

TMUX6208, TMUX6209 SCDS419C - NOVEMBER 2020 - REVISED AUGUST 2021

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

1 Features

Single supply range: 4.5 V to 36 V Dual supply range: ±4.5 V to ±18 V

Low on-resistance: 4 Ω Low charge injection: 3 pC

High current support: 400 mA (maximum) (WQFN)

High current support: 300 mA (maximum) (TSSOP)

-40°C to +125°C operating temperature

1.8 V logic compatible inputs

Integrated pull-down resistor on logic pins

Fail-safe logic

Rail-to-rail operation

Bidirectional signal path

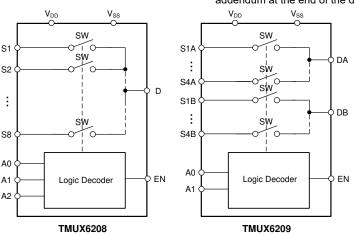
Break-before-make switching

2 Applications

- Factory automation and control
- Programmable logic controllers (PLC)
- Analog input modules
- Semiconductor test equipment
- Battery test equipment
- Ultrasound scanners
- Patient monitoring and diagnostics
- Optical networking
- Optical test equipment
- Wired networking
- Data acquisition systems (DAQ)

3 Description

The TMUX6208 is a precision 8:1, single channel multiplexer while the TMUX6209 is a 4:1, 2 channel multiplexer featuring low on resistance and charge injection. The devices work with a single supply (4.5 V to 36 V), dual supply (±4.5 V to ±18 V), or asymmetric supply (such as VDD = 12 V, VSS = -5 V). The TMUX620x supports bidirectional analog and digital signals on the source (Sx) and drain (D) pins ranging from V_{SS} to V_{DD} .


All logic control inputs support logic high levels from 1.8 V to V_{DD}, ensuring both TTL and CMOS logic compatibility when operating in the valid supply voltage range. Fail-Safe Logic circuitry allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage.

The TMUX620x are part of the precision switches and multiplexers family of devices. These devices have very low on and off leakage currents and low charge injection, allowing them to be used in high precision measurement applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TMUX6208	TSSOP (16) (PW)	5.00 mm × 4.40 mm
TMUX6209	WQFN (16) (RUM)	4.00 mm × 4.00 mm

For all available packages, see the package option addendum at the end of the data sheet.

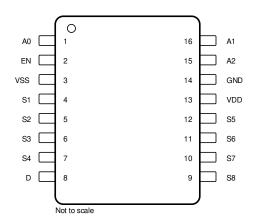
TMUX6208 and TMUX6209 Block Diagram

Table of Contents

1 Features1	8.10 Off Isolation	.28
2 Applications1	8.11 Crosstalk	29
3 Description1	8.12 Bandwidth	29
4 Revision History2	8.13 THD + Noise	
5 Device Comparison Table3	8.14 Power Supply Rejection Ratio (PSRR)	30
6 Pin Configuration and Functions3	9 Detailed Description	
7 Specifications5	9.1 Overview	
7.1 Absolute Maximum Ratings5	9.2 Functional Block Diagram	3
7.2 ESD Ratings5	9.3 Feature Description	
7.3 Thermal Information6	9.4 Device Functional Modes	.33
7.4 Recommended Operating Conditions6	9.5 Truth Tables	33
7.5 Source or Drain Continuous Current6	10 Application and Implementation	. 34
7.6 ±15 V Dual Supply: Electrical Characteristics7	10.1 Application Information	34
7.7 ±15 V Dual Supply: Switching Characteristics8	10.2 Typical Application	. 34
7.8 36 V Single Supply: Electrical Characteristics 10	10.3 Design Requirements	3
7.9 36 V Single Supply: Switching Characteristics11	10.4 Detailed Design Procedure	.3
7.10 12 V Single Supply: Electrical Characteristics 13	10.5 Application Curve	.36
7.11 12 V Single Supply: Switching Characteristics14	11 Power Supply Recommendations	.36
7.12 ±5 V Dual Supply: Electrical Characteristics16	12 Layout	.3
7.13 ±5 V Dual Supply: Switching Characteristics 17	12.1 Layout Guidelines	3
7.14 Typical Characteristics19	12.2 Layout Example	. 38
8 Parameter Measurement Information24	13 Device and Documentation Support	.39
8.1 On-Resistance24	13.1 Documentation Support	
8.2 Off-Leakage Current24	13.2 Receiving Notification of Documentation Updates	.39
8.3 On-Leakage Current25	13.3 Support Resources	
8.4 Transition Time	13.4 Trademarks	
8.5 t _{ON(EN)} and t _{OFF(EN)}	13.5 Electrostatic Discharge Caution	
8.6 Break-Before-Make26	13.6 Glossary	.39
8.7 t _{ON (VDD)} Time27	14 Mechanical, Packaging, and Orderable	
8.8 Propagation Delay27	Information	. 39
8.9 Charge Injection28		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


CI	hanges from Revision B (April 2021) to Revision C (August 2021)	Page
•	Changed the status of the QFN package for the TMUX6208 and TMUX6209 from: preview to: active .	1
•	Added ESD detail for RUM package	5
•	Added the Integrated Pull-Down Resistor on Logic Pins section	
•	Updated the Ultra-Low Charge Injection section	
	Updated the TMUX620x Layout Example figures in the Layout Example section	
	hanges from Revision A (January 2021) to Revision B (April 2021) Added thermal information for QFN package	Page
	Added I _{DC} specs for QFN package in Source or Drain Continuous Current table	
	Updated V _{DD} rise time value from 100ns to 1µs in T _{ON(VDD)} test condition	
	Updated C _L value from 1nF to 100pF in Charge Injection test condition	
CI	hanges from Revision * (November 2020) to Revision A (January 2021)	Page
•	Changed the document status From: Advanced Information To: Production Data	1

5 Device Comparison Table

PRODUCT	DESCRIPTION
TMUX6208	Low-Leakage-Current, Precision, 8:1, 1-Ch. multiplexer
TMUX6209	Low-Leakage-Current, Precision, 4:1, 2-Ch. multiplexer

6 Pin Configuration and Functions

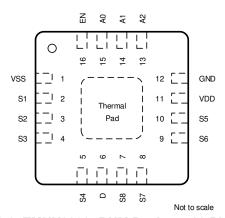


Figure 6-1. TMUX6208: PW Package 16-Pin TSSOP Figure 6-2. TMUX6208: RUM Package 16-Pin WQFN Top View

Tahla	6-1	TM	IIX6208	Pin	Functions
Iable	υ-ι.	I IVI	UAUZUU	ГШ	i unchons

NAME	PW NO.	RUM NO.	TYPE ⁽¹⁾	DESCRIPTION ⁽²⁾	
A0	1	15	ı	Logic control input, has internal 4 M Ω pull-down resistor. Controls the switch configuration as shown in Section 9.5.	
A1	16	14	I	Logic control input, has internal 4 M Ω pull-down resistor. Controls the switch configuration as shown in Section 9.5.	
A2	15	13	I	Logic control input, has internal 4 M Ω pull-down resistor. Controls the switch configuration as shown in Section 9.5.	
D	8	6	I/O	Drain pin. Can be an input or output.	
EN	2	16	I	Active high logic enable, has internal 4 M Ω pull-down resistor. When this pin is low, all switches are turned off. When this pin is high, the Ax logic input determines which switch is turned on.	
GND	14	12	Р	Ground (0 V) reference.	
S1	4	2	I/O	Source pin 1. Can be an input or output.	
S2	5	3	I/O	Source pin 2. Can be an input or output.	
S3	6	4	I/O	Source pin 3. Can be an input or output.	
S4	7	5	I/O	Source pin 4. Can be an input or output.	
S5	12	10	I/O	Source pin 5. Can be an input or output.	
S6	11	9	I/O	Source pin 6. Can be an input or output.	
S7	10	8	I/O	Source pin 7. Can be an input or output.	
S8	9	7	I/O	Source pin 8. Can be an input or output.	
VDD	13	11	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{DD} and GND.	
VSS	3	1	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connected to ground capacitor ranging from 0.1 μF to 10 μF between V_{SS} and GND.	
Thermal Pa	ad		_	The thermal pad is not connected internally. No requirement to solder this pad, if connected it is recommended that the pad be left floating or tied to GND.	

- (1) I = input, O = output, I/O = input and output, P = power.
- (2) Refer to Section 9.4 for what to do with unused pins.

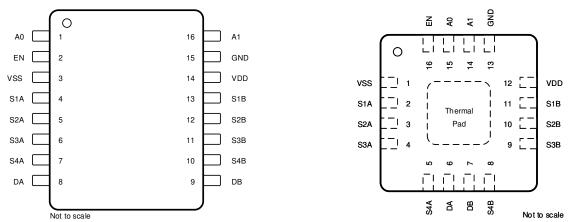


Figure 6-3. TMUX6209: PW Package 16-Pin TSSOP Figure 6-4. TMUX6209: RUM Package 16-Pin WQFN Top View

Table 6-2. TMUX6209 Pin Functions

NAME	PW NO.	RUM NO.	TYPE ⁽¹⁾	DESCRIPTION ⁽²⁾	
A0	1	15	I	Logic control input, has internal pull-down resistor. Controls the switch configuration as shown in Section 9.5.	
A1	16	14	I	Logic control input, has internal pull-down resistor. Controls the switch configuration as shown in Section 9.5.	
DA	8	6	I/O	Drain Terminal A. Can be an input or an output.	
DB	9	7	I/O	Drain Terminal B. Can be an input or an output.	
EN	2	16	I	Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off. When this pin is high, the Ax logic input determines which switch is turned on.	
GND	15	13	Р	Ground (0 V) reference.	
S1A	4	2	I/O	Source pin 1A. Can be an input or output.	
S1B	13	11	I/O	Source pin 1B. Can be an input or output.	
S2A	5	3	I/O	Source pin 2A. Can be an input or output.	
S2B	12	10	I/O	Source pin 2B. Can be an input or output.	
S3A	6	4	I/O	Source pin 3A. Can be an input or output.	
S3B	11	9	I/O	Source pin 3B. Can be an input or output.	
S4A	7	5	I/O	Source pin 4A. Can be an input or output.	
S4B	10	8	I/O	Source pin 4B. Can be an input or output.	
VDD	14	12	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between V _{DD} GND.	
VSS	3	1	Р	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between V_{SS} and GND.	
Thermal Pa	ad		_	The thermal pad is not connected internally. No requirement to solder this pad, if connected it is recommended that the pad be left floating or tied to GND.	

- (1) I = input, O = output, I/O = input and output, P = power.
- (2) Refer to Section 9.4 for what to do with unused pins.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{DD} – V _{SS}			38	V
V _{DD}	Supply voltage	-0.5	38	V
V _{SS}		-38	0.5	V
V _{ADDRESS} or V _{EN}	Logic control input pin voltage (EN, A0, A1, A2)	-0.5	38	V
I _{ADDRESS} or I _{EN}	Logic control input pin current (EN, A0, A1, A2)	-30	30	mA
V _S or V _D	Source or drain voltage (Sx, D)	V _{SS} -0.5	V _{DD} +0.5	V
I _{IK}	Diode clamp current ⁽³⁾	-30	30	mA
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)		I _{DC} + 10 % ⁽⁴⁾	mA
T _A	Ambient temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction temperature		150	°C
D	Total power dissipation (QFN package) ⁽⁵⁾		1650	mW
P _{tot}	Total power dissipation (TSSOP package) ⁽⁵⁾		700	mW

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (4) Refer to Source or Drain Continuous Current table for I_{DC} specifications.
- (5) For QFN package: P_{tot} derates linearily above T_A = 70°C by 24.4mW/°C. For TSSOP package: P_{tot} derates linearily above T_A = 70°C by 10.8mW/°C.

7.2 ESD Ratings

			VALUE	UNIT	
TMUX62	08 in PW package				
V	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V	
$V_{(ESD)}$	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V	
TMUX62	09 in PW package				
.,		Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±1500	V	
$V_{(ESD)}$	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V	
TMUX62	08 and TMUX6209 in RUM package		1		
V	Floatrootatia disabarga	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±1000	V	
$V_{(ESD)}$	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	- V	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Thermal Information

		TMU	TMUX620x			
THERMAL METRIC(1)		PW (TSSOP)	RUM (WQFN)	UNIT		
		16 PINS	16 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	93.5	41.2	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	24.9	24.5	°C/W		
R _{0JB}	Junction-to-board thermal resistance	40.0	16.1	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	1.0	0.2	°C/W		
Ψ_{JB}	Junction-to-board characterization parameter	39.4	16.1	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	2.8	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
$V_{DD} - V_{SS}$ (1)	Power supply voltage differential	4.5	36	V
V_{DD}	Positive power supply voltage	4.5	36	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (Sx, D)	V _{SS}	V_{DD}	V
V _{ADDRESS} or V _{EN}	Address or enable pin voltage	0	36	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)		I _{DC} (2)	mA
T _A	Ambient temperature	-40	125	°C

 V_{DD} and V_{SS} can be any value as long as 4.5 V \leq ($V_{DD} - V_{SS}$) \leq 36 V, and the minimum V_{DD} is met. Refer to *Source or Drain Continuous Current* table for I_{DC} specifications.

7.5 Source or Drain Continuous Current

at supply voltage of V_{DD} ± 10%, V_{SS} ± 10 % (unless otherwise noted)

CONTINUOUS CURRENT PER CHANNEL (I _{DC})		T - 25°C	T - 05°C	T _A = 125°C	LIAUT	
PACKAGE	TEST CONDITIONS	1 _A = 25 C	$T_A = 25^{\circ}C \qquad T_A = 85^{\circ}C$		UNIT	
	±15 V Dual Supply	300	190	110	mA	
	+36 V Single Supply ⁽¹⁾	280	170	100	mA	
PW (TSSOP)	+12 V Single Supply	220	150	90	mA	
	±5 V Dual Supply	210	140	90	mA	
	+5 V Single Supply	170	110	70	mA	
	±15 V Dual Supply	400	230	120	mA	
	+36 V Single Supply ⁽¹⁾	380	220	110	mA	
RUM (WQFN)	+12 V Single Supply	310	190	100	mA	
	±5 V Dual Supply	300	190	100	mA	
	+5 V Single Supply	230	150	90	mA	

(1) Specified for nominal supply voltage only.

7.6 ±15 V Dual Supply: Electrical Characteristics

 $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

• .	$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}, I_A = $ PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = -10 V to +10 V	25°C		4	5.9	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			7.4	Ω
		Refer to On-Resistance	-40°C to +125°C			8.7	Ω
		V _S = -10 V to +10 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_{D} = -10 \text{ mA}$	-40°C to +85°C			0.8	Ω
	CHAINEIS	Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = -10 V to +10 V	25°C		0.4	1.5	Ω
R _{ON FLAT}	On-resistance flatness	I _S = -10 mA	-40°C to +85°C			1.7	Ω
		Refer to On-Resistance	-40°C to +125°C			1.8	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.02		Ω/°C
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	-0.4	0.04	0.4	nA
lovores	Source off leakage current ⁽¹⁾	Switch state is off $V_S = +10 \text{ V} / -10 \text{ V}$	–40°C to +85°C	-1		1	nA
I _{S(OFF)}	Jource on leakage current	V _D = -10 V / + 10 V Refer to Off-Leakage Current	-40°C to +125°C	-5		5	nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	-0.4	0.04	0.4	nA
I	Drain off leakage current ⁽¹⁾	Switch state is off $V_S = +10 \text{ V} / -10 \text{ V}$	-40°C to +85°C	-6		6	nA
I _{D(OFF)}	Drain on leakage current	V _D = -10 V / + 10 V Refer to Off-Leakage Current	-40°C to +125°C	-42		42	nA
		V _{DD} = 16.5 V, V _{SS} = -16.5 V	25°C	-0.4	0.04	0.4	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 10 \text{ V}$	-40°C to +85°C	-5		5	nA
I _{D(ON)}		Refer to On-Leakage Current	-40°C to +125°C	-40		40	nA
LOGIC IN	PUTS (EN, A0, A1, A2)						
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		-40°C to +125°C		0.4	1.2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3.5		pF
POWER S	SUPPLY		1				
			25°C		35	57	μΑ
I _{DD}	V _{DD} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	–40°C to +85°C			60	μA
			-40°C to +125°C			75	μA
			25°C		3	14	μA
I _{SS}	V _{SS} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	–40°C to +85°C			15	μA
			-40°C to +125°C			22	μΑ

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive. When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

7.7 ±15 V Dual Supply: Switching Characteristics

 $V_{DD} = +15~V \pm 10\%,~V_{SS} = -15~V \pm 10\%,~GND = 0~V~(unless~otherwise~noted)$ Typical at $V_{DD} = +15~V,~V_{SS} = -15~V,~T_A = 25^{\circ}C~(unless~otherwise~noted)$

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
		V _S = 10 V	25°C	140	195	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C		220	ns
		Refer to Transition Time	-40°C to +125°C		240	ns
		V _S = 10 V	25°C	140	195	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	-40°C to +85°C		220	ns
		Time	-40°C to +125°C		240	ns
		V _S = 10 V	25°C	200	268	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	-40°C to +85°C		285	ns
		Time	-40°C to +125°C		298	ns
		V _S = 10 V,	25°C	60		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1		ns
		Refer to Break-Before-Make	-40°C to +125°C	1		ns
		V _{DD} rise time = 1 μs	25°C	0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	0.17		ms
	(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C	0.17		ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C	1.8		ns
Q _{INJ}	Charge injection	V _S = 0 V, C _L = 100 pF Refer to Charge Injection	25°C	3		pC
O _{ISO}	Off-isolation	$R_L = 50 \ \Omega$, $C_L = 5 \ pF$ $V_S = 0 \ V$, $f = 100 \ kHz$ Refer to Off Isolation	25°C	-82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C	-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Crosstalk	25°C	-85		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1MHz$ Refer to Crosstalk	25°C	-65		dB
BW	-3dB Bandwidth (TMUX6208)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C	30		MHz
BW	-3dB Bandwidth (TMUX6209)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C	52		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C	-0.35		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C	-74		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 15 V, V_{BIAS} = 0 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to THD + Noise	25°C	0.0003		%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C	15		pF
C _{D(OFF)}	Drain off capacitance (TMUX6208)	V _S = 0 V, f = 1 MHz	25°C	135		pF

7.7 ±15 V Dual Supply: Switching Characteristics (continued)

 $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
C _{D(OFF)}	Drain off capacitance (TMUX6209)	V _S = 0 V, f = 1 MHz	25°C		68		pF
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6208)	V _S = 0 V, f = 1 MHz	25°C		185		pF
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6209)	V _S = 0 V, f = 1 MHz	25°C		115		pF

7.8 36 V Single Supply: Electrical Characteristics

 $V_{DD} = +36 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V} \text{ (unless otherwise noted)}$ $\text{Typical at V}_{DD} = +36 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = 0 V to 30 V	25°C		4	6.2	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			7.9	Ω
		Refer to On-Resistance	-40°C to +125°C			9.4	Ω
		V _S = 0 V to 30 V	25°C		0.2	0.7	Ω
ΔR _{ON}	On-resistance mismatch between channels	$I_{D} = -10 \text{ mA}$	-40°C to +85°C			0.8	Ω
	Ondimoio	Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = 0 V to 30 V	25°C		0.4	1.8	Ω
R _{ON FLAT}	On-resistance flatness	$I_S = -10 \text{ mA}$	-40°C to +85°C			2.5	Ω
		Refer to On-Resistance	-40°C to +125°C			3.1	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 18 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.015		Ω/°C
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	-0.4	0.04	0.4	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off V _S = 30 V / 1 V	-40°C to +85°C	-2		2	nA
'S(OFF)	course on rounding current	V _D = 1 V / 30 V Refer to Off-Leakage Current	-40°C to +125°C	-10		10	nA
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	-0.5	0.05	0.5	nA
la _{ross} ,	Drain off leakage current ⁽¹⁾	Switch state is off V _S = 30 V / 1 V	-40°C to +85°C	-12		12	nA
I _{D(OFF)}	Stant on loanage sarroin	V _D = 1 V / 30 V Refer to Off-Leakage Current	-40°C to +125°C	-85		85	nA
		V _{DD} = 39.6 V, V _{SS} = 0 V	25°C	-0.5	0.05	0.5	nA
I _{S(ON)} I _{D(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 30 \text{ V or } 1 \text{ V}$	-40°C to +85°C	-11		11	nA
·D(ON)		Refer to On-Leakage Current	-40°C to +125°C	-78		78	nA
LOGIC IN	PUTS (EN, A0, A1, A2)					'	
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		8.0	V
I _{IH}	Input leakage current		-40°C to +125°C		0.4	1.2	μΑ
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μΑ
C _{IN}	Logic input capacitance		-40°C to +125°C		3.5		pF
POWER S	SUPPLY						
		.,	25°C		55	86	μΑ
I_{DD}	V _{DD} supply current	V_{DD} = 39.6 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			90	μΑ
		, , , , , ,	-40°C to +125°C			105	μΑ

⁽¹⁾ When V_S is positive, V_D is negative, and vice versa.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, and vice versa.

7.9 36 V Single Supply: Switching Characteristics

 $V_{DD} = +36 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ GND = 0 \text{ V} \ (\text{unless otherwise noted})$ Typical at $V_{DD} = +36 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_A = 25^{\circ}\text{C} \ (\text{unless otherwise noted})$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 18 V	25°C		105	200	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			225	ns
		Refer to Transition Time	-40°C to +125°C			240	ns
		V _S = 18 V	25°C		115	200	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	-40°C to +85°C			220	ns
, ,		Time	-40°C to +125°C			240	ns
		V _S = 18 V	25°C		90	290	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	-40°C to +85°C			305	ns
` ,		Time	-40°C to +125°C			315	ns
		V _S = 18 V,	25°C		40		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns
		Refer to Break-Before-Make	-40°C to +125°C	1			ns
		V _{DD} rise time = 1 μs	25°C		0.14		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C		0.15		ms
, ,	(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.15		ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C		2.5		ns
Q _{INJ}	Charge injection	V _S = 18 V, C _L = 100 pF Refer to Charge Injection	25°C		2		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Crosstalk	25°C		-85		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		-65		dB
BW	-3dB Bandwidth (TMUX6208)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C		30		MHz
BW	-3dB Bandwidth (TMUX6209)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$	25°C		50		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$	25°C		-0.35		dB
ACPSRR	AC Power Supply Rejection Ratio	$\begin{split} &V_{PP}=0.62~V~on~V_{DD}~and~V_{SS}\\ &R_L=50~\Omega~,~C_L=5~pF,\\ &f=1~MHz\\ &Refer~to~ACPSRR \end{split}$	25°C		–70		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 18 V, V_{BIAS} = 18 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to THD + Noise	25°C	(0.0003		%
C _{S(OFF)}	Source off capacitance	V _S = 18 V, f = 1 MHz	25°C		15		pF
C _{D(OFF)}	Drain off capacitance (TMUX6208)	V _S = 18 V, f = 1 MHz	25°C		138		pF
C _{D(OFF)}	Drain off capacitance (TMUX6209)	V _S = 18 V, f = 1 MHz	25°C		68		pF
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6208)	V _S = 18 V, f = 1 MHz	25°C		185		pF

7.9 36 V Single Supply: Switching Characteristics (continued)

 $\begin{aligned} &V_{DD} = +36 \text{ V} \pm 10\%, \, V_{SS} = 0 \text{ V}, \, \text{GND} = 0 \text{ V} \, \text{(unless otherwise noted)} \\ &\text{Typical at } V_{DD} = +36 \text{ V}, \, V_{SS} = 0 \text{ V}, \, T_{A} = 25^{\circ}\text{C} \, \, \text{(unless otherwise noted)} \end{aligned}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6209)	V _S = 18 V, f = 1 MHz	25°C		115		pF

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

7.10 12 V Single Supply: Electrical Characteristics

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = 0 V to 10 V	25°C		7	11.8	Ω
R _{ON}	On-resistance	$I_{D} = -10 \text{ mA}$	-40°C to +85°C			14.2	Ω
		Refer to On-Resistance	-40°C to +125°C			16.5	Ω
		V _S = 0 V to 10 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	I _D = -10 mA	-40°C to +85°C			0.8	Ω
		Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = 0 V to 10 V	25°C		1.7	3.4	Ω
R _{ON FLAT}	On-resistance flatness	$I_{S} = -10 \text{ mA}$	-40°C to +85°C			3.8	Ω
		Refer to On-Resistance	-40°C to +125°C			4.6	Ω
R _{ON DRIFT}	On-resistance drift	$V_S = 6 \text{ V}, I_S = -10 \text{ mA}$ Refer to On-Resistance	-40°C to +125°C		0.03		Ω/°C
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.4	0.04	0.4	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	-40°C to +85°C	-1		1	nA
·S(OFF)	oouroo on loukugo ourronk	V _D = 1 V / 10 V Refer to Off-Leakage Current	-40°C to +125°C	-8		8	nA
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.4	0.05	0.4	nA
la (oss)	Drain off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	-40°C to +85°C	-5		5	nA
I _{D(OFF)}	Drain oπ leakage current	V _D = 1 V / 10 V Refer to Off-Leakage Current	-40°C to +125°C	-30		30	nA
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.4	0.05	0.4	nA
$I_{S(ON)}$ $I_{D(ON)}$	Channel on leakage current ⁽²⁾	Switch state is on V _S = V _D = 10 V or 1 V	-40°C to +85°C	-4		4	nA
·D(ON)		Refer to On-Leakage Current	-40°C to +125°C	-28		28	nA
LOGIC IN	PUTS (EN, A0, A1, A2)					'	
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		36	V
V_{IL}	Logic voltage low		-40°C to +125°C	0		8.0	V
I _{IH}	Input leakage current		-40°C to +125°C		0.4	1.2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3.5		pF
POWER S	SUPPLY						
		40.07/7/	25°C		30	48	μΑ
I_{DD}	V _{DD} supply current	V_{DD} = 13.2 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			54	μΑ
		0 1 - , - ,	-40°C to +125°C			65	μΑ

⁽¹⁾ When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

7.11 12 V Single Supply: Switching Characteristics

 $\begin{aligned} &V_{DD} = +12 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V} \text{ (unless otherwise noted)} \\ &\text{Typical at V}_{DD} = +12 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{T}_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)} \end{aligned}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 8 V	25°C		180	210	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	–40°C to +85°C			245	ns
		Refer to Transition Time	–40°C to +125°C			276	ns
		V _S = 8 V	25°C		115	202	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	–40°C to +85°C			235	ns
		Time	–40°C to +125°C			265	ns
		V _S = 8 V	25°C		290	318	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off	–40°C to +85°C			350	ns
		Time	-40°C to +125°C			370	ns
		V _S = 8 V,	25°C		50		ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns
		Refer to Break-Before-Make	-40°C to +125°C	1			ns
		V _{DD} rise time = 1 μs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C		0.17	1	ms
	(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.17	1	ms
t _{PD}	Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C		2.5		ns
Q _{INJ}	Charge injection	V _S = 6 V, C _L = 100 pF Refer to Charge Injection	25°C		2		pC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$	25°C		-82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$ Refer to Crosstalk	25°C		-85		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1MHz$ Refer to Crosstalk	25°C		-65		dB
BW	-3dB Bandwidth (TMUX6208)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C		28		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$	25°C		-0.6		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C		-74		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 6 V, V_{BIAS} = 6 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to THD + Noise	25°C	(0.0007		%
C _{S(OFF)}	Source off capacitance	V _S = 6 V, f = 1 MHz	25°C		17		pF
C _{D(OFF)}	Drain off capacitance (TMUX6208)	V _S = 6 V, f = 1 MHz	25°C		155		pF
C _{D(OFF)}	Drain off capacitance (TMUX6209)	V _S = 6 V, f = 1 MHz	25°C		78		pF
				1			

7.11 12 V Single Supply: Switching Characteristics (continued)

 $V_{DD} = +12 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ $\text{Typical at V}_{DD} = +12 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_{A} = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6209)	V _S = 6 V, f = 1 MHz	25°C		122		pF

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

7.12 ±5 V Dual Supply: Electrical Characteristics

 V_{DD} = +5 V ± 10%, V_{SS} = -5 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +5 V, V_{SS} = -5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _{DD} = +4.5 V, V _{SS} = -4.5 V	25°C		7	13.5	Ω
R _{ON}	On-resistance	$V_S = -4.5 \text{ V to } +4.5 \text{ V}$	-40°C to +85°C			16.2	Ω
		$I_D = -10 \text{ mA}$	-40°C to +125°C			18.5	Ω
			25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$V_S = -4.5 \text{ V to } +4.5 \text{ V}$ $I_D = -10 \text{ mA}$	-40°C to +85°C			0.8	Ω
			-40°C to +125°C			0.9	Ω
			25°C		2	3.8	Ω
R _{ON FLAT}	On-resistance flatness	$V_S = -4.5 \text{ V to } +4.5 \text{ V}$ $I_D = -10 \text{ mA}$	-40°C to +85°C			4.2	Ω
			-40°C to +125°C			4.9	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA	-40°C to +125°C		0.03		Ω/°C
		V _{DD} = +5.5 V, V _{SS} = -5.5 V	25°C	-0.5	0.02	0.5	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$	-40°C to +85°C	-1.5		1.5	nA
		$V_D = -4.5 \text{ V} / + 4.5 \text{ V}$	-40°C to +125°C	-8		8	nA
		V_{DD} = +5.5 V, V_{SS} = -5.5 V	25°C	-0.5	0.04	0.5	nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$	-40°C to +85°C	-3.5		3.5	nA
,		$V_{D} = -4.5 \text{ V} / + 4.5 \text{ V}$	-40°C to +125°C	-28		28	nA
		V _{DD} = +5.5 V, V _{SS} = -5.5 V	25°C	-0.5	0.04	0.5	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on	-40°C to +85°C	-3		3	nA
I _{D(ON)}		$V_S = V_D = \pm 4.5 \text{ V}$	-40°C to +125°C	-26		26	nA
LOGIC IN	PUTS (EN, A0, A1, A2)						
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		36	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		-40°C to +125°C		0.4	1.2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3.5		pF
POWER S	SUPPLY						
			25°C		25	38	μA
I _{DD}	V _{DD} supply current	V_{DD} = +5.5 V, V_{SS} = -5.5 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			44	μA
		Logic inputs – 0 v, 5 v, or vDD	-40°C to +125°C			55	μA
			25°C		2	6.2	μA
I _{SS}	V _{SS} supply current	V_{DD} = +5.5 V, V_{SS} = -5.5 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			7	μΑ
		Logic inputs – 0 v, 5 v, or v _{DD}	-40°C to +125°C			15	μA

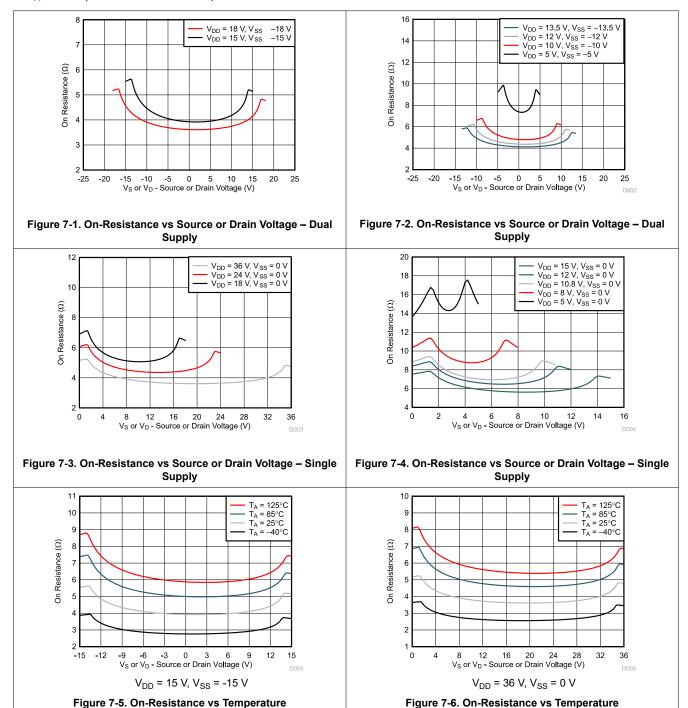
When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

7.13 ±5 V Dual Supply: Switching Characteristics

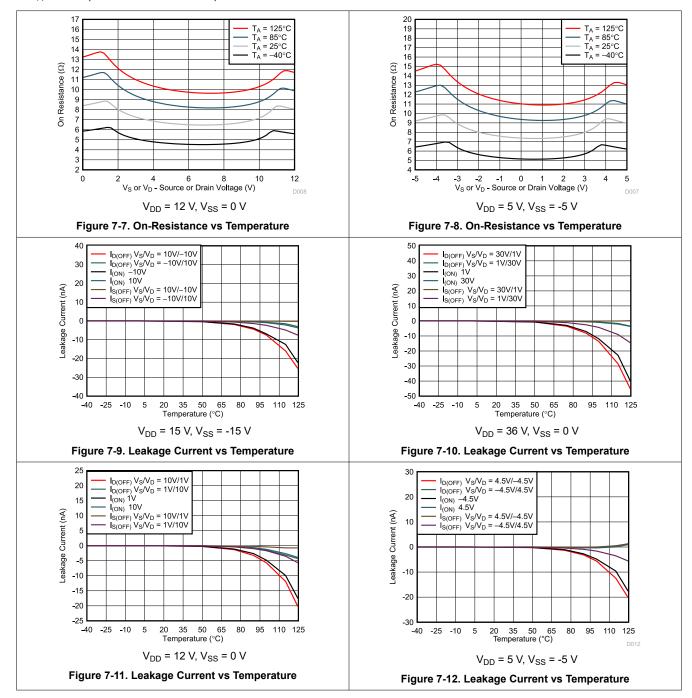
 V_{DD} = +5 V ± 10%, V_{SS} = -5 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +5 V, V_{SS} = -5 V, T_A = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
	V ₀ = 3 V	25°C		125	250	ns
Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			280	ns
	Refer to Transition Time	-40°C to +125°C			305	ns
	V _S = 3 V	25°C		128	245	ns
Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C			278	ns
	Time	-40°C to +125°C			305	ns
	V _S = 3 V	25°C		300	372	ns
Turn-off time from enable		-40°C to +85°C			400	ns
	Time	-40°C to +125°C			420	ns
	\/ ₀ = 3 \/	25°C		50		ns
Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns
	Refer to Break-Before-Make	-40°C to +125°C	1			ns
	Von rise time = 1 us	25°C		0.16		ms
	$R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C		0.17	1	ms
(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.17	1	ms
Propagation delay	$R_L = 50 \Omega$, $C_L = 5 pF$ Refer to Propagation Delay	25°C		2		ns
Charge injection	V _S = 0 V, C _L = 100 pF Refer to Charge Injection	25°C		1.2		рС
Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		-82		dB
Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Crosstalk	25°C		-85		dB
Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1MHz$ Refer to Crosstalk	25°C		-65		dB
-3dB Bandwidth (TMUX6208)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		28		MHz
-3dB Bandwidth (TMUX6209)	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$	25°C		54		MHz
Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C		-0.7		dB
AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR	25°C		-76		dB
Total Harmonic Distortion + Noise	V_{PP} = 5 V, V_{BIAS} = 0 V R_L = 10 k Ω , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to THD + Noise	25°C		0.0017		%
Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		18		pF
Drain off capacitance (TMUX6208)	V _S = 0 V, f = 1 MHz	25°C		160		pF
	Transition time from control input Turn-on time from enable Turn-off time from enable Break-before-make time delay Device turn on time (V _{DD} to output) Propagation delay Charge injection Off-isolation Crosstalk Crosstalk -3dB Bandwidth (TMUX6208) -3dB Bandwidth (TMUX6209) Insertion loss AC Power Supply Rejection Ratio Total Harmonic Distortion + Noise Source off capacitance Drain off capacitance	Transition time from control input $V_S = 3 V$ $R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Transition Time $V_S = 3 V$ $R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off Time $V_S = 3 V$ $R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off Time $V_S = 3 V$ $R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off Time $V_S = 3 V$ $R_L = 300 \Omega$, $C_L = 35 pF$ Refer to Turn-on and Turn-off Time $V_S = 3 V$, V	$ \begin{array}{c} V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Transition \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Transition \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ Turn-off \ time \ from \ enable \\ \hline \\ Turn-off \ time \ from \ enable \\ \hline \\ Turn-off \ time \ from \ enable \\ \hline \\ Turn-off \ time \ from \ enable \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ Time \\ \hline \\ V_{S} = 3 \ V_{R} \\ = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to \ Turn-on \ and \ Turn-off \ T$	$ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Transition Time \\ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Transition Time \\ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V, \ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V, \ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on and Turn-off time from enable \\ V_{S} = 3 \ V, \ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on time (V_{D}) \ rise time = 1 \ \mus \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on (VDD) \ rime \\ V_{D} \ rise time = 1 \ \mus \\ R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF \\ Refer to Turn-on (VDD) \ rime \\ V_{D} \ rise time = 1 \ \mus \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ Refer to Turn-on (VDD) \ rime \\ V_{D} \ rise time = 1 \ \mus \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f = 100 \ kHz \\ R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF \\ V_{S} = 0 \ V, \ f $	Transition time from control input V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Transition Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Transition Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Turn-on and Turn-off Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Turn-on and Turn-off Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Turn-on and Turn-off Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Turn-on and Turn-off Time V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Break-Before-Make V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Break-Before-Make V _e = 3 V R _e = 300 Ω, C _e = 35 pF Refer to Turn-on (VDD) Time V _e = 0 V _e = 1 µ _e V _e = 0 V _e = 0 PF Refer to Propagation Delay Charge injection V _e = 0 V, C _e = 100 pF R _e = 1 µ _e R _e = 1 µ _e	Transition time from control input V _S = 3 V Refer to Transition Time


7.13 ±5 V Dual Supply: Switching Characteristics (continued)

 $V_{DD} = +5 \text{ V} \pm 10\%, \ V_{SS} = -5 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +5 \text{ V}, \ V_{SS} = -5 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
C _{D(OFF)}	Drain off capacitance (TMUX6209)	V _S = 0 V, f = 1 MHz	25°C	80		pF
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6208)	V _S = 0 V, f = 1 MHz	25°C	205		pF
C _{S(ON),} C _{D(ON)}	On capacitance (TMUX6209)	V _S = 0 V, f = 1 MHz	25°C	124		pF


7.14 Typical Characteristics

at T_A = 25°C (unless otherwise noted)

at T_A = 25°C (unless otherwise noted)

at T_A = 25°C (unless otherwise noted)

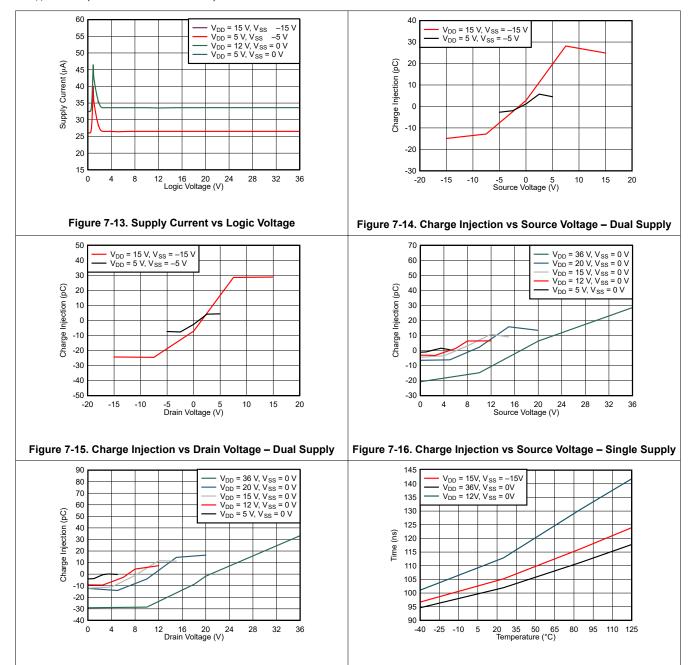
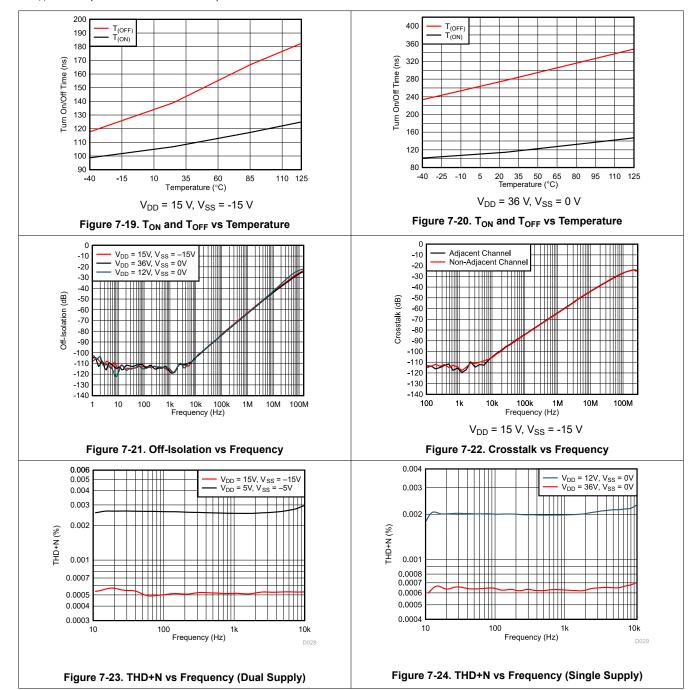
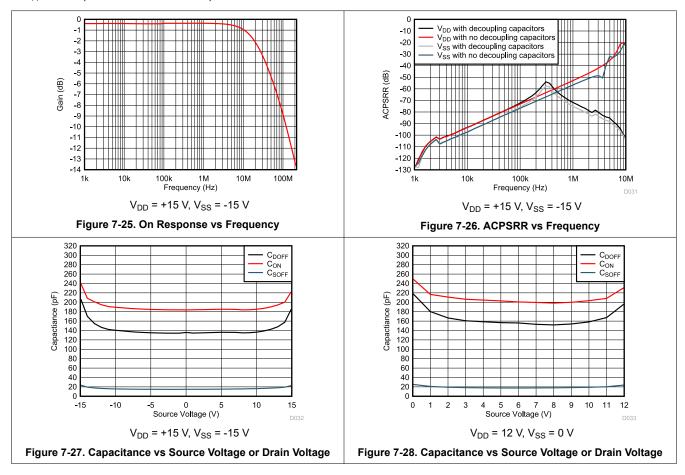



Figure 7-17. Charge Injection vs Drain Voltage - Single Supply

Figure 7-18. T_{TRANSITION} vs Temperature



at T_A = 25°C (unless otherwise noted)

at T_A = 25°C (unless otherwise noted)

8 Parameter Measurement Information

8.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. Figure 8-1 shows the measurement setup used to measure R_{ON} . Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed with $R_{ON} = V / I_{SD}$:

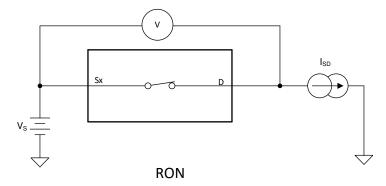


Figure 8-1. On-Resistance Measurement Setup

8.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- · Source off-leakage current
- · Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

Figure 8-2 shows the setup used to measure both off-leakage currents.

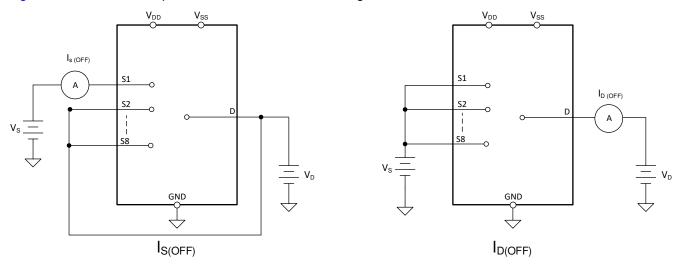


Figure 8-2. Off-Leakage Measurement Setup

8.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. Figure 8-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

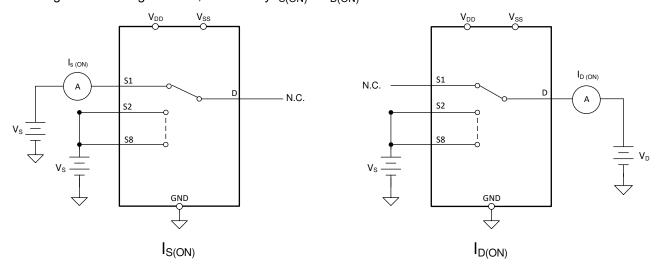


Figure 8-3. On-Leakage Measurement Setup

8.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 8-4 shows the setup used to measure transition time, denoted by the symbol $t_{TRANSITION}$.

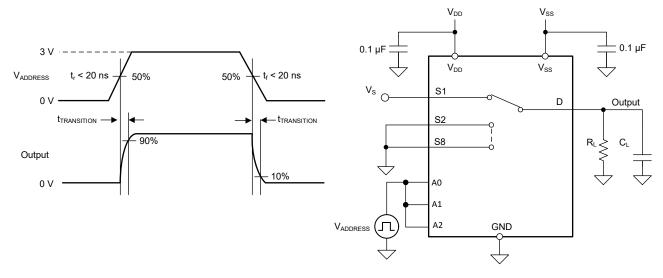


Figure 8-4. Transition-Time Measurement Setup

8.5 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 8-7 shows the setup used to measure turn-on time, denoted by the symbol $t_{ON(EN)}$.

Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 8-7 shows the setup used to measure turn-off time, denoted by the symbol t_{OFF(FN)}.

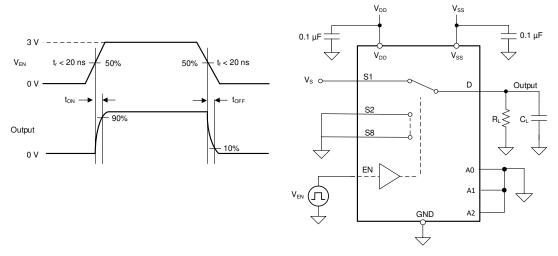


Figure 8-5. Turn-On and Turn-Off Time Measurement Setup

8.6 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. Figure 8-6 shows the setup used to measure break-before-make delay, denoted by the symbol topen(BBM).

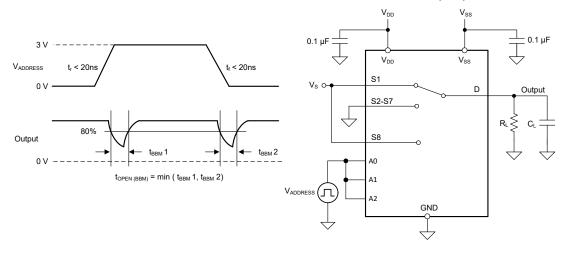


Figure 8-6. Break-Before-Make Delay Measurement Setup

8.7 t_{ON (VDD)} Time

The $t_{ON\ (VDD)}$ time is defined as the time taken by the output of the device to rise to 90% after the supply has risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in the system. Figure 8-7 shows the setup used to measure turn on time, denoted by the symbol $t_{ON\ (VDD)}$.

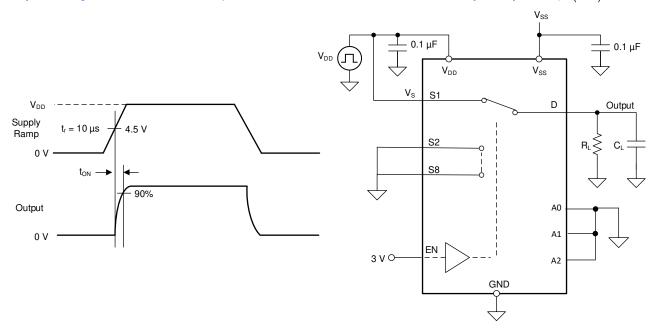


Figure 8-7. t_{ON (VDD)} Time Measurement Setup

8.8 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. Figure 8-8 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} .

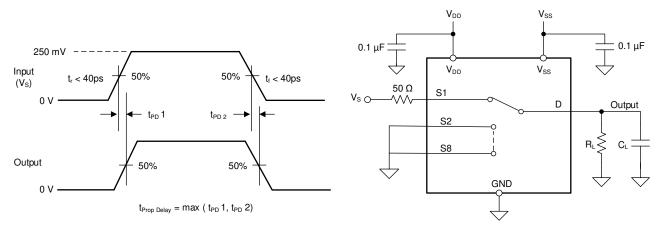


Figure 8-8. Propagation Delay Measurement Setup

8.9 Charge Injection

The TMUX6208 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_{INJ}. Figure 8-9 shows the setup used to measure charge injection from source (Sx) to drain (D).

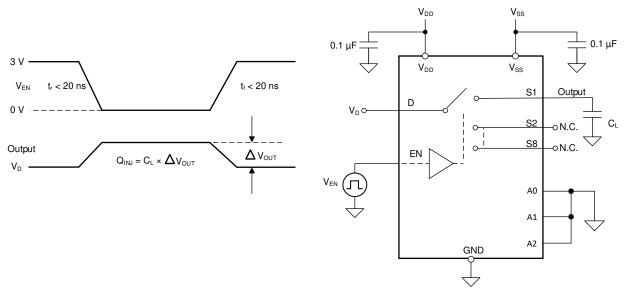


Figure 8-9. Charge-Injection Measurement Setup

8.10 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. Figure 8-10 shows the setup used to measure, and the equation used to calculate off isolation.

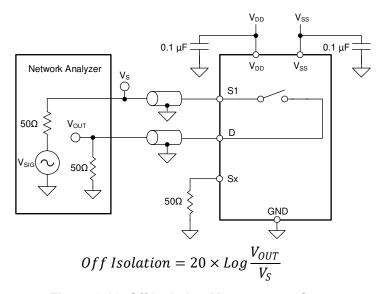


Figure 8-10. Off Isolation Measurement Setup

8.11 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. Figure 8-11 shows the setup used to measure, and the equation used to calculate crosstalk.

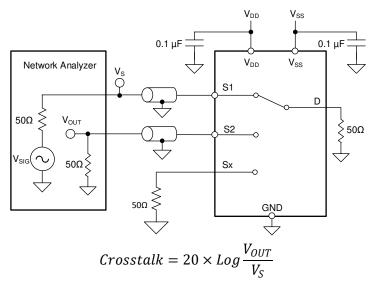


Figure 8-11. Crosstalk Measurement Setup

8.12 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. Figure 8-12 shows the setup used to measure bandwidth.

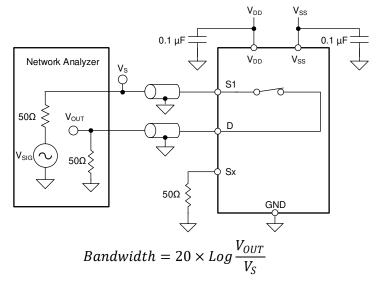


Figure 8-12. Bandwidth Measurement Setup

8.13 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD+N.

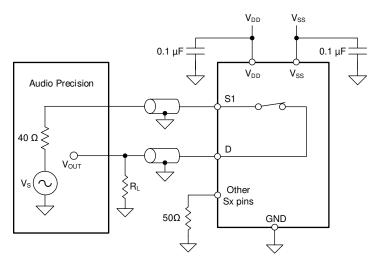
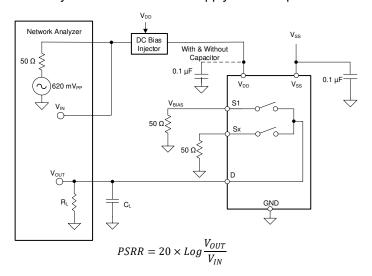


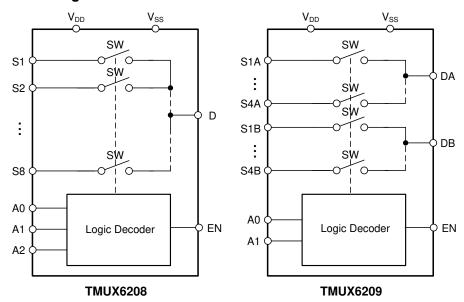
Figure 8-13. THD+N Measurement Setup

8.14 Power Supply Rejection Ratio (PSRR)

PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.

Figure 8-14 shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps stabilize the supply and immediately filter as much of the supply noise as possible.




Figure 8-14. ACPSRR Measurement Setup

9 Detailed Description

9.1 Overview

The TMUX6208 is an 8:1, 1-channel multiplexer and the TMUX6209 is a 4:1, 2 channel multiplexer. Each input is turned on or turned off based on the state of the address lines and enable pin.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Bidirectional Operation

The TMUX6208 and TMUX6209 conduct equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

9.3.2 Rail-to-Rail Operation

The valid signal path input or output voltage for TMUX6208 and TMUX6209 ranges from V_{SS} to V_{DD} .

9.3.3 1.8 V Logic Compatible Inputs

TMUX6208 and TMUX6209 support 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches.

9.3.4 Integrated Pull-Down Resistor on Logic Pins

The TMUX620x has internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The value of this pull-down resistor is approximatly 4 M Ω , but is clamped to about 1 μ A at higher voltages. This feature integrates up to four external components and reduces system size and cost.

9.3.5 Fail-Safe Logic

TMUX6208 and TMUX6209 support Fail-Safe Logic on the control input pins (EN and Ax) allowing it to operate up to 36 V, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the TMUX6208 and TMUX6209 logic input pins to ramp up to +36 V while V_{DD} and V_{SS} = 0 V. The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do not offer protection against negative overvoltage conditions.

9.3.6 Latch-Up Immune

Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to *Using Latch Up Immune Multiplexers to Help Improve System Reliability*.

9.3.7 Ultra-Low Charge Injection

Figure 9-1 shows that the TMUX620x have a transmission gate topology. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

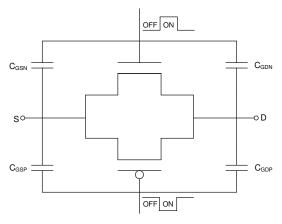


Figure 9-1. Transmission Gate Topology

The TMUX620x contain specialized architecture to reduce charge injection on the Drain (D). To further reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the Source (Sx). This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the Source (Sx) instead of the Drain (D). As a general rule of thumb, Cp should be 20x larger than the equivalent load capacitance on the Drain (D). Figure 9-2 shows charge injection variation with different compensation capacitors on the Source side. This plot was captured on the TMUX6219 as part of the TMUX62xx family with a 100pF load capacitance.

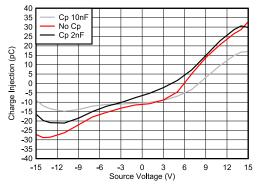


Figure 9-2. Charge Injection Compesation

9.4 Device Functional Modes

When the EN pin of the TMUX6208 is pulled high, one of the switches is closed based on the state of the Ax pin. Similarly, when the EN pin of the TMUX6209 is pulled high, two of the switches are closed based on the state of the address lines. When the EN pin is pulled low, all of the switches are in an open state regardless of the state of the Ax pin. The control pins can be as high as 36 V.

The TMUX6208 and TMUX6209 can be operated without any external components except for the supply decoupling capacitors. The EN and Ax pins have internal pull-down resistors of 4 M Ω . If unused, Ax and EN pins must be tied to GND in order to ensure the device does not consume additional current as highlighted in *Implications of Slow or Floating CMOS Inputs*. Unused signal path inputs (Sx or D) should be connected to GND.

9.5 Truth Tables

Table 9-1 shows the truth tables for the TMUX6208.

Table 9-1. TMUX6208 Truth Table

EN	A2	A1	A0	Selected Source Connected To Drain (D) Pin
0	X ⁽¹⁾	X	X	All sources are off (HI-Z)
1	0	0	0	S1
1	0	0	1	S2
1	0	1	0	S3
1	0	1	1	S4
1	1	0	0	S5
1	1	0	1	S6
1	1	1	0	S7
1	1	1	1	S8

⁽¹⁾ X denotes do not care.

Table 9-2 show the truth tables for the TMUX6209.

Table 9-2. TMUX6209 Truth Table

EN	Α0	A1	Selected Source Connected To Drain (D) Pin
0	X ⁽¹⁾	X	All sources are off (HI-Z)
1	0	0	S1x
1	0	1	S2x
1	1	0	S3x
1	1	1	S4x

⁽¹⁾ X denotes do not care.

10 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

10.1 Application Information

The TMUX6208 and TMUX6209 are part of the precision switches and multiplexers family of devices. These devices operate with dual supplies (± 4.5 V to ± 18 V), a single supply (4.5 V to 36 V), or asymmetric supplies (such as VDD = 12 V, VSS = -5 V), and offer true rail-to-rail input and output. The TMUX6208 and TMUX6209 offer low RON, low on and off leakage currents and ultra-low charge injection performance. These features make the TMUX62xx a family of precision, robust, high-performance analog multiplexers for high-voltage, industrial applications.

10.2 Typical Application

One example to take advantage of TMUX6208 performance is the implementation of multiplexed data aquisition front end for multiple input sensors. Applications such as analog input modules for programmable logic controllers (PLCs), data aquisition (DAQ), and seminconducter test systems commonly need to monitor multiple signals into a single ADC channel. The multiple inputs can come from different system voltages being monitored, or environemental sensors such as temperature or humidity. Figure 9-1 shows a simplified example of monitoring multiple inputs into a single ADC using a multiplexer.

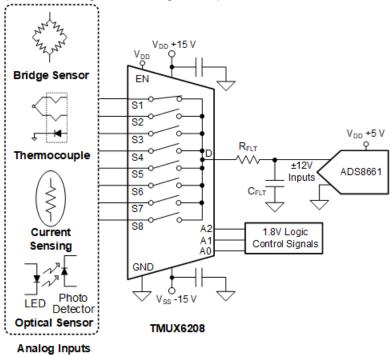


Figure 10-1. Multiplexed Data Aqcuisition Front End

10.3 Design Requirements

Table 10-1. Design Parameters

PARAMETER	VALUE
Positive supply (VDD)	+15 V
Negative supply (V _{SS})	-15 V
Input / output signal range	-12 V to 12 V (limit of ADC)
Control logic thresholds	1.8 V compatible
Temperature range	-40°C to +125°C

10.4 Detailed Design Procedure

The application shown in Figure 9-1 demonstrates how a multiplexer can be used to simplfy the signal chain and monitor multiple input signals to a single ADC channel. In this example the ADC (ADS8661) has software programmable input ranges up to ± 12.288 V. The ADC also has overvotlage protection up to ± 20 V which allows for the multiplexer to be powered with wider supply voltages than the input signal range to maximize on-resistance performance of the multiplexer, while still maintaining system level overvotlage protection beyond the usuable signal range. Both the multiplexer and the ADC are capable of operation in extended industrial temperature range of -40°C to +125°C allowing for use in a wider array of industrial systems.

Many SAR ADCs have an analog input structure that consists of a sampling switch and a sampling capacitor. Many signal chains will have a driver amplifier to help charge the input of the ADC to meet a fast system aquisition time. However a driver amplifier is not always needed to drive SAR ADCs. Figure 9-2 shows a typical diagram of a sensor driving the SAR ADC input directly after being passed through the multiplxer. A filter capacitor (C_{FLT}) is connected to the input of the ADC to reduce the sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitor of the ADC.

The sensor block simplifies the device into a Thevenin equivalant voltage source (V_{TH}) and resistance (R_{TH}) which can be extracted from the device datasheets. Similarly the multixplexer can be thought of as a series resistance ($R_{ON(MUX)}$) and capacitance ($C_{ON(MUX)}$). To ensure maximum precison of the signal chain the system should be able to settle within 1/2 of an LSB within the acquisition time of the ADC. Figure 9-2 shows the time constant can be calculated. This equation highlights the importance of selecting a multiplexer with low on-resistance to further reduce the system time constant. Additionally low charge injection performance of the multiplexer is helpful to reduce conversion errors and improve accuracy of the measurements.

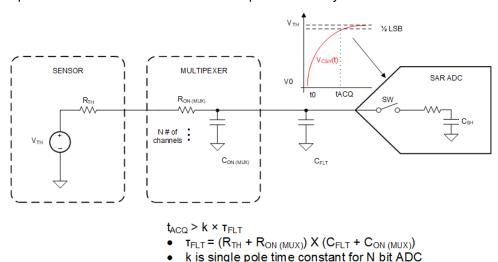


Figure 10-2. Driving SAR ADC

10.5 Application Curve

The low on and off leakage currents of TMUX620x and ultra-low charge injection performance make this device ideal for implementing high precision industrial systems. Figure 10-3 shows the plot for the charge injection versus source voltage for the TMUX6208.

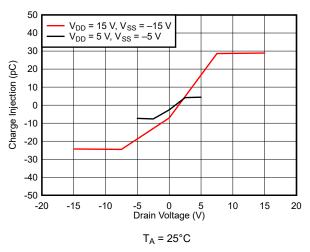


Figure 10-3. Charge Injection vs Drain Voltage

11 Power Supply Recommendations

The TMUX6208 and TMUX6209 operate across a wide supply range of of ± 4.5 V to ± 18 V (4.5 V to 36 V in single-supply mode). The device also perform well with asymmetrical supplies such as V_{DD} = 12 V and V_{SS} = -5 V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always ensure the ground (GND) connection is established before supplies are ramped.

12 Layout

12.1 Layout Guidelines

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 12-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

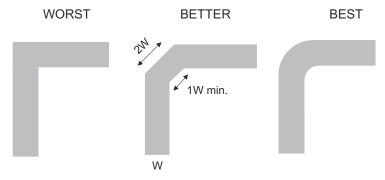


Figure 12-1. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

Figure 12-2 and Figure 12-3 illustrate an example of a PCB layout with the TMUX6208. Some key considerations are:

- For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD/VSS and GND. We recommend a 0.1 μF and 1 μF capacitor, placing the lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.
- · Keep the input lines as short as possible.
- · Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.
- Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes.

12.2 Layout Example

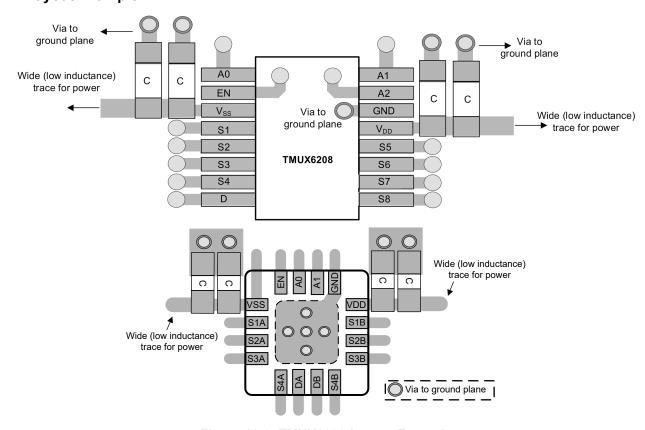


Figure 12-2. TMUX6208 Layout Example

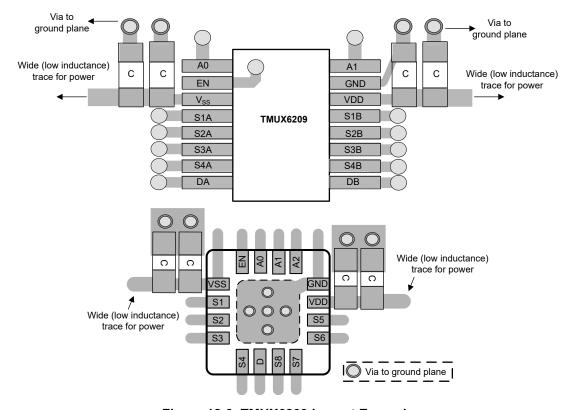


Figure 12-3. TMUX6209 Layout Example

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

- Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief.
- · Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief
- Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide.
- Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief.
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application reports.
- Texas Instruments, *True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit* application reports.
- Texas Instruments, QFN/SON PCB Attachment application reports.
- Texas Instruments, Quad Flatpack No-Lead Logic Packages application reports.
- Texas Instruments, *Using Latch Up Immune Multiplexers to Help Improve System Reliability* application reports.

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Oct-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TMUX6208PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	X208	Samples
TMUX6208RUMR	ACTIVE	WQFN	RUM	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TMUX X208	Samples
TMUX6209PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	X209	Samples
TMUX6209RUMR	ACTIVE	WQFN	RUM	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TMUX X209	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

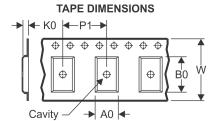
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 7-Oct-2021

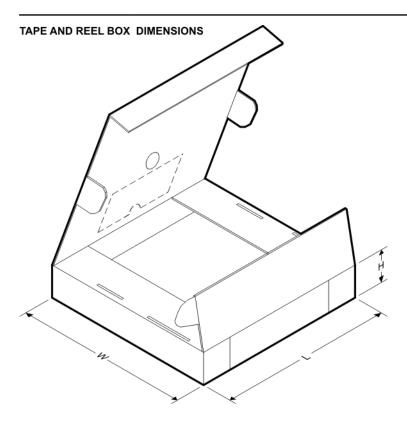

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 14-Oct-2021

TAPE AND REEL INFORMATION

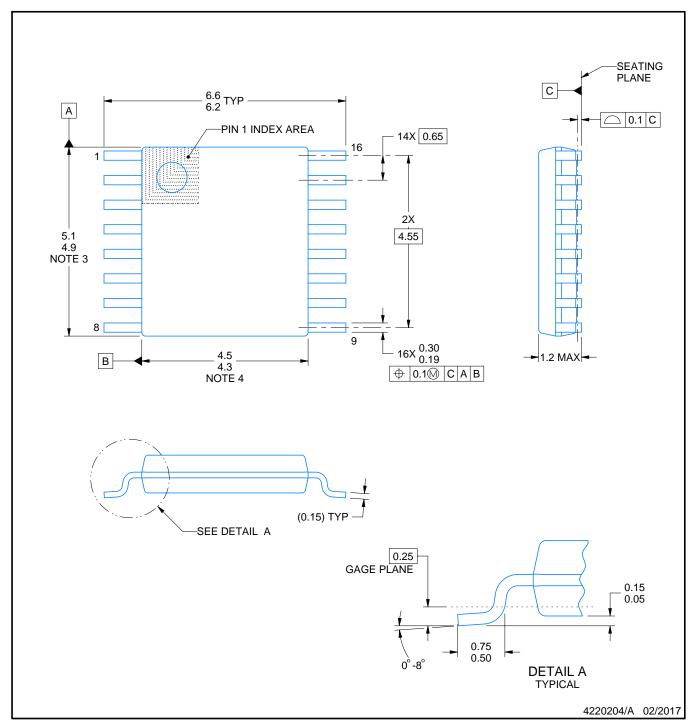
_		
		Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX6208PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TMUX6209PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 14-Oct-2021

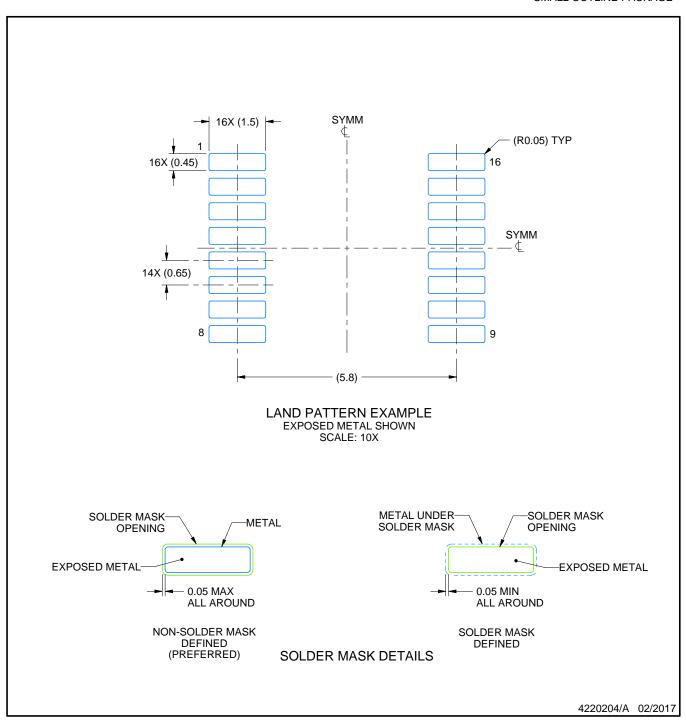


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX6208PWR	TSSOP	PW	16	2000	853.0	449.0	35.0
TMUX6209PWR	TSSOP	PW	16	2000	853.0	449.0	35.0

SMALL OUTLINE PACKAGE

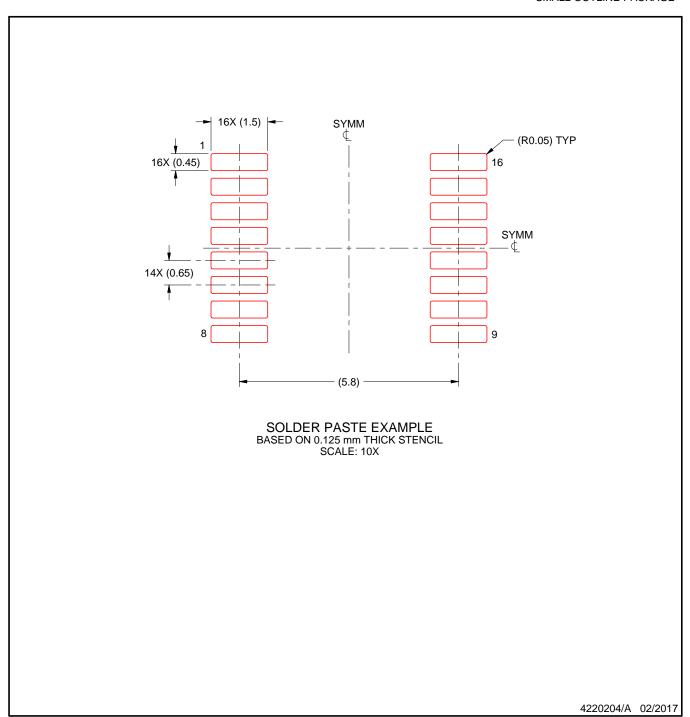
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

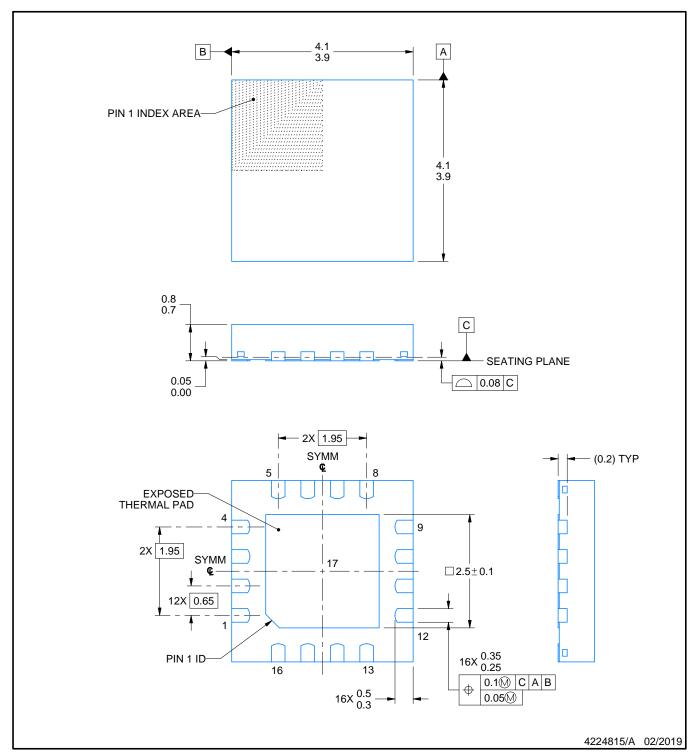
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

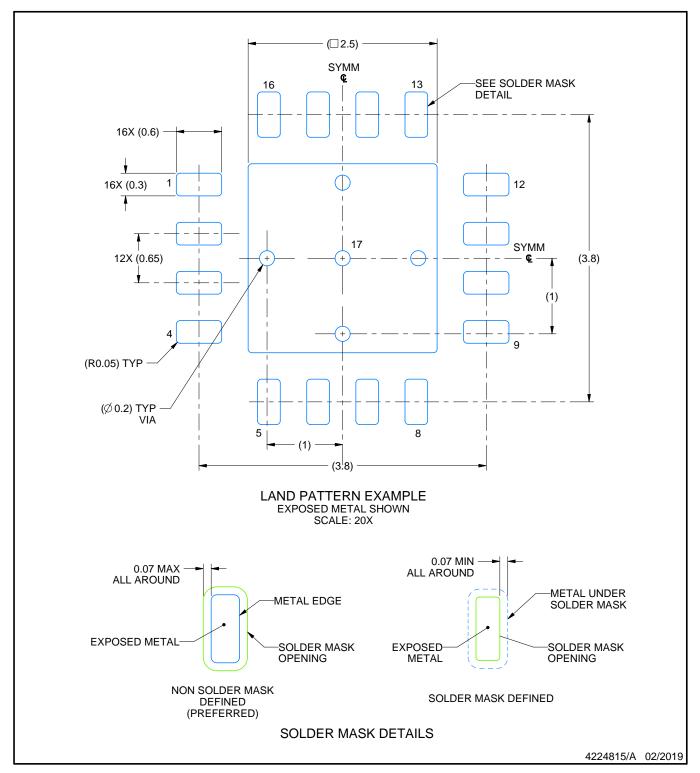
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

4 x 4, 0.65 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

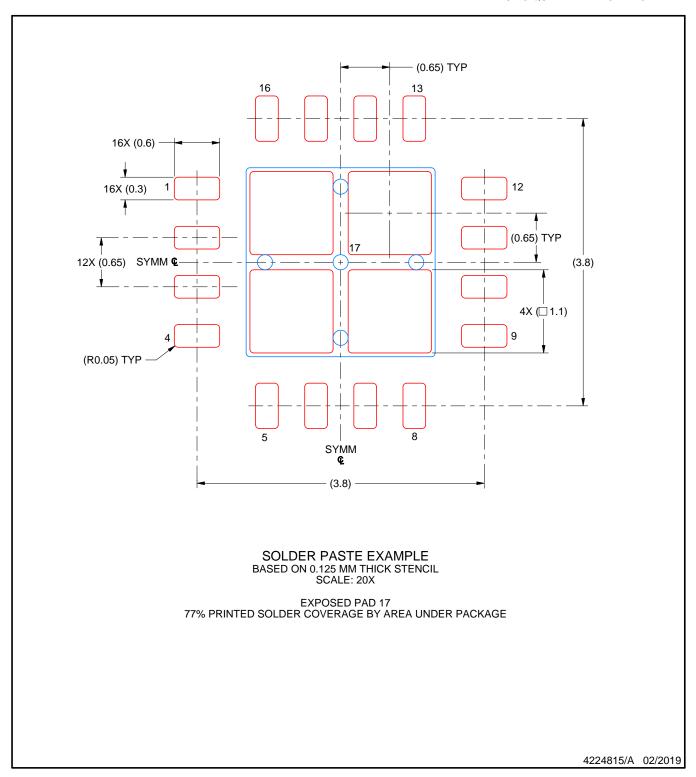
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated