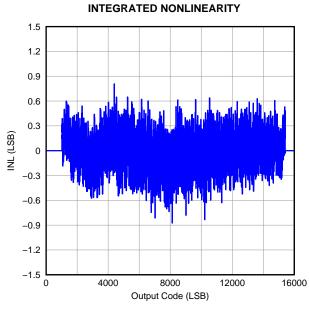

55

www.ti.com

XAS

TYPICAL CHARACTERISTICS: ADS4242 (continued)

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.



www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4242 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

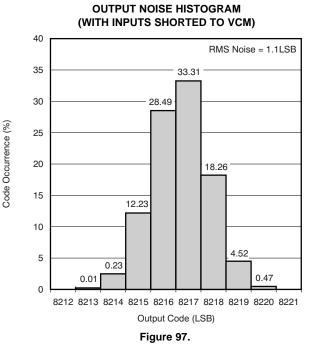
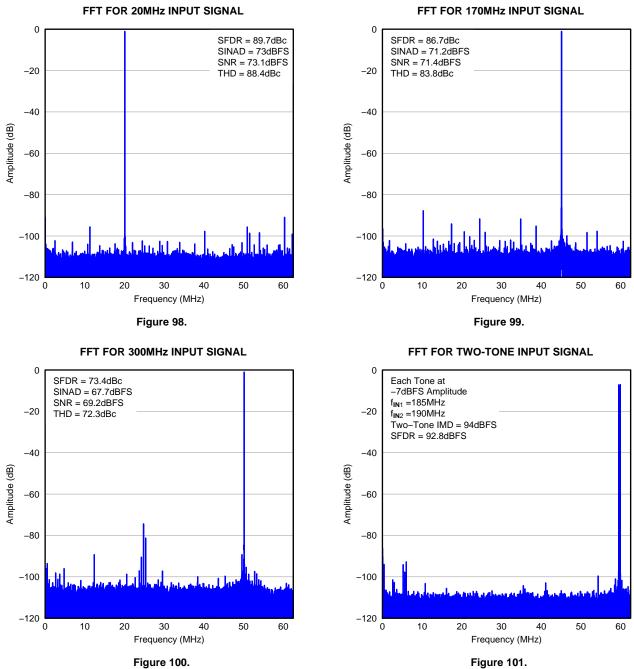


Figure 96.

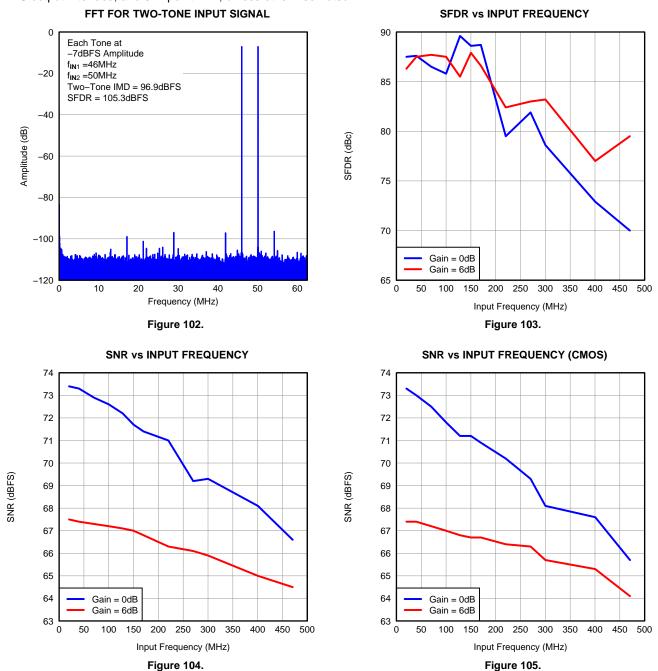
SBAS533 - MARCH 2011


www.ti.com

EXAS

NSTRUMENTS

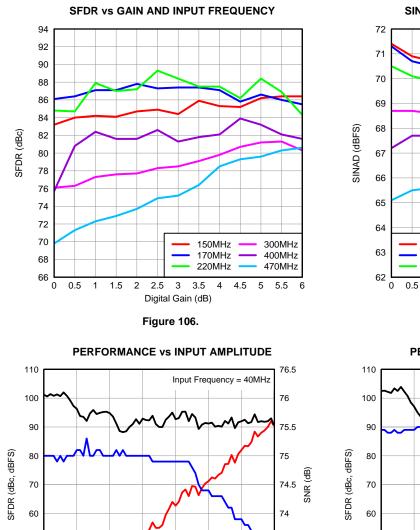
TYPICAL CHARACTERISTICS: ADS4245


At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

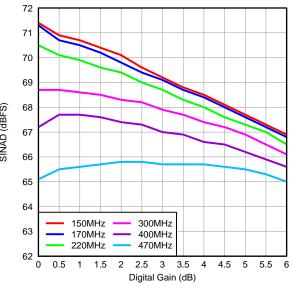
SBAS533-MARCH 2011

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

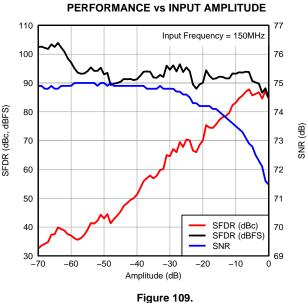
www.ti.com



SBAS533 - MARCH 2011


www.ti.com

TYPICAL CHARACTERISTICS: ADS4245 (continued)


At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

SINAD vs GAIN AND INPUT FREQUENCY

50

40

30

-70

-60

-50

-40

Amplitude (dB)

-30

Figure 108.

73.5

73

72.5

0

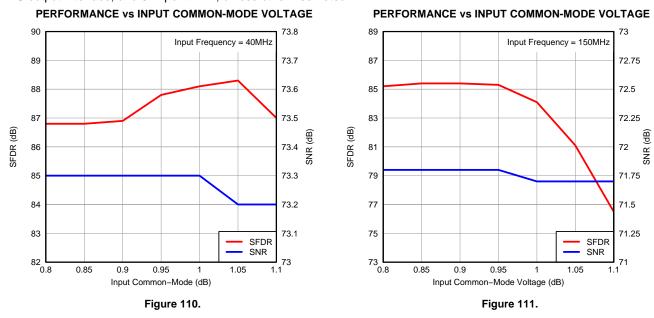
SFDR (dBc) SFDR (dBFS)

-10

SNR

-20

Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246



www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4245 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

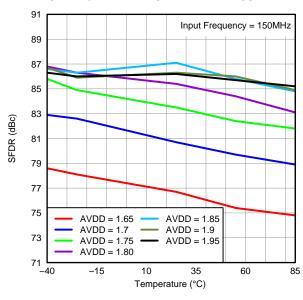


Figure 112.

SNR vs TEMPERATURE AND AVDD SUPPLY

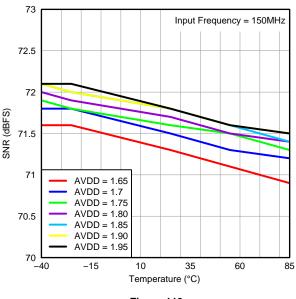
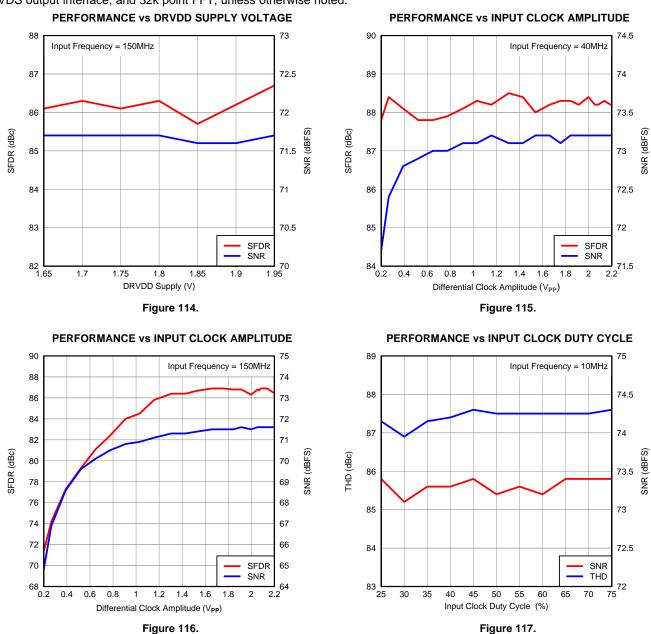


Figure 113.

