
Description:

This N-Channel MOSFET uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge. It can be used in a wide variety of applications.

Features:

- 1) V_{DS} =200V, I_D =18A, $R_{DS(ON)}$ <165m Ω @ V_{GS} =10V
- 2) Low gate charge.
- 3) Green device available.
- 4) Advanced high cell denity trench technology for ultra low R_{DS(ON)}.
- 5) Excellent package for good heat dissipation.

Absolute Maximum Ratings: (T_A=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Units
V _{DS}	Drain-Source Voltage	200	V
V _{GS}	Gate-Source Voltage	±20	V
I _D	Continuous Drain Current-T _C =25°C ^G	18	
	Continuous Drain Current-T _C =100°C	13	А
E _{AS}	Single Pulse Avalanche Energy	125	mJ
I _{DM}	Drain Current - Pulsed ^c	45	А
I _{AS}	Avalanche Current ^c (L=10mH)	9.5	А
P _D	Power Dissipation,T _C =25 °C ^B	102	w
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	$^{\circ}\! \mathbb{C}$

Thermal Characteristics:

Symbol	Parameter	Max	Units
R _{OJC}	Thermal Resistance, Junction to Case (Steady-State)	0.82	°C/W
R _{OJA}	Thermal Resistance Junction to mbient A (t<10S)	23	°C/W

Electrical Characteristics: (T_A=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Off Characteristics							
BV _{DSS}	Drain-Sourtce Breakdown Voltage	V _{GS} =0V,I _D =250 μ A	200			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =200V			1	μ A	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = \pm 20V, V_{DS} =0A			±100	nA	
On Characteristics							
V _{GS(th)}	GATE-Source Threshold Voltage	V _{GS} =V _{DS} , I _D =250 μ A	1		3	V	
	Drain-Source On Resistance	V _{GS} =10V,I _D =1A		120	165	m Ω	
R _{DS(ON)}		V _{GS} =4.5 V,I _D =1A		150	180	m Ω	
Dynamic Characteristics							
R _g	Gate resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		6.5		Ω	
C _{iss}	Input Capacitance	V _{DS} =25V, V _{GS} =0V, f=1MHz		800		pF	
C _{oss}	Output Capacitance			100			
C _{rss}	Reverse Transfer Capacitance			60			
Switching Characteristics							
t _{d(on)}	Turn-On Delay Time	V_{GS} =10V , V_{DS} =100V, R_{L} =5.5 Ω , R_{GEN} =3 Ω		8		ns	
t _r	Rise Time			10		ns	
t _{d(off)}	Turn-Off Delay Time			30		ns	
t _f	Fall Time			4		ns	
Q _g	Total Gate Charge	V _{GS} =10V, V _{DS} =100V,		27	40	nC	
Q _{gs}	Gate-Source Charge			7		nC	
Q _{gd}	Gate-Drain "Miller" Charge	I _D =18A		3		nC	
Drain-Source Diode Characteristics							

V _{SD}	Source-Drain Diode Forward Voltage	I _D =9A	 	1.45	٧
trr	Body Diode Reverse Recovery Time	IF=18A dI/dt=500A/µS	 60	80	ns
Qrr	Body Diode Reverse Recovery Charge		 800		nC

Notes:

- A: The value of $R_{\theta JA}$ is measured with the device in a still air environment with T A =25°C.
- B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5%max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C.
- G. The maximum current rating is limited by bond-wires.

Typical Characteristics: (T_A=25℃ unless otherwise noted)

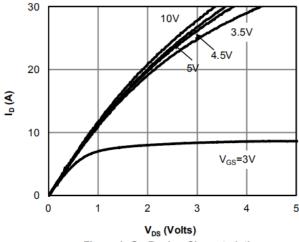


Figure 1: On-Region Characteristics

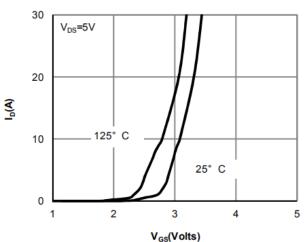


Figure 2: Transfer Characteristics

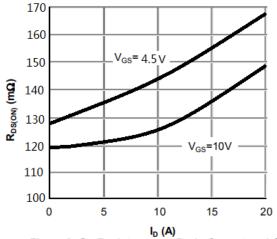
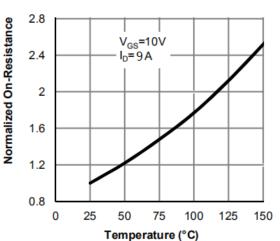
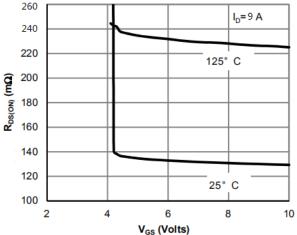
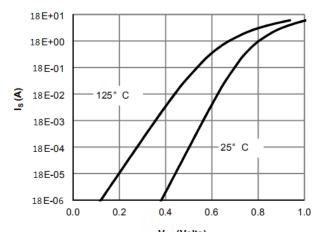
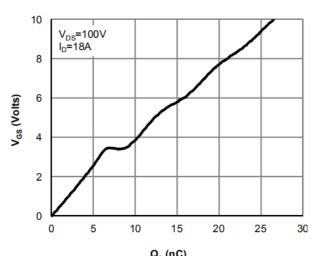
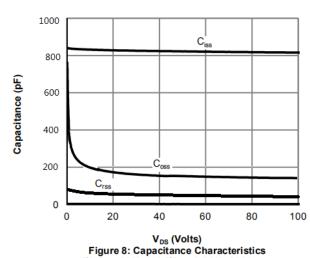


Figure 3: On-Resistance vs. Drain Current and Gate Voltage


Figure 4: On-Resistance vs. Junction Temperature


 $\label{eq:VGS} \textbf{V}_{\text{GS}} \, (\text{Volts})$ Figure 5: On-Resistance vs. Gate-Source Voltage

 V_{SD} (Volts) Figure 6: Body-Diode Characteristics

 $\label{eq:Qg} \textbf{Q}_{g} \, (\text{nC})$ Figure 7: Gate-Charge Characteristics

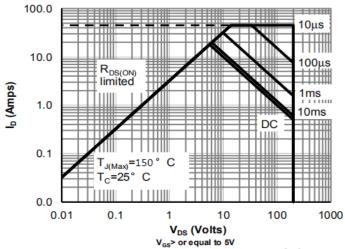
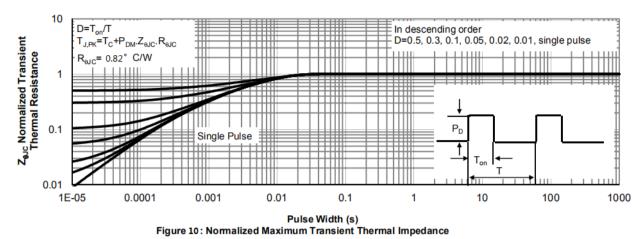



Figure 9: Maximum Forward Biased Safe **Operating Area**

0086-0755-8278-9056 www.doingter.cn