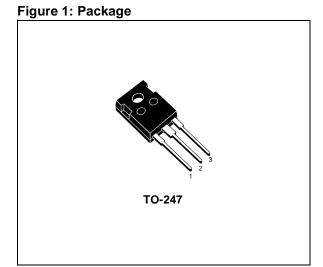


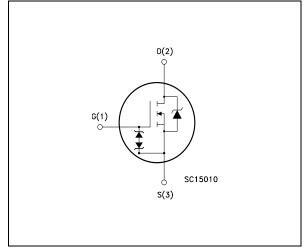
STW54NK30Z N-CHANNEL 300V - 0.052Ω - 54A TO-247 Zener-Protected SuperMESH[™] MOSFET

Table 1: General Features

ТҮРЕ	BV_{DSS}	R _{DS(on)}	ID	Pw
STW54NK30Z	300 V	< 0.060 Ω	54 A	300 W


- TYPICAL $R_{DS}(on) = 0.052 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY

DESCRIPTION


The SuperMESH[™] series is obtained through an extreme optimization of ST's well established strip-based PowerMESH[™] layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOS-FETs including revolutionary MDmesh[™] products.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING DC CHOPPERs
- IDEAL FOR OFF-LINE POWER SUPPLIES, ADAPTORS AND PFC

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STW54NK30Z	STW54NK30Z W54NK30Z		TUBE

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	300	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	300	V
V _{GS}	Gate- source Voltage	± 30	V
ID	Drain Current (continuous) at T _C = 25°C	54	A
ID	Drain Current (continuous) at T _C = 100°C	34	A
I _{DM} (•)	Drain Current (pulsed)	200	A
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	300	W
	Derating Factor	2.38	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=1.5KΩ)	6000	V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5	V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150	°C

Table 3: Absolute Maximum ratings

(•) Pulse width limited by safe operating area

(1) $I_{SD} \leq 54A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

(*) Limited only by maximum temperature allowed

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.42	°C/W
Rthj-amb T _l	Thermal Resistance Junction-ambient Max Maximum Lead Temperature For Soldering Purpose	30 300	°C/W °C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	54	A
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	400	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

47/

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25^{\circ}C$ UNLESS OTHERWISE SPECIFIED) Table 7: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	300			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 150 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 27 A		0.052	0.060	Ω

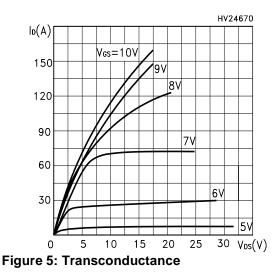
Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D = 27 A		25		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		4960 745 186		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V$ to 240 V		550		pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 150 \mbox{ V, } I_D = 27 \mbox{ A} \\ R_G = 4.7 \Omega \mbox{ V}_{GS} = 10 \mbox{ V} \\ (\mbox{Resistive Load see, Figure 3}) \end{array}$		40 45 116 35		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 240V, I_D = 54A, V_{GS} = 10V$		158 30 90	221	nC nC nC

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				54 200	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 54 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 54 \text{ A, } \text{di/dt} = 100 \text{A/}\mu\text{s} \\ V_{DD} &= 100 \text{ V, } \text{T}_{\text{j}} = 25^{\circ}\text{C} \\ (\text{see test circuit, Figure 5}) \end{split}$		328 2.8 17.2		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 54 \text{ A, } \text{di/dt} = 100 \text{A/} \mu \text{s} \\ V_{DD} &= 100 \text{ V, } \text{T}_{\text{j}} = 150 ^{\circ}\text{C} \\ \text{(see test circuit, Figure 5)} \end{split}$		416 4.2 20.2		ns µC A

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

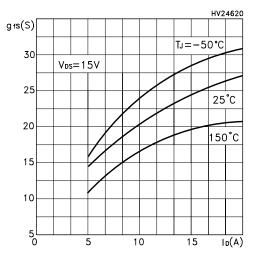
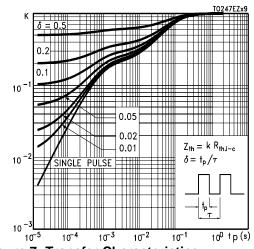
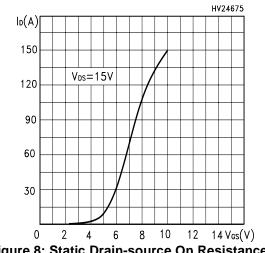
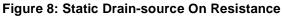

2. Pulse width limited by safe operating area.

3. C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area

HV24570 $I_D(A)$ Tj=150°C Tc=25* Single pulse 10² 100µs 10 1ms 10ms 10[°] 10 V_{DS}(ĭ0⁰ 103 10 . 10² 10

Figure 4: Output Characteristics

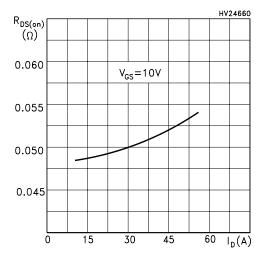

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

47/

Figure 9: Gate Charge vs Gate-source Voltage

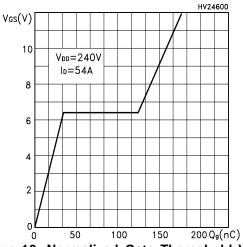


Figure 10: Normalized Gate Thereshold Voltage vs Temperature HV24650

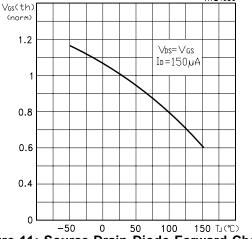
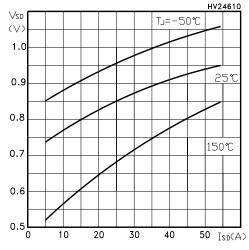



Figure 11: Source-Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

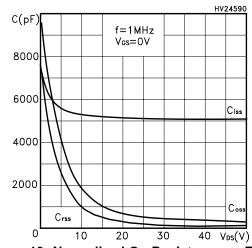


Figure 13: Normalized On Resistance vs Temperature

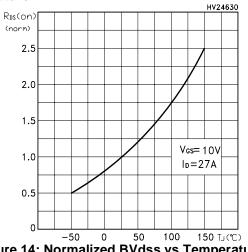
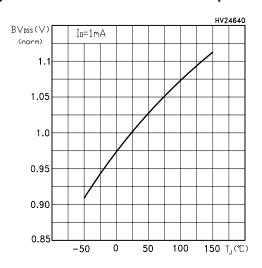



Figure 14: Normalized BVdss vs Temperature

Figure 15: Avalanche Energy vs Starting Tj

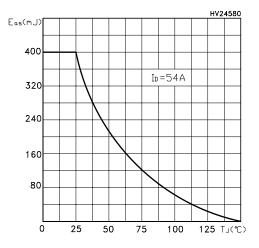


Figure 16: Unclamped Inductive Load Test Circuit

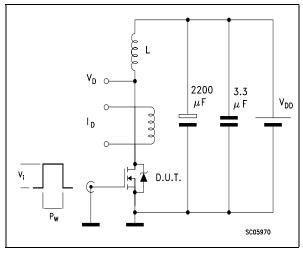


Figure 17: Switching Times Test Circuit For Resistive Load

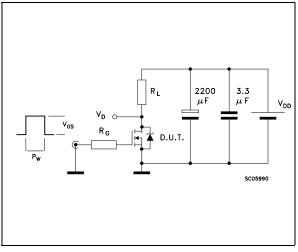
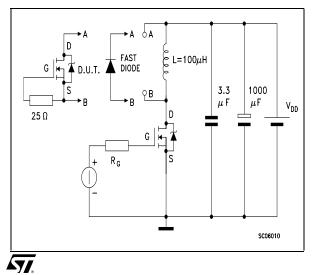
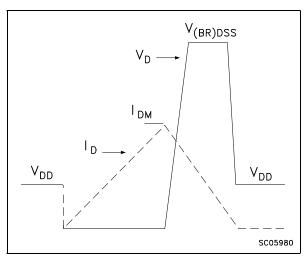



Figure 18: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 19: Unclamped Inductive Wafeform



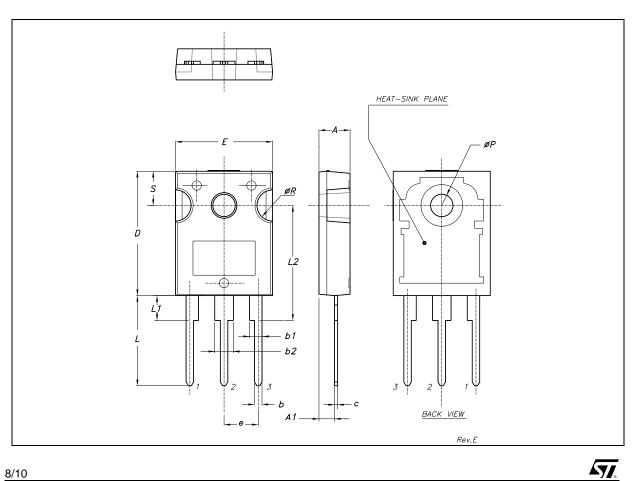


Figure 20: Gate Charge Test Circuit

TO-247 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
Е	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øP	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 10: Revision History

Date	Revision	Description of Changes
31-Jan-2005	1	Complete datasheet

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

ĹŢ/。