

TPS22925

SLVS840C - NOVEMBER 2015 - REVISED FEBRUARY 2016

TPS22925 3.6-V, 3-A, 9-mΩ On-Resistance Load Switch

Features

- Input Voltage Range: 0.65 V to 3.6 V
- On-Resistance
 - R_{ON} = 9.2 m Ω at V_{IN} = 3.6 V
 - R_{ON} = 9.2 m Ω at V_{IN} = 1.8 V
 - R_{ON} = 10.2 mΩ at V_{IN} = 1 V
 - $-R_{ON} = 13.1 \text{ m}\Omega \text{ at } V_{IN} = 0.65 \text{ V}$
- 3-A Maximum Continuous Switch Current
- Quiescent Current, $I_{Q,VIN} = 29 \mu A$ at $V_{IN} = 3.6 \text{ V}$
- Low Control Input Threshold Enables 1.5-V, 1.8-V, 2.5-V, or 3.3-V Logic
- Controlled Slew Rate
 - t_R = 97 µs at V_{IN} = 3.6 V (TPS22925Bx)
 - t_R = 810 µs at V_{IN} = 3.6 V (TPS22925Cx)
- Reverse Current Blocking (When Disabled)
- Quick Output Discharge (QOD) (TPS22925B and TPS22925C only)
- Wafer Chip Scale Package:
 - 0.9 mm x 1.4 mm, 0.5 mm Pitch, 0.4 mm
- ESD Performance Tested per JESD 22
 - 1 kV HBM and 500 V CDM

Applications

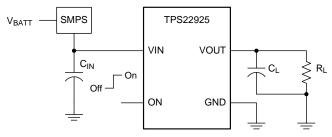
- Computing
- SSD
- **Tablets**
- Wearables
- **EPOS**

3 Description

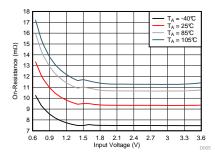
The TPS22925 product family consists of four devices: TPS22925B, TPS22925BN, TPS22925C, and TPS22925CN. Each device is a 9-m Ω , singlechannel load switch with a controlled slew rate.

The devices contain an N-channel MOSFET that can operate over an input voltage range of 0.65 V to 3.6 V and can support a maximum continuous current of 3 A. This continuous current enables the devices to be used across multiple designs and end equipments. Each of the TPS22925 devices provides reverse current blocking when disabled allowing for power supply protection and power multiplexing capabilities.

The controlled rise time for the device greatly reduces inrush current caused by large bulk load capacitances, thereby reducing or eliminating power supply droop. When operating with an input voltage of 3.6 V, the TPS22925Bx devices feature a 97 µs rise time and the TPS22925Cx devices feature an 810 µs rise time.


The TPS22925 family of devices can help reduce the total solution size by offering an optional integrated, 150-Ω pull-down resistor for quick output discharge (QOD) when the switch is turned off. Each of the TPS22925 devices is available in a 0.9 mm x 1.4 mm, 0.5 mm pitch, 0.4 mm height 6-pin wafer chip scale package (WCSP) allowing for smaller, more integrated designs. The WCSP and 9 m Ω of onresistance allow use in space constrained, battery powered applications. The device is characterized for operation over the free-air temperature range of –40°C to 105°C.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TPS22925B				
TPS22925BN	DCDCA (6)	0.00 mm 1.40 mm		
TPS22925C	DSBGA (6)	0.90 mm × 1.40 mm		
TPS22925CN				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Application

On-Resistance vs Input Voltage

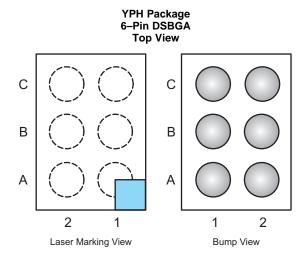
Table of Contents

1	Features 1		8.2 Functional Block Diagram	1
2	Applications 1		8.3 Feature Description	1
3	Description 1		8.4 Device Functional Modes	1
4	Revision History2	9	Application and Implementation	10
5	Device Comparison Table		9.1 Application Information	10
e S	Pin Configuration and Functions		9.2 Typical Application	18
7		10	Power Supply Recommendations	19
•	Specifications	11	Layout	20
	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	
	7.3 Recommended Operating Conditions		11.2 Layout Example	
	7.4 Thermal Information	12	Device and Documentation Support	
	7.5 Electrical Characteristics 5		12.1 Community Resources	
	7.6 Switching Characteristics 6		12.2 Trademarks	
	7.7 Typical Characteristics		12.3 Electrostatic Discharge Caution	2
	7.8 Typical Characteristics		12.4 Glossary	2
R	Detailed Description	13	Mechanical, Packaging, and Orderable	
	8.1 Overview		Information	2 ⁻
	0.1 0001000			

4 Revision History

Changes from Revision B (January 2016) to Revision C	Page
Made changes to Device Comparison Table	
Changes from Revision A (December 2015) to Revision B	Page
Deleted the STATUS column from the Device Comparison Table	
Changes from Original (November 2015) to Revision A	Page
Updated document status from Product Preview to Production Data	

Product Folder Links: TPS22925


Submit Documentation Feedback

5 Device Comparison Table

DEVICE	QOD	R _{ON} (mΩ) at V _{IN} = 3.6 V	t _R (μs) at V _{IN} = 3.6 V	MAXIMUM OUTPUT CURRENT I _{MAX} (A)	ENABLE (ON PIN)	
TPS22925B	Yes		97			
TPS22925BN	No	0.0	97		A stirre I limb	
TPS22925C	Yes	9.2		3	Active High	
TPS22925CN	2925CN No		810			

6 Pin Configuration and Functions

Pin Assignments

С	GND	ON					
В	VOUT	VIN					
Α	VOUT	VIN					
	1	2					

Pin Functions

PIN		TYPE	DESCRIPTION	
NAME	NO.	IIPE	DESCRIPTION	
GND	C1	GND	Ground	
ON	C2	I	Switch control input. Active high. Do not leave floating.	
VIN	A2		Switch input; bypass this input with a ceramic capacitor to ground. See <i>Application</i>	
VIIN	B2	'	Information section for more detail.	
VOLIT	A1	0	Switch output	
VOUT	B1 O		Switch output	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Input voltage	VIN, ON	-0.3	4	V
Output voltage	VOUT	-0.3	4	V
Maximum continuous switch current at T _A = 60°C	I _{MAX}		3	Α
Maximum pulsed switch current, 100–µs pulse, 2% duty cycle	I _{PLS}		4	А
Junction temperature, T _J			125	°C
Storage temperature range, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discha		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	V
	(SD) Electrostatic discharge	Charged–device model (CDM), per JEDEC specification JESD22–C101 (2)	±500	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{IN}	Input voltage	0.65	3.6	٧
V_{OUT}	Output voltage	0	3.6	٧
V_{IH}	High-level input voltage, ON	0.9	3.6	٧
V_{IL}	Low-level input voltage, ON	0	0.45	٧
C _{IN}	Input capacitance	1		μF
T _A	Operating free-air temperature	-40	105	°C

7.4 Thermal Information

		TPS22925xx			
	THERMAL METRIC ⁽¹⁾				
		6 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	110.9	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	1.2	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	30.4	°C/W		
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W		
Ψ_{JB}	Junction-to-board characterization parameter	30.4	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250–V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250–V CDM is possible with the necessary precautions.

7.5 Electrical Characteristics

over operating free–air temperature range (unless otherwise noted). Typical values are for $T_A = 25$ °C.

F	PARAMETER	TEST CO	NDITIONS	T _A	MIN TYP	MAX	UNIT
			V - 26 V	-40°C to 85°C	29	71	
			$V_{IN} = 3.6 \text{ V}$	-40°C to 105°C		84	
			V 25V	-40°C to 85°C	28	67	
			$V_{IN} = 2.5 \text{ V}$	-40°C to 105°C		79	
			V 40V	-40°C to 85°C	26	65	
	O.::	$V_{ON} = 3.6 \text{ V},$	$V_{IN} = 1.8 V$	-40°C to 105°C		76	
$I_{Q,VIN}$	Quiescent current	$I_{OUT} = 0 A$	V 40V	-40°C to 85°C	20	55	μA
			$V_{IN} = 1.2 \text{ V}$	-40°C to 105°C		66	
				-40°C to 85°C	16	50	
			$V_{IN} = 1.0 V$	-40°C to 105°C		60	
			\/ 0.05.\/	-40°C to 85°C	10	39	
			$V_{IN} = 0.65 V$	-40°C to 105°C		49	
			\\	-40°C to 85°C	0.5	5	5
			$V_{IN} = 3.6 \text{ V}$	-40°C to 105°C		9	
			V 05V	-40°C to 85°C	0.5	4	
			$V_{IN} = 2.5 V$	-40°C to 105°C		6	
I _{SD,VIN}			V _{IN} = 1.8 V	0.5	4		
	VIN shutdown	$V_{ON} = 0 V$,			6		
	current	$V_{OUT} = 0 \text{ V}$.,	-40°C to 85°C	0.5	3	μA
			V _{IN} = 1.2 V	-40°C to 105°C		5	
			V _{IN} = 1.0 V	-40°C to 85°C	0.5	3	
				-40°C to 105°C		5	
			V _{IN} = 0.65 V	-40°C to 85°C	0.5	3	
				-40°C to 105°C		5	
I _{ON}	ON pin input leakage current	0.9 V ≤ V _C	_{DN} ≤ 3.6 V	-40°C to 105°C		0.1	μΑ
la a vinu	Reverse current	V _{IN} = V _{ON} = 0 \	/ Vour = 3.6 V	-40°C to 85°C	-0.2	-2.5	μA
RC,VIN	when disabled	VIN - VON - 0 V	, v ₀₀₁ = 0.0 v	-40°C to 105°C		-6	μ/ (
				25°C	9.2	13	
			$V_{IN} = 3.6 V$	–40°C to 85°C		15	
				–40°C to 105°C		16	
				25°C	9.2	13	
			$V_{IN} = 2.5 V$	–40°C to 85°C		15	
				-40°C to 105°C		16	
				25°C	9.2	13	
			$V_{IN} = 1.8 V$	-40°C to 85°C		15	
5	On registeres	I - 200 - A		-40°C to 105°C		16	m0
R _{ON}	On-resistance	$I_{OUT} = -200 \text{ mA}$		25°C	9.5	14	mΩ
			$V_{IN} = 1.2 \text{ V}$	-40°C to 85°C		16	
				-40°C to 105°C		17	
				25°C	10.2	15	
			$V_{IN} = 1.0 \text{ V}$	-40°C to 85°C		17	
			•	-40°C to 105°C		18	
				25°C	13.1	20	
			$V_{IN} = 0.65 \text{ V}$	-40°C to 85°C		23	
			V IIV — 0.00 V	-40°C to 105°C		25	

Electrical Characteristics (continued)

over operating free–air temperature range (unless otherwise noted). Typical values are for $T_A = 25$ °C.

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V _{HYS}		$V_{IN} = 3.6 \ V$			86		
		$V_{IN} = 2.5 V$			83		
	ON nin byotoropia	V _{IN} = 1.8 V	25°C		82		mV
	ON pin hysteresis	V _{IN} = 1.2 V	25 C		80		IIIV
		V _{IN} = 1.0 V			79		
		$V_{IN} = 0.65 \text{ V}$			79		
R _{PD} ⁽¹⁾	Output pull-down	Output pull-down $V_{IN} = V_{OUT} = 3.6 \text{ V},$	-40°C to 85°C		150	205	Ω
	resistance	$V_{ON} = 0 V$	-40°C to 105°C			215	77

⁽¹⁾ Applies to TPS22925B and TPS22925C only.

7.6 Switching Characteristics (1)

over operating free-air temperature range (unless otherwise noted) $V_{ON} = 3.6 \text{ V}, R_L = 10 \Omega, C_{IN} = 1 \mu F, C_L = 0.1 \mu F, T_A = 25 ^{\circ} C$

	PARAMETER	TEST CONDITIONS	TYP (TPS22925Bx)	TYP (TPS22925Cx)	UNIT		
		V _{IN} = 3.6 V	110	900			
t _{ON}	Turn-on time	V _{IN} = 1.8 V	94	730	μs		
		V _{IN} = 0.65 V	86	620			
		V _{IN} = 3.6 V	3	3	μs		
t _{OFF}	Turn-off time	V _{IN} = 1.8 V	2.7	2.7			
		V _{IN} = 0.65 V	10.9	10.9			
t _R		V _{IN} = 3.6 V	97	810	μs		
	Output voltage rise time	V _{IN} = 1.8 V	61	520			
		V _{IN} = 0.65 V	36	300			
t _F		V _{IN} = 3.6 V	2.2	2.2			
	Output voltage fall time	V _{IN} = 1.8 V	2.1	2.1	μs		
		V _{IN} = 0.65 V	3.6	3.6			
t _D		V _{IN} = 3.6 V	64	500	μs		
	Delay time	V _{IN} = 1.8 V	66	490			
		V _{IN} = 0.65 V	68	470			

⁽¹⁾ Turn-off time and fall time are dependent on the time constant at the load. For TPS22925BN and TPS22925CN, there is no QOD. The time constant is $R_L \times C_L$. For TPS22925B and TPS22925C, internal pull-down resistor R_{PD} is enabled when the switch is disabled. The time constant is $(R_{PD} \parallel R_L) \times C_L$.

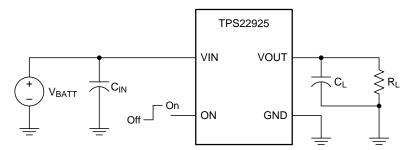
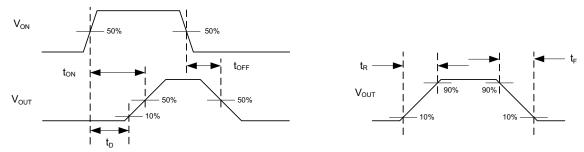
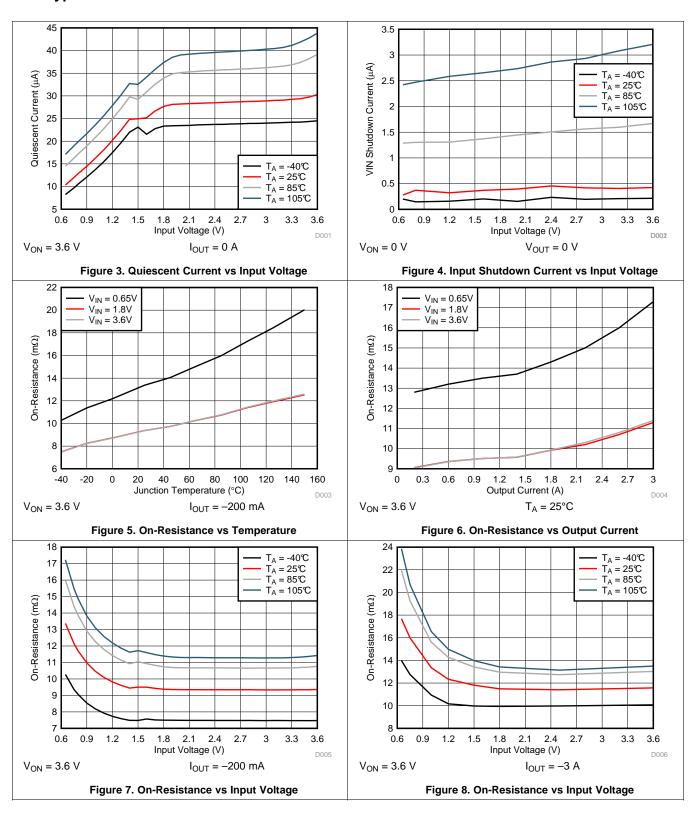



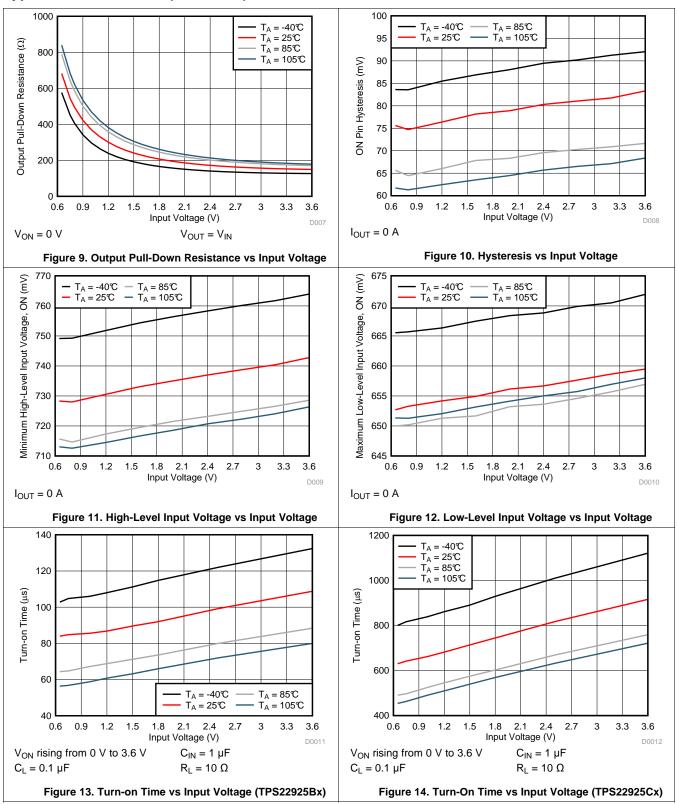
Figure 1. Timing Test Circuit



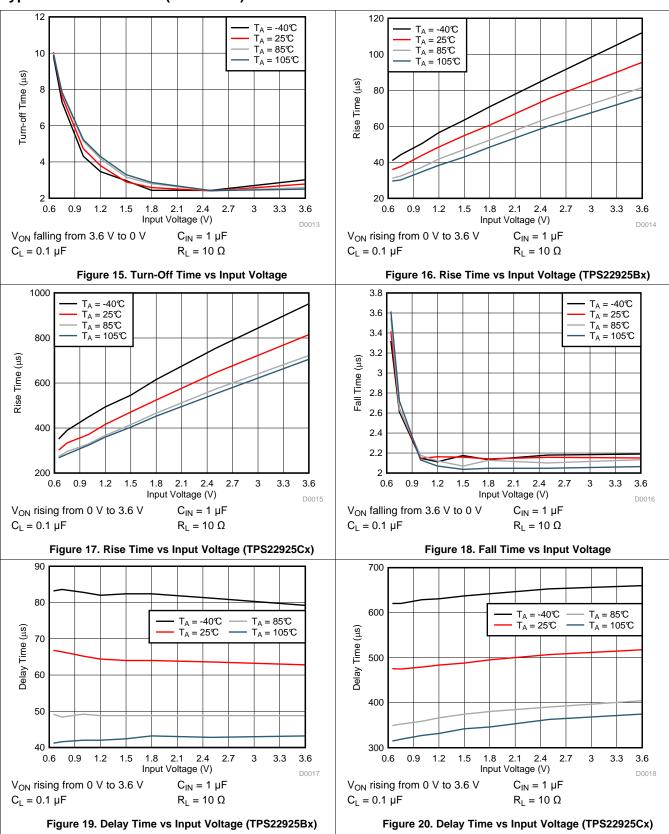
Rise times and fall times of the control signal is 100 ns.

Figure 2. Timing Waveforms

TEXAS INSTRUMENTS


7.7 Typical Characteristics

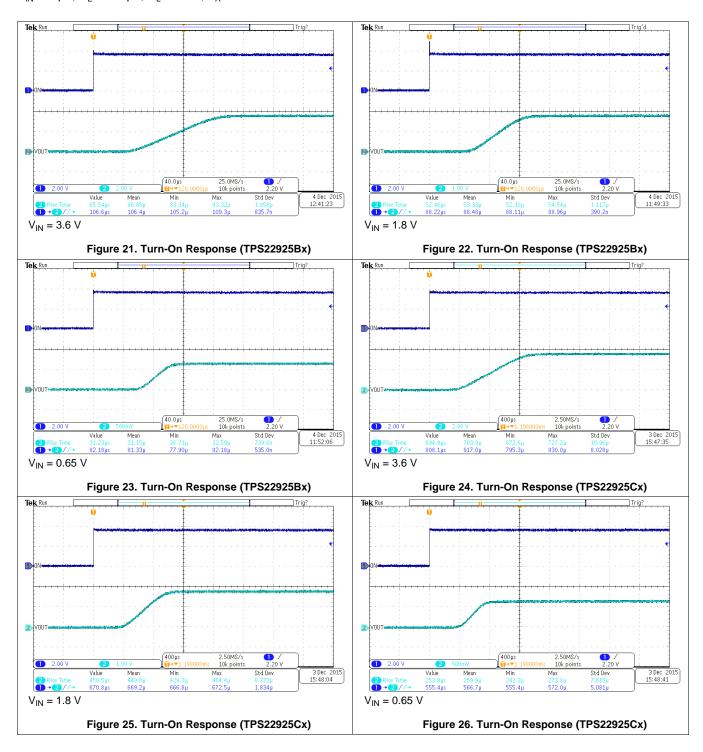
Submit Documentation Feedback



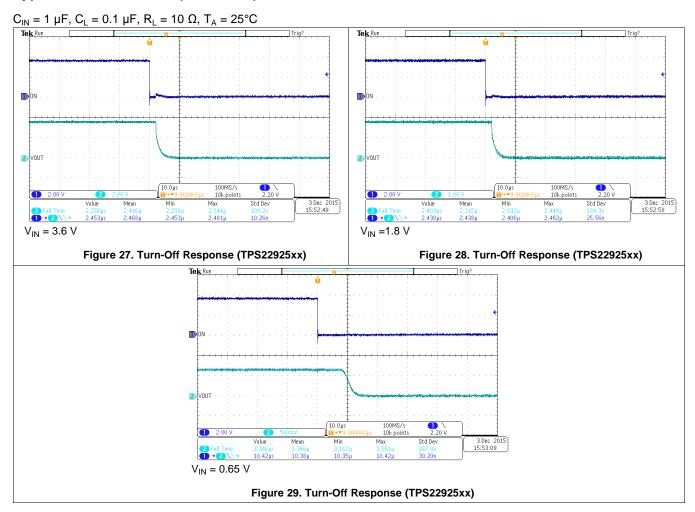
Typical Characteristics (continued)

TEXAS INSTRUMENTS

Typical Characteristics (continued)



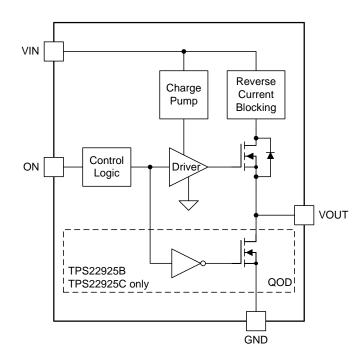
Submit Documentation Feedback


7.8 Typical Characteristics

 C_{IN} = 1 μF , C_L = 0.1 μF , R_L = 10 Ω , T_A = 25°C

Typical Characteristics (continued)

Submit Documentation Feedback



8 Detailed Description

8.1 Overview

The TPS22925 is a single channel, 3-A load switch in a WCSP-6 package. This device implements an N-channel MOSFET with a controlled rise time for applications that need to limit inrush current. The device is also designed to have low leakage current during off state. This prevents downstream circuits from pulling high standby current from the supply. The TPS22925 provides reverse current blocking when the power switch is disabled. Integrated control logic, driver, and output discharge FET eliminates the need for additional external components, which reduces solution size and bill of material (BOM) count.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 ON and OFF Control

The ON pin controls the state of the switch. Asserting the ON pin high enables the switch. The ON pin is compatible with GPIOs of 1.5 V and above.

8.3.2 Quick Output Discharge (QOD) (TPS22925B and TPS22925C only)

When the switch is disabled, a discharge path is enabled between the output and ground with a typical resistance of 150 Ω . The resistance pulls down the output and prevents it from floating when the device is disabled.

Feature Description (continued)

8.3.3 Reverse Current Blocking

The reverse current blocking feature prevents current flow from the VOUT pin to the VIN pin when the TPS22925 devices are disabled. This feature is particularly useful when the output of the device needs to be driven by another voltage source after TPS22925 is disabled (for example in a power multiplexer application). In order for this feature to work, the TPS22925 must be disabled and either of the following conditions must be met:

- $V_{IN} \ge 0.65 \text{ V or}$
- V_{OUT} ≥ 0.65 V

Figure 30 describes the ideal behavior of reverse current blocking circuit in TPS22925 devices where

- I_{VIN} is the current through the VIN pin
- V_{SRC} is the input voltage applied to the device
- V_{FORCE} is the external voltage source forced at the VOUT pin
- I_{OUT} is the output load current

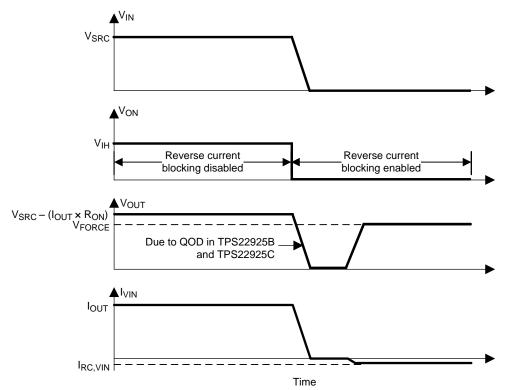


Figure 30. Reverse Current Blocking

After the device is disabled via the ON pin and VOUT is forced to an external voltage (V_{FORCE}), less than 6 μ A of current flows from the VOUT pin to the VIN pin. This limitation prevents any extra current loading on the voltage source supplying the V_{FORCE} voltage.

8.4 Device Functional Modes

Table 1 shows the function table for the TPS22925xx devices.

Table 1. Function Table

ON	VIN to VOUT	OUTPUT DISCHARGE ⁽¹⁾
L	OFF	ENABLED
Н	ON	DISABLED

(1) This feature is in the TPS22925B and TPS22925C only (not in the TPS22925BN and TPS22925CN).

(1)

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS22925 device is a 9-m Ω , single-channel load switch with a controlled slew rate. This design example describes a device containing an N-channel MOSFET that operates at an input voltage range of 3.6 V and supports a maximum continuous current of 3 A. The devices provides reverse current blocking when disabled allowing for power supply protection and power multiplexing capabilities.

9.1.1 VIN to VOUT Voltage Drop

The VIN pin to VOUT pin voltage drop in the device is determined by the R_{ON} of the device and the load current. The on-resistance of the device depends upon the VIN condition of the device. Refer to the on-resistance specification in the *Electrical Characteristics* table. After the on-resistance of the device is determined based upon the input voltage conditions, use Equation 1 to calculate the VIN-to-VOUT voltage drop.

$$\Delta V = I_L \times R_{ON}$$

where

- ΔV is the voltage drop from the VIN pin to the VOUT pin
- I₁ is the load current
- R_{ON} is the on-resistance of the device for a specific input voltage
- Choose an appropriate I_L so that the maximum current (I_{MAX}) specification of the device is not violated

9.1.2 Input Capacitor (C_{IN})

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor, place a capacitor between VIN and GND close to the pins. A 1- μ F ceramic capacitor, C_{IN}, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop.

9.1.3 Load Capacitor (C₁)

A C_{IN} to C_{L} ratio of 10-to-1 is recommended for minimizing the input voltage dip caused by inrush currents during startup.

Application Information (continued)

9.1.4 Standby Power Reduction

Any end equipment that is being powered from the battery has a need to reduce current consumption in order to maintain the battery charge for a longer time. TPS22925 devices help to accomplish this reduction by turning off the supply to the modules that are in standby state and hence significantly reducing the leakage current overhead of the standby modules.

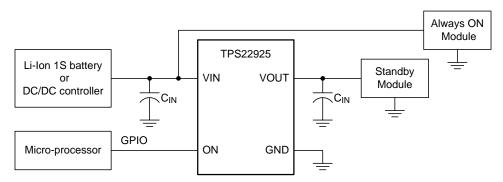


Figure 31. Standby Power Reduction

9.1.5 Power Multiplexing

Figure 32 shows a power multiplexing application using two TPS22925xN devices. Use the non-QOD version in order to maintain the output voltage. Configure the GPIO control from the microprocessor unit as break-before-make (BBM).

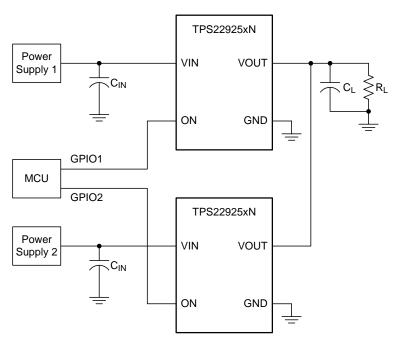


Figure 32. Power Multiplexing with Two TPS22925xN Devices

Application Information (continued)

9.1.6 Thermal Considerations

Restrict the maximum junction temperature lower than 125° C. Use Equation 2 to calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output load current and ambient temperature.

$$P_{D(max)} = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$

where

- P_{D(max)} is the maximum allowable power dissipation
- T_{J(max)} is the maximum allowable junction temperature
- · T_A is the ambient temperature of the device
- R_{eJA} is the junction-to-air thermal impedance

(2)

NOTE

The $R_{\theta JA}$ parameter is highly dependent upon board layout. (See the *Thermal Information* table)

9.2 Typical Application

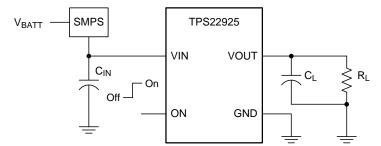


Figure 33. Typical Application Schematic

9.2.1 Design Requirements

For this design example, use the following as the input parameters.

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
V _{IN}	3.6 V				
C_L	1 μF				
Maximum Acceptable Inrush Current	40 mA				

9.2.2 Detailed Design Procedure

9.2.2.1 Managing Inrush Current

When the switch is enabled, the V_{IN} capacitors must be charged up from 0 V to V_{IN} . This charge arrives in the form of inrush current. Calculate the inrush current using Equation 3.

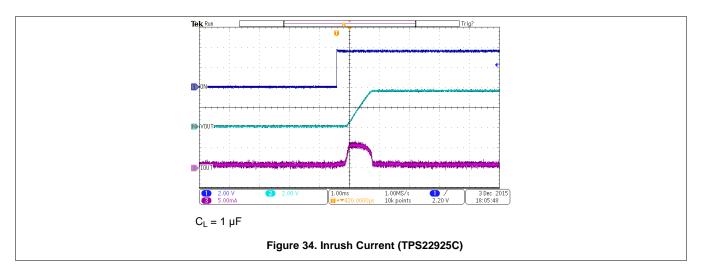
$$I_{INRUSH} = C_L \times \frac{dv}{dt}$$

where

- I_{INRUSH} is the inrush current
- C_L is the load capacitance
- dv/dt is the output slew rate

(3)

Submit Documentation Feedback



TPS22925Bx and TPS22925Cx have different controlled rise time. TPS22925Bx has shorter rise time than TPS22925Cx. In the application where fast rise time is required and higher inrush current can be tolerated, consider using the TPS22925Bx. For an application that requires a longer rise time and lower inrush current, consider using the TPS22925Cx. Calculate the maximum acceptable slew rate using the design requirements and Equation 4.

$$\frac{dv}{dt} = \frac{I_{INRUSH}}{C_L} = \frac{40 \text{ mA}}{1.0 \text{ }\mu\text{F}} = 40 \text{ V/ms}$$
(4)

The TPS22925Bx has a typical rise time of 97 μ s at 3.6 V. This results in a slew rate of 29.7 V/ms which meets the above design requirements. The TPS22925Cx has a typical rise time of 810 μ s at 3.6 V. This results in a slew rate of 3.6 V/ms which also meets the above design requirements. Base on inrush current requirement, either devices can be used.

9.2.3 Application Curve

10 Power Supply Recommendations

This family of devices is designed to operate with a VIN range of 0.65 V to 3.6 V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1 μ F bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient.

11 Layout

11.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and load capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.

11.2 Layout Example

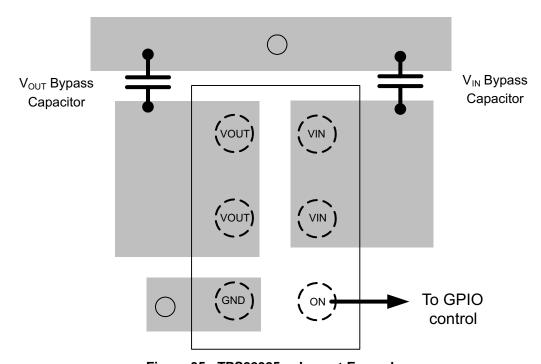


Figure 35. TPS22925xx Layout Example

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser–based versions of this data sheet, refer to the left–hand navigation.

23-Feb-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22925BNYPHR	ACTIVE	DSBGA	YPH	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12D9	Samples
TPS22925BNYPHT	ACTIVE	DSBGA	YPH	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12D9	Samples
TPS22925BYPHR	ACTIVE	DSBGA	YPH	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12A8	Samples
TPS22925BYPHT	ACTIVE	DSBGA	YPH	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12A8	Samples
TPS22925CNYPHR	ACTIVE	DSBGA	YPH	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12C9	Samples
TPS22925CNYPHT	ACTIVE	DSBGA	YPH	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12C9	Samples
TPS22925CYPHR	ACTIVE	DSBGA	YPH	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12B9	Samples
TPS22925CYPHT	ACTIVE	DSBGA	YPH	6	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 105	12B9	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

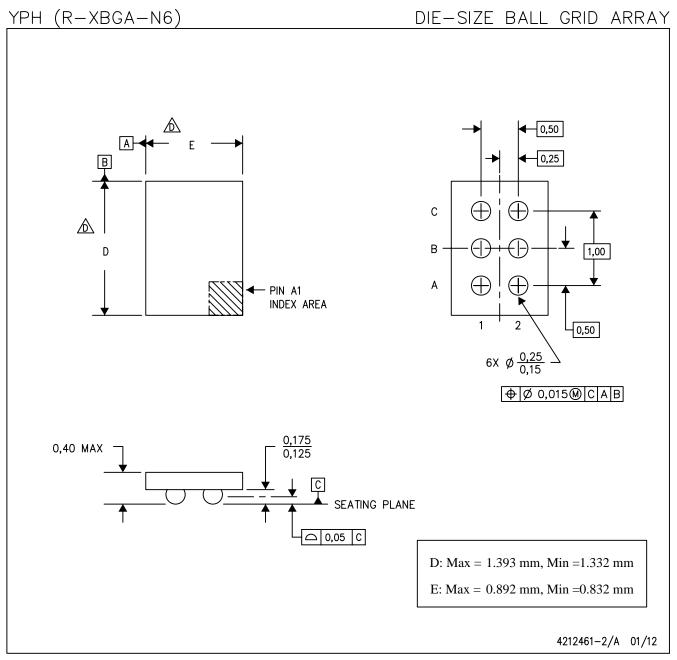
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


PACKAGE OPTION ADDENDUM

23-Feb-2016

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.

⚠ This package contains Pb—free balls.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity