

STL11N3LLH6

N-channel 30 V, 0.006 Ω typ., 11 A STripFET™ VI DeepGATE™ Power MOSFET in a PowerFLAT™ 3.3 x 3.3 package

Datasheet - production data

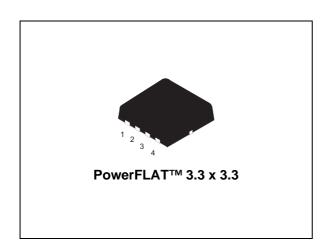
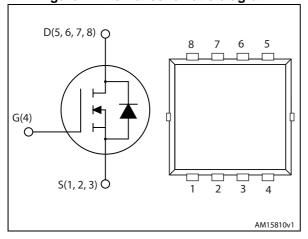



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STL11N3LLH6	30 V	$0.0075~\Omega$	11 A ⁽¹⁾

- 1. The value is rated according $R_{\text{thi-pcb.}}$
- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- High avalanche ruggedness
- Low gate drive power losses
- · Very low switching gate charge

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using the 6^{th} generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL11N3LLH6	11N3L	PowerFLAT™ 3.3 x 3.3	Tape and reel

Contents STL11N3LLH6

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	13

STL11N3LLH6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 25 °C	11	Α
I _D ⁽¹⁾	Drain current (continuous) at T _{pcb} = 100 °C	6.9	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44	Α
P _{TOT} (3)	Total dissipation at T _C = 25 °C	50	W
P _{TOT} ⁽¹⁾	Total dissipation at T _{pcb} = 25 °C	2	W
	Derating factor	0.03	W/°C
TJ	Operating junction temperature	-55 to 150	°C
T _{stg}	Storage temperature	-55 (0 150	°C

^{1.} The value is rated according $R_{thj\text{-pcb}}$.

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case} (2)	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	42.8	°C/W
R _{thj-pcb} ⁽²⁾	Thermal resistance junction-pcb	63.5	°C/W

^{1.} When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 sec.

^{2.} Pulse width limited by safe operating area.

^{3.} The value is rated according R_{thj-c} .

^{2.} Steady state.

Electrical characteristics STL11N3LLH6

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	30			V
	Zero gate voltage drain	$V_{GS} = 0, V_{DS} = 30 \text{ V}$			1	μΑ
I _{DSS}	current	$V_{GS} = 0$, $V_{DS} = 30 \text{ V}$, $T_C = 125 \text{ °C}$			10	μΑ
I _{GSS}	Gate body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1			V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$		0.006 0.0084	0.0075 0.0095	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1690	-	pF
C _{oss}	Output capacitance	V _{DS} = 24 V, f=1 MHz,	-	290	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} =0	-	176	-	pF
Qg	Total gate charge	V _{DD} = 24 V, I _D = 11 A V _{GS} = 4.5 V (see Figure 14)	-	17	-	nC
Q _{gs}	Gate-source charge		-	8	-	nC
Q _{gd}	Gate-drain charge		-	6	-	nC
R _G	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20 mV open drain	-	1.7	-	Ω

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	9.5	-	ns
t _r	Rise time	V_{DD} = 24 V, I_{D} = 5.5 A, R_{G} = 4.7 Ω , V_{GS} = 10 V	-	30	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13 $)$	-	37	-	ns
t _f	Fall time	, ,	-	12	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current		-		11	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} = 0	-		1.1	٧
t _{rr}	Reverse recovery time	I _{SD} = 11 A,	-	24		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs,	-	16.8		nC
I _{RRM}	Reverse recovery current	V _{DD} = 24 V	-	1.4		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%.

Electrical characteristics STL11N3LLH6

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area

Figure 3. Thermal impedance

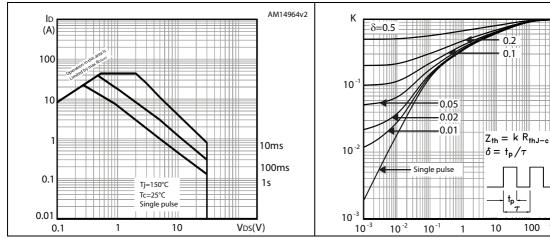


Figure 4. **Output characteristics**

Figure 5. **Transfer characteristics**

100 tp(s)

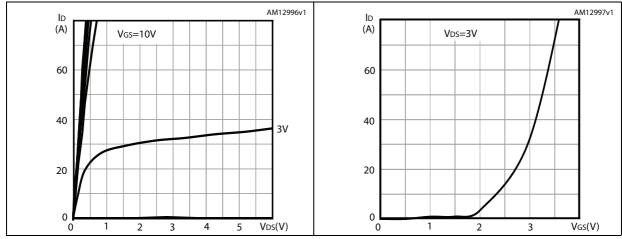
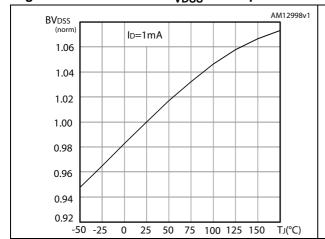
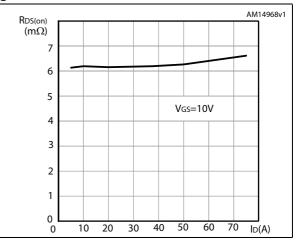




Figure 6. Figure 7. Static drain-source on-resistance Normalized B_{VDSS} vs temperature

AM13000v1 AM13001v1 Vgs ID=11A (V) (pF) V_{DD}=24V 12 2100 10 Ciss 1600 8 1100 4 600 Coss 2 Crss 100 10 20 30 35 Qg(nC) V_{DS}(V) 15 25

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. vs temperature

10 20 Normalized on-resistance vs

AM13002v1 VGS(th) ID=250μA 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 -25 0 25 50 75 100 125 150 TJ(°C)

temperature

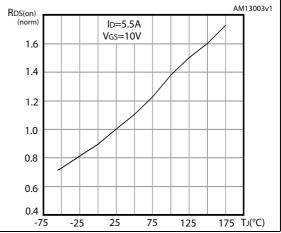
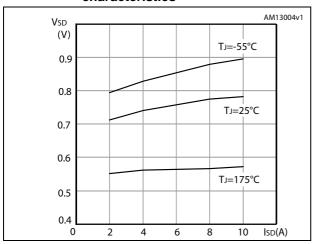



Figure 12. Source-drain diode forward characteristics

Test circuits STL11N3LLH6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

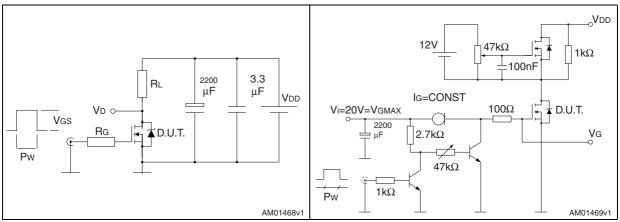


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

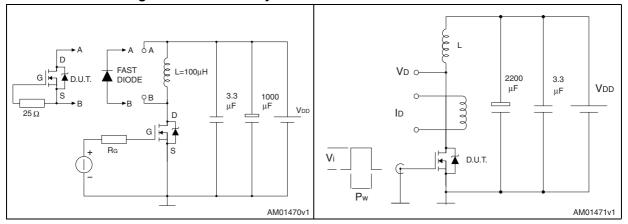
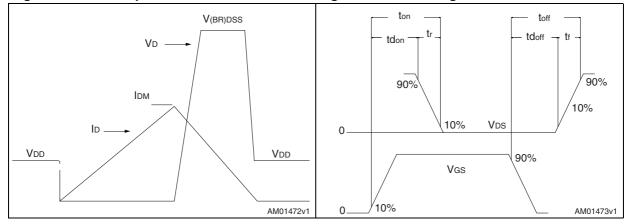



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 8. PowerFLAT™ 3.3 x 3.3 mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	0.70	0.80	0.90
b	0.25	0.30	0.39
С	0.14	0.15	0.20
D	3.10	3.30	3.50
D1	3.05	3.15	3.25
D2	2.15	2.25	2.35
е	0.55	0.65	0.75
E	3.10	3.30	3.50
E1	2.90	3.00	3.10
E2	1.60	1.70	1.80
Н	0.25	0.40	0.55
К	0.65	0.75	0.85
L	0.30	0.45	0.60
L1	0.05	0.15	0.25
L2			0.15
θ	8°	10°	12°

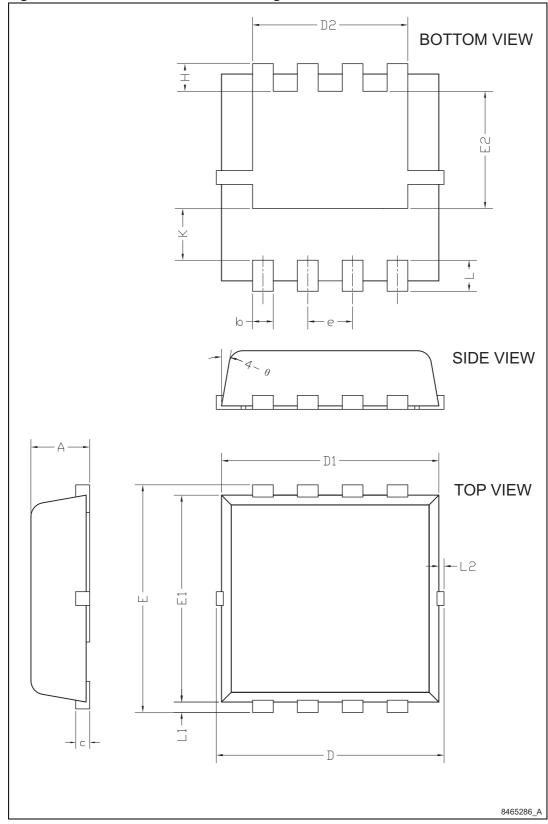


Figure 19. PowerFLAT™ 3.3 x 3.3 drawing

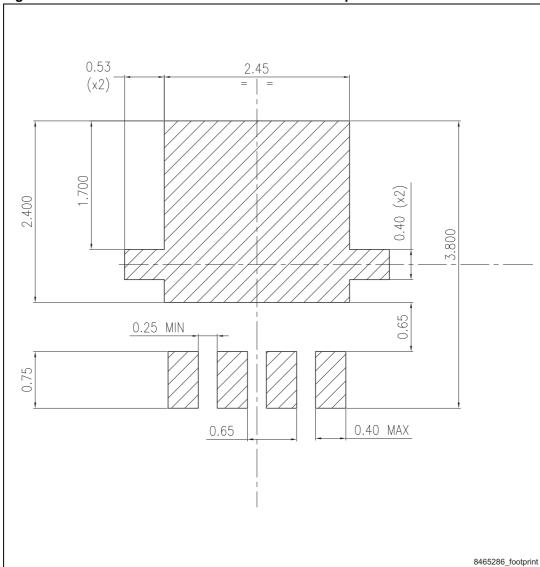


Figure 20. PowerFLAT™ 3.3 x 3.3 recommended footprint^(a)

a. All dimensions are in millimeters

STL11N3LLH6 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
02-Sep-2010	1	First release.
23-May-2013	2	 Document status promoted from preliminary data to production data. Updated: Figure 1, silhouette in cover page and Section 4: Package mechanical data Modified: the entire typical values in Table 7 Minor text changes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 DocID17755 Rev 2