SFDR vs TEMPERATURE AND AVDD SUPPLY

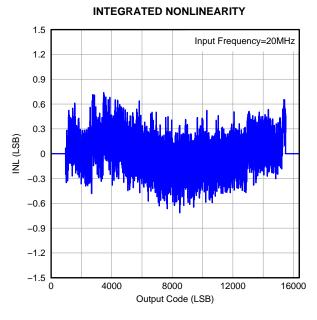

SBAS533 - MARCH 2011

61

www.ti.com

TYPICAL CHARACTERISTICS: ADS4245 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.


www.ti.com

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4245 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Code Occurrence (%)

OUTPUT NOISE HISTOGRAM (WITH INPUTS SHORTED TO VCM)

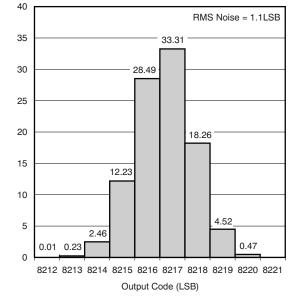
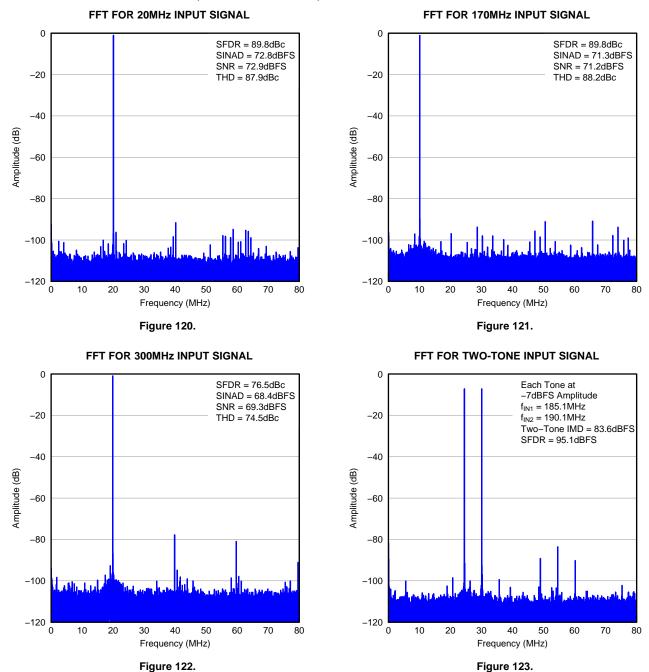


Figure 119.

SBAS533 - MARCH 2011

63

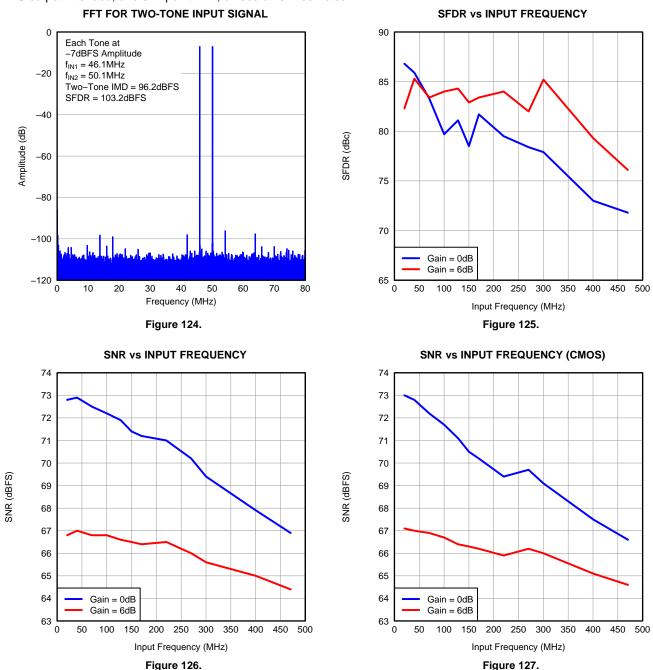

www.ti.com

EXAS

INSTRUMENTS

TYPICAL CHARACTERISTICS: ADS4246

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

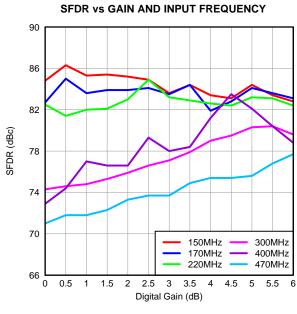


SBAS533-MARCH 2011

64

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

www.ti.com



SBAS533 - MARCH 2011

www.ti.com

TYPICAL CHARACTERISTICS: ADS4246 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

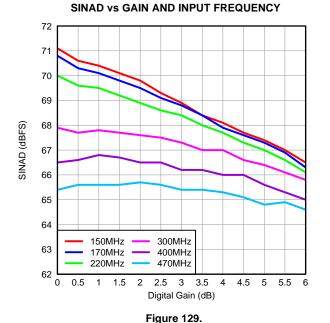
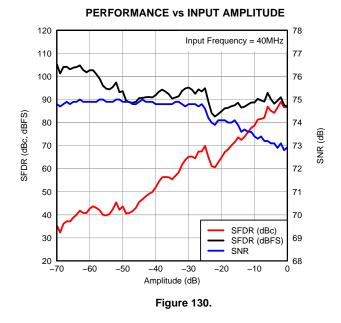
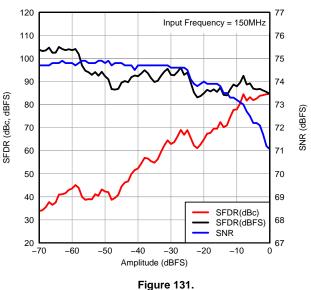




Figure 128.

www.ti.com

76

75

74

73

72

71

SNR (dBFS)

SBAS533-MARCH 2011

TYPICAL CHARACTERISTICS: ADS4246 (continued)

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

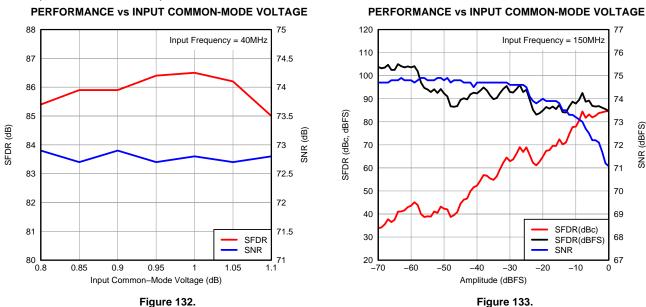
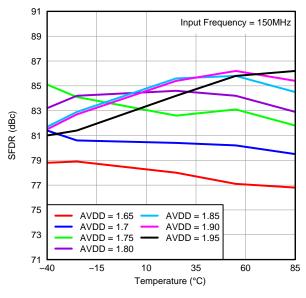



Figure 132.

SFDR vs TEMPERATURE AND AVDD SUPPLY

Figure 134.

SNR vs TEMPERATURE AND AVDD SUPPLY

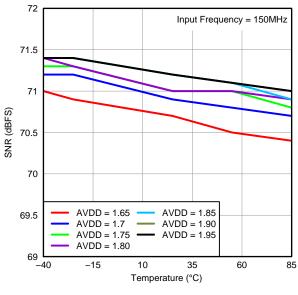
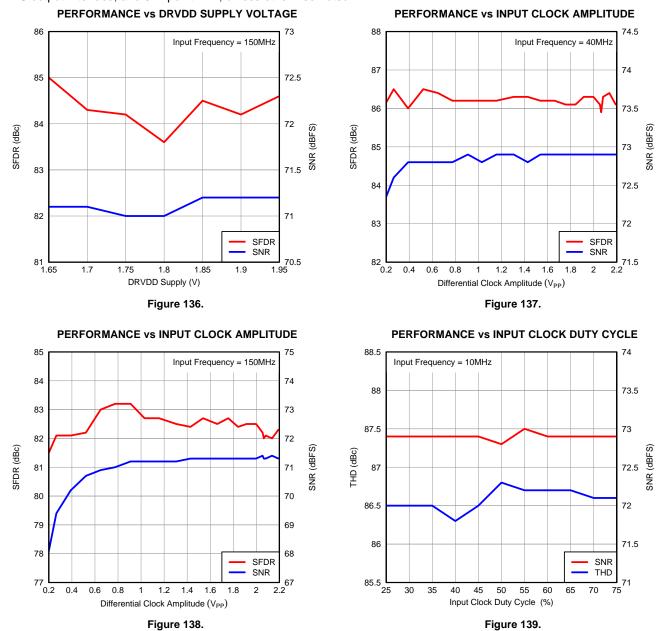


Figure 135.

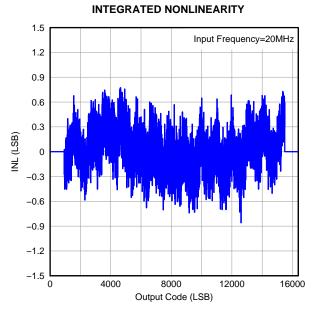


SBAS533 - MARCH 2011

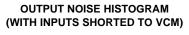
www.ti.com

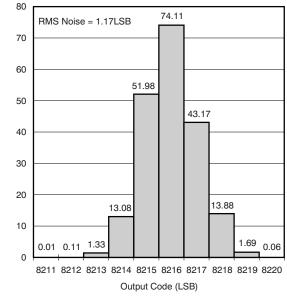
TYPICAL CHARACTERISTICS: ADS4246 (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.


www.ti.com

SBAS533-MARCH 2011


TYPICAL CHARACTERISTICS: ADS4246 (continued)


At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

Code Occurrence (%)

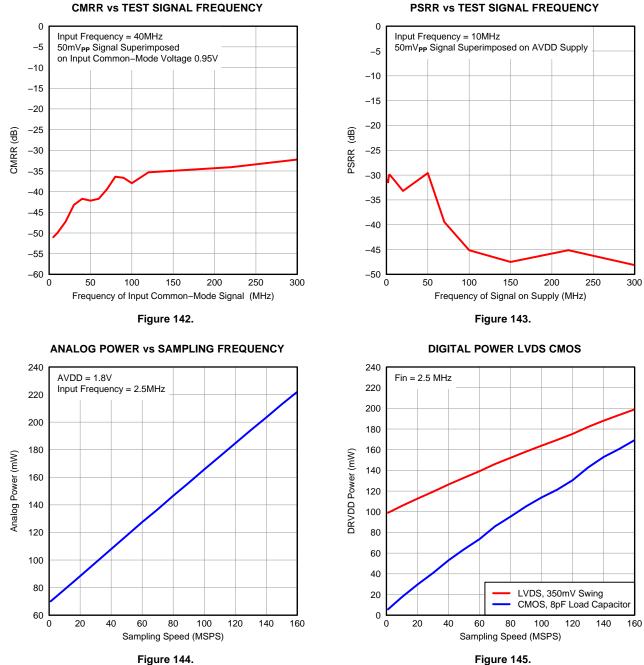
SBAS533 - MARCH 2011

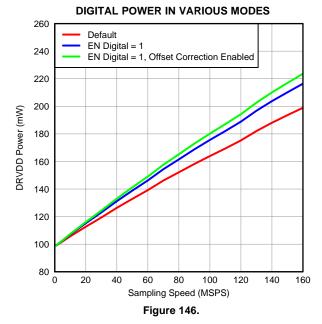
www.ti.com

STRUMENTS

TYPICAL CHARACTERISTICS: General

At T_A = +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.




Figure 145.

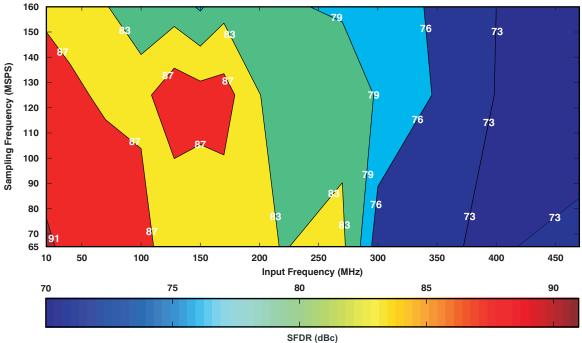
TEXAS INSTRUMENTS

SBAS533-MARCH 2011

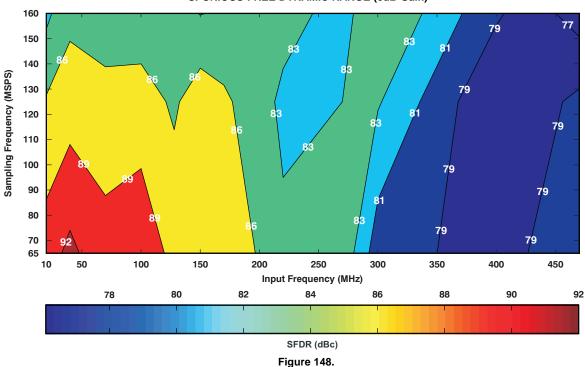
TYPICAL CHARACTERISTICS: General (continued)

At $T_A = +25$ °C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock, 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

www.ti.com


SBAS533 - MARCH 2011

www.ti.com

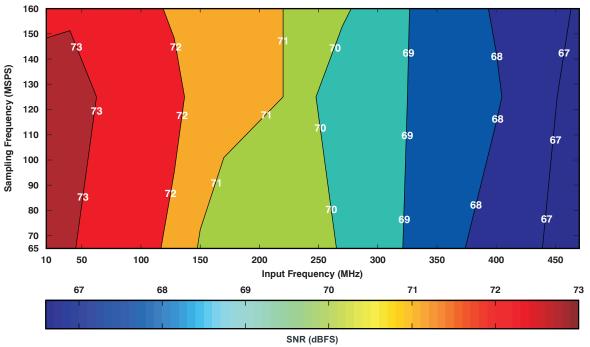

TYPICAL CHARACTERISTICS: Contour

All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. 1.5V_{PP} differential clock amplitude, 50% clock duty cycle, -1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

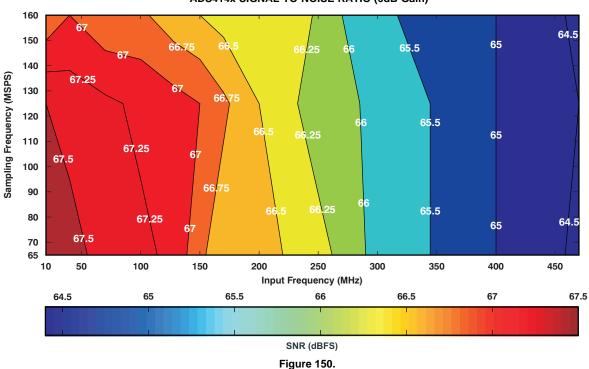
SPURIOUS-FREE DYNAMIC RANGE (0dB Gain)

SFDR (dBc Figure 147.

SPURIOUS-FREE DYNAMIC RANGE (6dB Gain)


www.ti.com

SBAS533-MARCH 2011


TYPICAL CHARACTERISTICS: Contour (continued)

All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. $1.5V_{PP}$ differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

ADS414x SIGNAL-TO-NOISE RATIO (0dB Gain)

ADS414x SIGNAL-TO-NOISE RATIO (6dB Gain)

Copyright © 2011, Texas Instruments Incorporated

SBAS533 - MARCH 2011

www.ti.com

TYPICAL CHARACTERISTICS: Contour (continued)

All graphs are at +25°C, AVDD = 1.8V, DRVDD = 1.8V, maximum rated sampling frequency, sine wave input clock. $1.5V_{PP}$ differential clock amplitude, 50% clock duty cycle, –1dBFS differential analog input, High-Performance Mode disabled, 0dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.

ADS412x SIGNAL-TO-NOISE RATIO (0dB Gain)

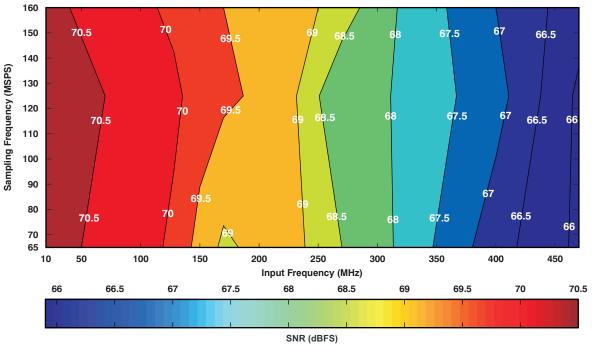
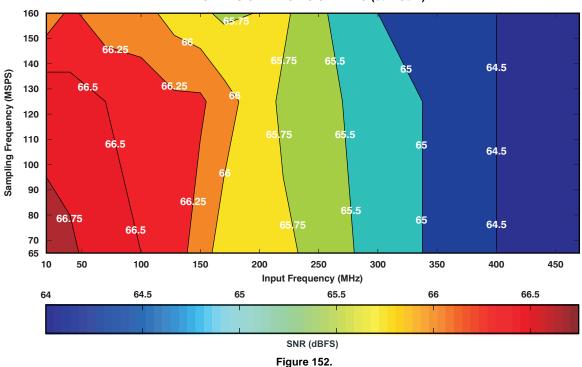



Figure 151.

ADS412x SIGNAL-TO-NOISE RATIO (6dB Gain)

Copyright © 2011, Texas Instruments Incorporated

SBAS533-MARCH 2011

www.ti.com

APPLICATION INFORMATION

THEORY OF OPERATION

The ADS422x/424x belong to TI's ultralow-power family of dual-channel 12-bit and 14-bit analog-to-digital converters (ADCs). At every rising edge of the input clock, the analog input signal of each channel is simultaneously sampled. The sampled signal in each channel is converted by a pipeline of low-resolution stages. In each stage, the sampled/held signal is converted by a high-speed, low-resolution, flash sub-ADC. The difference between the stage input and the quantized equivalent is gained and propagates to the next stage. At every clock, each succeeding stage resolves the sampled input with greater accuracy. The digital outputs from all stages are combined in a digital correction logic block and digitally processed to create the final code after a data latency of 16 clock cycles. The digital output is available as either DDR LVDS or parallel CMOS and coded in either straight offset binary or binary twos complement format. The dynamic offset of the first stage sub-ADC limits the maximum analog input frequency to approximately 400MHz (with $2V_{PP}$ amplitude) or approximately 600MHz (with $1V_{PP}$ amplitude).

ANALOG INPUT

The analog input consists of a switched-capacitor based, differential sample-and-hold (S/H) architecture. This differential topology results in very good ac performance even for high input frequencies at high sampling rates. The INP and INM pins must be externally biased around a common-mode voltage of 0.95V, available on the VCM pin. For a full-scale differential input, each input pin (INP and INM) must swing symmetrically between VCM + 0.5V and VCM – 0.5V, resulting in a $2V_{PP}$ differential input swing. The input sampling circuit has a high 3dB bandwidth that extends up to 550MHz (measured from the input pins to the sampled voltage). Figure 153 shows an equivalent circuit for the analog input.

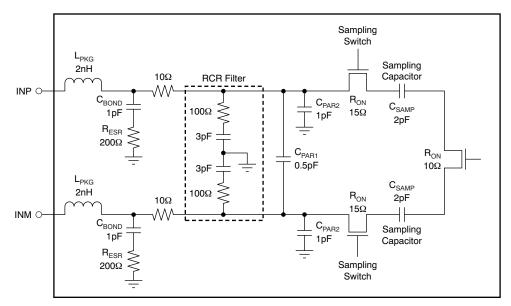


Figure 153. Analog Input Equivalent Circuit

SBAS533 - MARCH 2011

www.ti.com

Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially. This operation improves the common-mode noise immunity and even-order harmonic rejection. A 5Ω to 15Ω resistor in series with each input pin is recommended to damp out ringing caused by package parasitics.

SFDR performance can be limited as a result of several reasons, including the effects of sampling glitches; nonlinearity of the sampling circuit; and nonlinearity of the quantizer that follows the sampling circuit. Depending on the input frequency, sample rate, and input amplitude, one of these factors plays a dominant part in limiting performance. At very high input frequencies (greater than approximately 300MHz), SFDR is determined largely by the device sampling circuit nonlinearity. At low input amplitudes, the quantizer nonlinearity usually limits performance.

Glitches are caused by the opening and closing of the sampling switches. The driving circuit should present a low source impedance to absorb these glitches. Otherwise, glitches could limit performance, primarily at low input frequencies (up to approximately 200MHz). It is also necessary to present low impedance (less than 50Ω) for the common-mode switching currents. This configuration can be achieved by using two resistors from each input terminated to the common-mode voltage (VCM).

The device includes an internal R-C filter from each input to ground. The purpose of this filter is to absorb the sampling glitches inside the device itself. The cutoff frequency of the R-C filter involves a trade-off. A lower cutoff frequency (larger C) absorbs glitches better, but it reduces the input bandwidth. On the other hand, with a higher cutoff frequency (smaller C), bandwidth support is maximized. However, the sampling glitches now must be supplied by the external drive circuit. This tradeoff has limitations as a result of the presence of the package bond-wire inductance.

In the ADS422x/424x, the R-C component values have been optimized while supporting high input bandwidth (up to 550MHz). However, in applications with input frequencies up to 200MHz to 300MHz, the filtering of the glitches can be improved further using an external R-C-R filter; see Figure 156 and Figure 157.

In addition, the drive circuit may have to be designed to provide a low insertion loss over the desired frequency range and matched impedance to the source. Furthermore, the ADC input impedance must be considered. Figure 154 and Figure 155 show the impedance ($Z_{IN} = R_{IN} || C_{IN}$) looking into the ADC input pins.

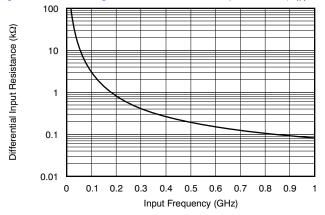


Figure 154. ADC Analog Input Resistance (R_{IN}) Across Frequency

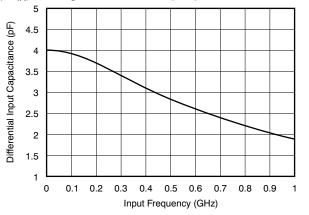


Figure 155. ADC Analog Input Capacitance (C_{IN}) Across Frequency

SBAS533-MARCH 2011

www.ti.com

Driving Circuit

Two example driving circuit configurations are shown in Figure 156 and Figure 157—one optimized for low bandwidth (low input frequencies) and the other one for high bandwidth to support higher input frequencies. Note that both of the drive circuits have been terminated by 50Ω near the ADC side. The termination is accomplished by a 25Ω resistor from each input to the 1.5V common-mode (VCM) from the device. This architecture allows the analog inputs to be biased around the required common-mode voltage.

The mismatch in the transformer parasitic capacitance (between the windings) results in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps minimize this mismatch; good performance is obtained for high-frequency input signals. An additional termination resistor pair may be required between the two transformers, as shown in Figure 156, Figure 157, and Figure 158. The center point of this termination is connected to ground to improve the balance between the P and M sides. The values of the terminations between the transformers and on the secondary side must be chosen to obtain an effective 50Ω (in the case of 50Ω source impedance).

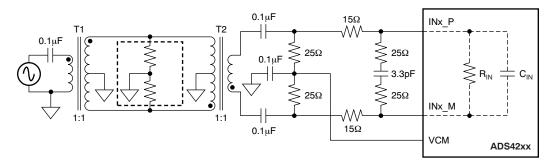


Figure 156. Drive Circuit with Low Bandwidth (for Low Input Frequencies Less Than 150MHz)

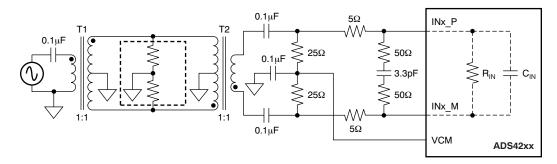


Figure 157. Drive Circuit with High Bandwidth (for High Input Frequencies Greater Than 150MHz and Less Than 270MHz)

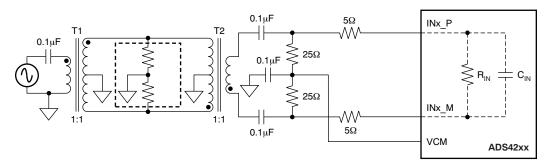


Figure 158. Drive Circuit with Very High Bandwidth (Greater than 270MHz)

www.ti.com

SBAS533-MARCH 2011

All of these examples show 1:1 transformers being used with a 50Ω source. As explained in the *Drive Circuit Requirements* section, this configuration helps to present a low source impedance to absorb the sampling glitches. With a 1:4 transformer, the source impedance is 200Ω . The higher source impedance is unable to absorb the sampling glitches effectively and can lead to degradation in performance (compared to using 1:1 transformers).

In almost all cases, either a band-pass or low-pass filter is required to obtain the desired dynamic performance, as shown in Figure 159. Such filters present low source impedance at the high frequencies corresponding to the sampling glitch and help avoid the performance loss with the high source impedance.

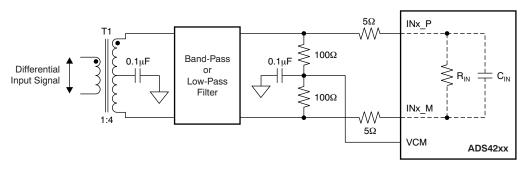
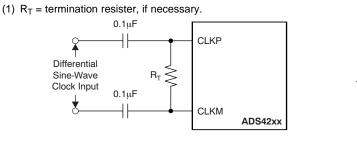



Figure 159. Drive Circuit with a 1:4 Transformer

CLOCK INPUT

The ADS422x/424x clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to VCM using internal $5k\Omega$ resistors. This setting allows the use of transformer-coupled drive circuits for sine-wave clock or ac-coupling for LVPECL and LVDS clock sources are shown in Figure 160, Figure 161 and Figure 162. The internal clock buffer is shown in Figure 163.

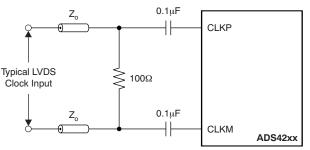


Figure 161. LVDS Clock Driving Circuit

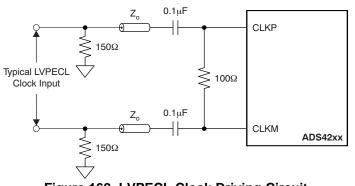
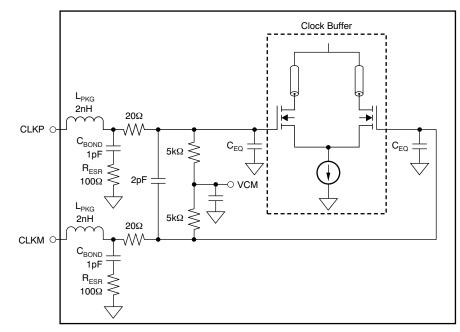



Figure 162. LVPECL Clock Driving Circuit

SBAS533-MARCH 2011

www.ti.com

NOTE: C_{EQ} is 1pF to 3pF and is the equivalent input capacitance of the clock buffer.

Figure 163. Internal Clock Buffer

A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1µF capacitor, as shown in Figure 164. For best performance, the clock inputs must be driven differentially, thereby reducing susceptibility to common-mode noise. For high input frequency sampling, it is recommended to use a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no change in performance with a non-50% duty cycle clock input.

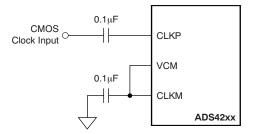


Figure 164. Single-Ended Clock Driving Circuit

SBAS533 - MARCH 2011

www.ti.com

DIGITAL FUNCTIONS

The device has several useful digital functions (such as test patterns, gain, and offset correction). These functions require extra clock cycles for operation and increase the overall latency and power of the device. These digital functions are disabled by default after reset and the raw ADC output is routed to the output data pins with a latency of 16 clock cycles. Figure 165 shows more details of the processing after the ADC. In order to use any of the digital functions, the EN DIGITAL bit must be set to '1'. After this, the respective register bits must be programmed as described in the following sections and in the Serial Register Map section.

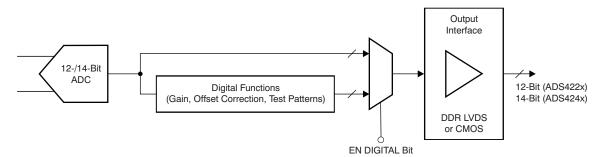


Figure 165. Digital Processing Block

GAIN FOR SFDR/SNR TRADE-OFF

The ADS422x/424x include gain settings that can be used to get improved SFDR performance (compared to no gain). The gain is programmable from 0dB to 6dB (in 0.5dB steps). For each gain setting, the analog input full-scale range scales proportionally, as shown in Table 11.

The SFDR improvement is achieved at the expense of SNR; for each gain setting, the SNR degrades approximately between 0.5dB and 1dB. The SNR degradation is reduced at high input frequencies. As a result, the gain is very useful at high input frequencies because the SFDR improvement is significant with marginal degradation in SNR. Therefore, the gain can be used as a trade-off between SFDR and SNR. Note that the default gain after reset is 0dB.

GAIN (dB)	ТҮРЕ	FULL-SCALE (V _{PP})
0	Default after reset	2
1	Fine, programmable	1.78
2	Fine, programmable	1.59
3	Fine, programmable	1.42
4	Fine, programmable	1.26
5	Fine, programmable	1.12
6	Fine, programmable	1

Table 11. Full-Scale Range Across Gains

TEXAS INSTRUMENTS

www.ti.com

SBAS533-MARCH 2011

OFFSET CORRECTION

The ADS422x/424x have an internal offset correction algorithm that estimates and corrects dc offset up to ±10mV. The correction can be enabled using the ENABLE OFFSET CORR serial register bit. Once enabled, the algorithm estimates the channel offset and applies the correction every clock cycle. The time constant of the correction loop is a function of the sampling clock frequency. The time constant can be controlled using the OFFSET CORR TIME CONSTANT register bits, as described in Table 12.

After the offset is estimated, the correction can be frozen by setting FREEZE OFFSET CORR = 0. Once frozen, the last estimated value is used for the offset correction of every clock cycle. Note that offset correction is disabled by default after reset.

OFFSET CORR TIME CONSTANT	TIME CONSTANT, TC _{CLK} (Number of Clock Cycles)	TIME CONSTANT, TC _{CLK} × 1/f _S (ms) ⁽¹⁾		
0000	1M	7		
0001	2M	13		
0010	4M	26		
0011	8M	52		
0100	16M	105		
0101	32M	210		
0110	64M	419		
0111	128M	839		
1000	256M	1678		
1001	512M	3355		
1010	1G	6711		
1011	2G	13422		
1100	Reserved	—		
1101	Reserved	—		
1110	Reserved	—		
1111	Reserved	_		

Table 12. Time Constant of Offset Correction Algorithm

(1) Sampling frequency, $f_S = 160MSPS$.

POWER-DOWN

The ADS422x/424x have two power-down modes: global power-down and channel standby. These modes can be set using either the serial register bits or using the control pins CTRL1 to CTRL3 (as shown in Table 13).

CTRL1	CTRL2	CTRL3	DESCRIPTION				
Low	Low	Low	Default				
Low	Low	High	Not available				
Low	High	Low	Not available				
Low	High	High	Not available				
High	Low	Low	Global power-down				
High	Low	High	Channel A powered down, channel B is active				
High	High	Low	Not available				
High	High	High	MUX mode of operation, channel A and B data is multiplexed and output on DB[10:0] pins				

Table 13. Power-Down Settings

80 Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

Global Power-Down

In this mode, the entire chip (including ADCs, internal reference, and output buffers) are powered down, resulting in reduced total power dissipation of approximately 20mW when the CTRL pins are used and 3mW when the PDN GLOBAL serial register bit is used. The output buffers are in high-impedance state. The wake-up time from global power-down to data becoming valid in normal mode is typically 100µs.

Channel Standby

In this mode, each ADC channel can be powered down. The internal references are active, resulting in a quick wake-up time of 50µs. The total power dissipation in standby is approximately 200mW at 160MSPS.

Input Clock Stop

In addition to the previous modes, the converter enters a low-power mode when the input clock frequency falls below 1MSPS. The power dissipation is approximately 160mW.

DIGITAL OUTPUT INFORMATION

The ADS422x/424x provide 12-bit/14-bit digital data for each channel and an output clock synchronized with the data.

Output Interface

Two output interface options are available: double data rate (DDR) LVDS and parallel CMOS. They can be selected using the serial interface register bit or by setting the proper voltage on the SEN pin in parallel configuration mode.

SBAS533-MARCH 2011

www.ti.com

DDR LVDS Outputs

In this mode, the data bits and clock are output using low-voltage differential signal (LVDS) levels. Two data bits are multiplexed and output on each LVDS differential pair, as shown in Figure 166.

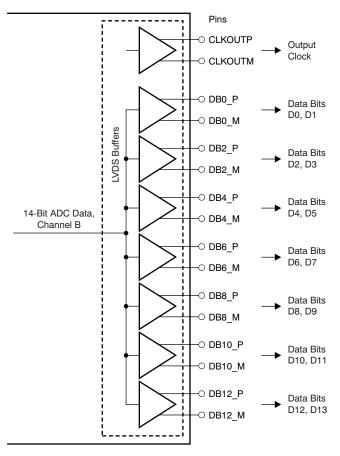


Figure 166. LVDS Interface

82 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246

www.ti.com

SBAS533-MARCH 2011

Even data bits (D0, D2, D4, etc.) are output at the CLKOUTP rising edge and the odd data bits (D1, D3, D5, etc.) are output at the CLKOUTP falling edge. Both the CLKOUTP rising and falling edges must be used to capture all the data bits, as shown in Figure 167.

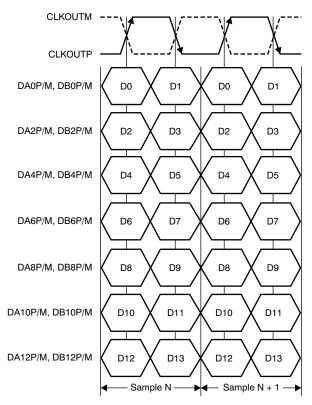
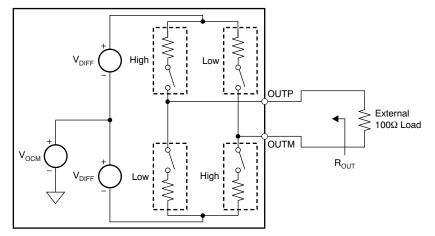



Figure 167. DDR LVDS Interface Timing

SBAS533-MARCH 2011

LVDS Buffer

The equivalent circuit of each LVDS output buffer is shown in Figure 168. After reset, the buffer presents an output impedance of 100Ω to match with the external 100Ω termination.

NOTE: Default swing across 100Ω load is ±350mV. Use the LVDS SWING bits to change the swing.

Figure 168. LVDS Buffer Equivalent Circuit

The V_{DIFF} voltage is nominally 350mV, resulting in an output swing of \pm 350mV with 100 Ω external termination. The V_{DIFF} voltage is programmable using the LVDS SWING register bits from \pm 125mV to \pm 570mV.

Additionally, a mode exists to double the strength of the LVDS buffer to support 50Ω differential termination, as shown in Figure 169. This mode can be used when the output LVDS signal is routed to two separate receiver chips, each using a 100Ω termination. The mode can be enabled using the LVDS DATA STRENGTH and LVDS CLKOUT STRENGTH register bits for data and output clock buffers, respectively.

The buffer output impedance behaves in the same way as a source-side series termination. By absorbing reflections from the receiver end, it helps to improve signal integrity.

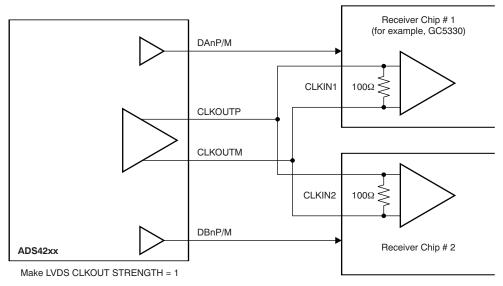
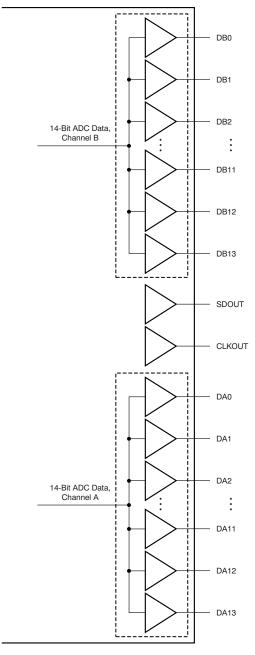


Figure 169. LVDS Buffer Differential Termination


SBAS533 - MARCH 2011

85

www.ti.com

Parallel CMOS Interface

In the CMOS mode, each data bit is output on separate pins as CMOS voltage level, every clock cycle, as Figure 170 shows. The rising edge of the output clock CLKOUT can be used to latch data in the receiver. It is recommended to minimize the load capacitance of the data and clock output pins by using short traces to the receiver. Furthermore, match the output data and clock traces to minimize the skew between them.

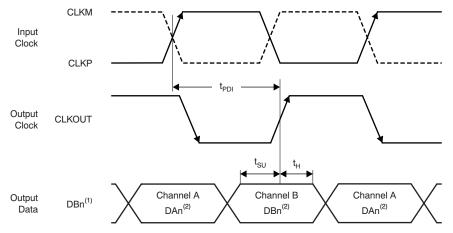
SBAS533-MARCH 2011

CMOS Interface Power Dissipation

With CMOS outputs, the DRVDD current scales with the sampling frequency and the load capacitance on every output pin. The maximum DRVDD current occurs when each output bit toggles between 0 and 1 every clock cycle. In actual applications, this condition is unlikely to occur. The actual DRVDD current would be determined by the average number of output bits switching, which is a function of the sampling frequency and the nature of the analog input signal. This relationship is shown by the formula:

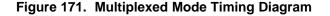
Texas

INSTRUMENTS


www.ti.com

Digital current as a result of CMOS output switching = $C_L \times DRVDD \times (N \times F_{AVG})$,

where C_L = load capacitance, N × F_{AVG} = average number of output bits switching.


Multiplexed Mode of Operation

In this mode, the digital outputs of both channels are multiplexed and output on a single bus (DB[13:0] pins), as shown in Figure 171. The channel A output pins (DA[13:0]) are in 3-state. Because the output data rate on the DB bus is effectively doubled, this mode is recommended only for low sampling frequencies (less than 80MSPS). This mode can be enabled using the POWER-DOWN MODE register bits or using the CTRL[3:1] parallel pins.

(1) In multiplexed mode, both channels outputs come on the channel B output pins.

(2) Dn = bits D0, D1, D2, etc.

Output Data Format

Two output data formats are supported: twos complement and offset binary. The format can be selected using the DATA FORMAT serial interface register bit or by controlling the DFS pin in parallel configuration mode.

In the event of an input voltage overdrive, the digital outputs go to the appropriate full-scale level. For a positive overdrive, the output code is FFFh for the ADS422x and 3FFFh for the ADS424x in offset binary output format; the output code is 7FFh for the ADS422x and 1FFFh for the ADS424x in twos complement output format. For a negative input overdrive, the output code is 0000h in offset binary output format and 800h for the ADS422x and 2000h for the ADS424x in twos complement output format.

DEFINITION OF SPECIFICATIONS

Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low-frequency value.

Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at which the sampling occurs. This delay is different across channels. The maximum variation is specified as aperture delay variation (channel-to-channel).

Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.

Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine-wave clock results in a 50% duty cycle.

⁸⁶ Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated

Maximum Conversion Rate – The maximum sampling rate at which specified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted.

Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.

Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly 1LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.

Integral Nonlinearity (INL) – The INL is the deviation of the ADC transfer function from a best fit line determined by a least squares curve fit of that transfer function, measured in units of LSBs.

Gain Error – Gain error is the deviation of the ADC actual input full-scale range from its ideal value. The gain error is given as a percentage of the ideal input full-scale range. Gain error has two components: error as a result of reference inaccuracy (E_{GREF}) and error as a result of the channel (E_{GCHAN}). Both errors are specified independently as E_{GREF} and E_{GCHAN} .

To a first-order approximation, the total gain error is $E_{TOTAL} \sim E_{GREF} + E_{GCHAN}$.

For example, if $E_{TOTAL} = \pm 0.5\%$, the full-scale input varies from $(1 - 0.5/100) \times FS_{ideal}$ to $(1 + 0.5/100) \times FS_{ideal}$.

Offset Error – The offset error is the difference, given in number of LSBs, between the ADC actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into millivolts.

Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from T_{MIN} to T_{MAX} . It is calculated by dividing the maximum deviation of the parameter across the T_{MIN} to T_{MAX} range by the difference $T_{MAX} - T_{MIN}$.

Signal-to-Noise Ratio – SNR is the ratio of the power of the fundamental (P_S) to the noise floor power (P_N), excluding the power at dc and the first nine harmonics.

SNR = 10Log¹⁰
$$\frac{P_S}{P_N}$$

(1)

SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (P_S) to the power of all the other spectral components including noise (P_N) and distortion (P_D), but excluding dc.

$$SINAD = 10Log^{10} \frac{P_S}{P_N + P_D}$$
(2)

SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

SBAS533-MARCH 2011

88 Submit Documentation Feedback

Product Folder Link(s): ADS4222 ADS4225 ADS4226 ADS4242 ADS4245 ADS4246

www.ti.com

Effective Number of Bits (ENOB) – ENOB is a measure of the converter performance as compared to the theoretical limit based on quantization noise.

$$\mathsf{ENOB} = \frac{\mathsf{SINAD} - 1.76}{6.02}$$

Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (P_S) to the power of the first nine harmonics (P_D).

THD = 10Log¹⁰
$$\frac{P_s}{P_N}$$

THD is typically given in units of dBc (dB to carrier).

Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).

Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f_1 and f_2) to the power of the worst spectral component at either frequency $2f_1 - f_2$ or $2f_2 - f_1$. IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter full-scale range.

DC Power-Supply Rejection Ratio (DC PSRR) – DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. The dc PSRR is typically given in units of mV/V.

AC Power-Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the supply voltage by the ADC. If ΔV_{SUP} is the change in supply voltage and ΔV_{OUT} is the resultant change of the ADC output code (referred to the input), then:

PSRR = 20Log¹⁰ $\frac{\Delta V_{OUT}}{\Delta V_{SUP}}$ (Expressed in dBc)

Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an overload on the analog inputs. This is tested by separately applying a sine wave signal with 6 dB positive and negative overload. The deviation of the first few samples after the overload (from the expected values) is noted.

Common-Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input common-mode by the ADC. If $\Delta V_{CM_{IN}}$ is the change in the common-mode voltage of the input pins and ΔV_{OUT} is the resulting change of the ADC output code (referred to the input), then:

CMRR = 20Log¹⁰
$$\frac{\Delta V_{OUT}}{\Delta V_{CM}}$$
 (Expressed in dBc)

Crosstalk (only for multi-channel ADCs) – This is a measure of the internal coupling of a signal from an adjacent channel into the channel of interest. It is specified separately for coupling from the immediate neighboring channel (near-channel) and for coupling from channel across the package (far-channel). It is usually measured by applying a full-scale signal in the adjacent channel. Crosstalk is the ratio of the power of the coupling signal (as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel input. It is typically expressed in dBc.

(3)

(4)

(6)

Copyright © 2011, Texas Instruments Incorporated

(5)

SBAS533 - MARCH 2011

BOARD DESIGN CONSIDERATIONS

Grounding

A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of the board are cleanly partitioned. See the *ADS4226 Evaluation Module* (SLAU333) for details on layout and grounding.

Supply Decoupling

Because the ADS422x/424x already include internal decoupling, minimal external decoupling can be used without loss in performance. Note that decoupling capacitors can help filter external power-supply noise; thus, the optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed very close to the converter supply pins.

Exposed Pad

In addition to providing a path for heat dissipation, the PowerPAD is also electrically connected internally to the digital ground. Therefore, it is necessary to solder the exposed pad to the ground plane for best thermal and electrical performance. For detailed information, see application notes *QFN Layout Guidelines* (SLOA122) and *QFN/SON PCB Attachment* (SLUA271).

Routing Analog Inputs

It is advisable to route differential analog input pairs (INP_x and INM_x) close to each other. To minimize the possibility of coupling from one channel to other, the analog input pairs of two channels should be routed perpendicular to each other; see the *ADS4226 Evaluation Module* (SLAU333) for reference routing.

8-Apr-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
ADS4222IRGCR	PREVIEW	VQFN	RGC	64	2000	TBD	Call TI	Call TI	
ADS4222IRGCT	PREVIEW	VQFN	RGC	64	250	TBD	Call TI	Call TI	
ADS4225IRGC25	PREVIEW	VQFN	RGC	64	25	TBD	Call TI	Call TI	
ADS4225IRGCR	PREVIEW	VQFN	RGC	64	2000	TBD	Call TI	Call TI	
ADS4225IRGCT	PREVIEW	VQFN	RGC	64	250	TBD	Call TI	Call TI	
ADS4226IRGC25	ACTIVE	VQFN	RGC	64	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ADS4226IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ADS4226IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	
ADS4242IRGCR	PREVIEW	VQFN	RGC	64	2000	TBD	Call TI	Call TI	
ADS4242IRGCT	PREVIEW	VQFN	RGC	64	250	TBD	Call TI	Call TI	
ADS4245IRGC25	PREVIEW	VQFN	RGC	64	25	TBD	Call TI	Call TI	
ADS4245IRGCR	PREVIEW	VQFN	RGC	64	2000	TBD	Call TI	Call TI	
ADS4245IRGCT	PREVIEW	VQFN	RGC	64	250	TBD	Call TI	Call TI	
ADS4246IRGC25	PREVIEW	VQFN	RGC	64	25	TBD	Call TI	Call TI	
ADS4246IRGCR	PREVIEW	VQFN	RGC	64	2000	TBD	Call TI	Call TI	
ADS4246IRGCT	PREVIEW	VQFN	RGC	64	250	TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

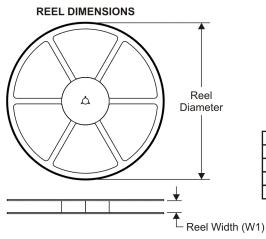
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

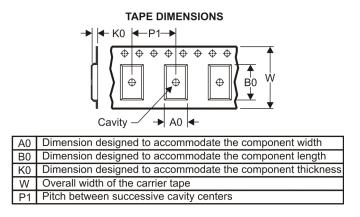
8-Apr-2011

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

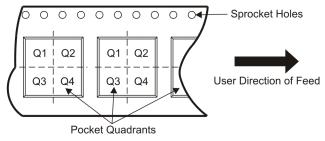
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

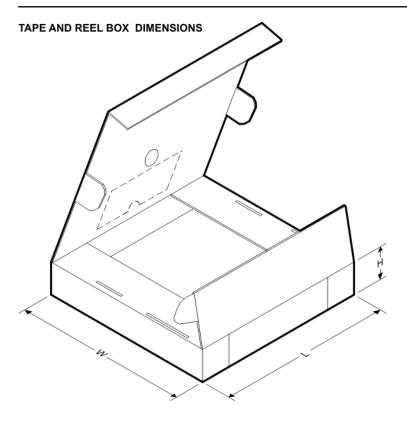

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

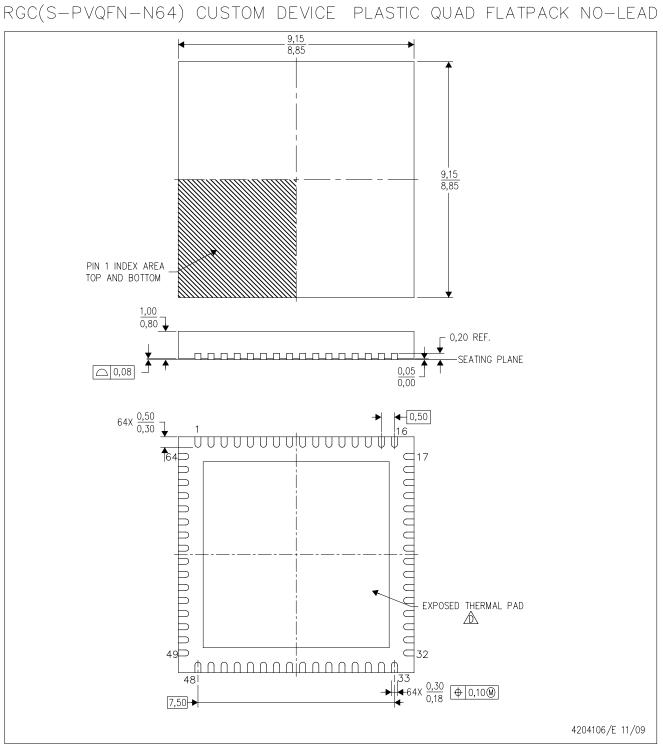
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS4226IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2
ADS4226IRGCT	VQFN	RGC	64	250	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

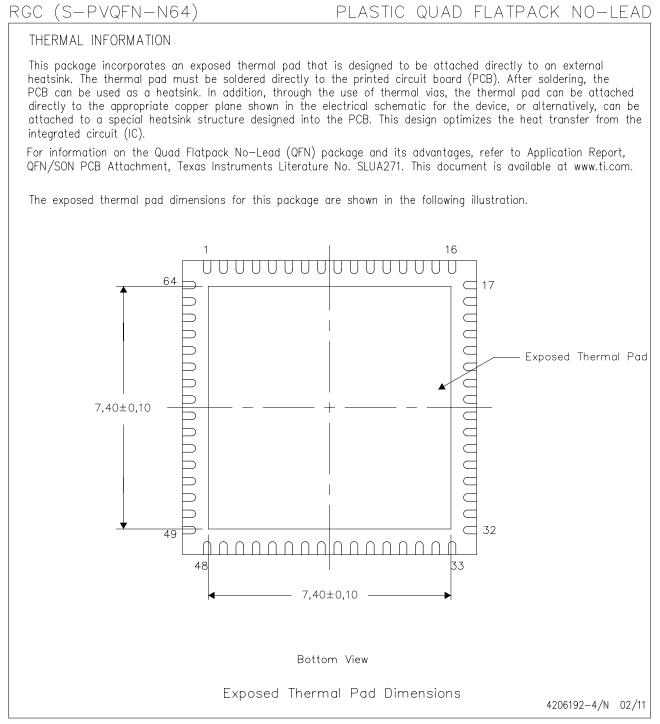
www.ti.com

PACKAGE MATERIALS INFORMATION


9-Apr-2011

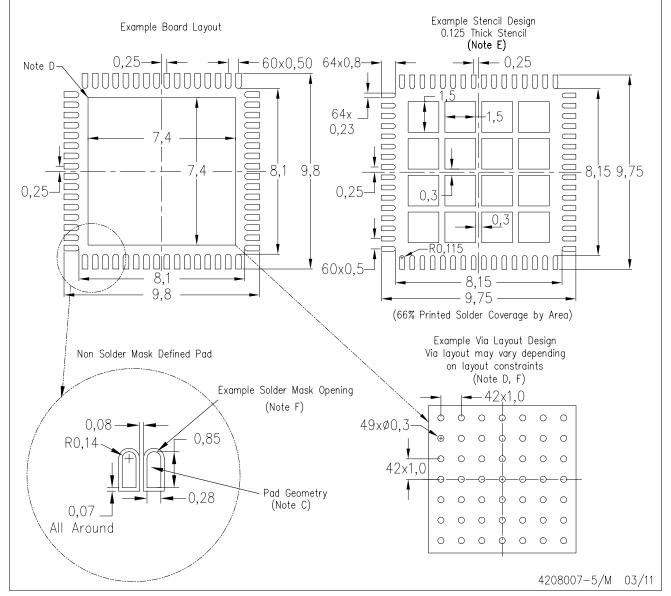
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS4226IRGCR	VQFN	RGC	64	2000	333.2	345.9	28.6
ADS4226IRGCT	VQFN	RGC	64	250	333.2	345.9	28.6


MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.



NOTE: A. All linear dimensions are in millimeters

RGC (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated