

SN74LVC1G08-Q1

SCES556G -MARCH 2004-REVISED JUNE 2019

SN74LVC1G08-Q1 Single 2-input positive-AND gate

1 Features

- AEC-Q100 Qualified for Automotive Applications:
 - Device Temperature Grade 1: –40°C to +125°C, T_A
- Supports 5-V V_{CC} Operation
- Over-voltage Tolerant Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Fully qualified for automotive applications
- Combine power good signals for multiple power rails
- Prevent a signal from being passed until a condition is true
- Combine active-low error signals

3 Description

This single 2-input positive-AND gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G08-Q1 device performs the Boolean function or $Y = A \cdot B$ or $Y = \overline{A + B}$ in positive logic.

This device is fully specified for partial-power-down applications using I off. The I off circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The CMOS device has high output drive while maintaining low static power dissipation over a broad $V_{\rm CC}$ operating range.

The SN74LVC1G08 is available in a variety of packages, including the small DRY package with a body size of $1.45 \text{ mm} \times 1.00 \text{ mm}$.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE	
	SOT-23 (5)	2.90mm × 1.60mm	
SN74LVC1G08Q	SC70 (5)	2.00mm × 1.25mm	
SIN/4LVC1G08Q	SON (6) Advance Information	1.45mm × 1.00mm	

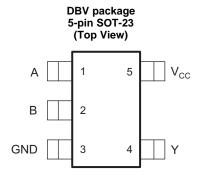
(1) For all available packages, see the orderable addendum at the end of the datasheet.

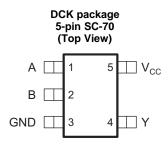
Table of Contents

1	Features 1		8.1 Overview	10
2	Applications 1		8.2 Functional Block Diagram	10
3	Description 1		8.3 Feature Description	10
4	Revision History2		8.4 Device Functional Modes	10
5	Pin Configuration and Functions	9	Application and Implementation	11
6	Specifications		9.1 Application Information	11
•	6.1 Absolute Maximum Ratings		9.2 Typical Application	11
	6.2 ESD Ratings	10	Power Supply Recommendations	12
	6.3 Recommended Operating Conditions	11	Layout	12
	6.4 Thermal Information		11.1 Layout Guidelines	
	6.5 Electrical Characteristics 6		11.2 Layout Example	12
	6.6 Switching Characteristics, T _A = -40°C to 125°C 6	12	Device and Documentation Support	
	6.7 Switching Characteristics, $T_A = -40^{\circ}$ C to 85°C 6		12.1 Trademarks	
	6.8 Operating Characteristics		12.2 Electrostatic Discharge Caution	13
	6.9 Typical Characteristics		12.3 Glossary	
7	Parameter Measurement Information 8	13	Mechanical, Packaging, and Orderable Information	
8	Detailed Description 10			

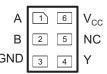
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


CI	hanges from Revision F (April 2008) to Revision G	Page
•	Changed data sheet to new TI format	
•	Added DRY package to Device Information table.	
•	Added Thermal Information table.	5
•	Added Typical Characteristics.	7
•	Added Detailed Description section.	10
•	Added Application and Implementation section.	11
•	Added Power Supply Recommendations section.	12
•	Added Layout section.	12


Submit Documentation Feedback

Copyright © 2004–2019, Texas Instruments Incorporated



5 Pin Configuration and Functions

DRY package - Advance Information 6-pin SON (Top View)

NC - No internal connection

See mechanical drawings for dimensions.

Pin Functions

	DIN	Part .						
	PIN							
NAME	NO. DBV, DCK	NO. DRY	I/O	DESCRIPTION				
Α	1	1	Input	Input A				
В	2	2	Input	Input B				
GND	3	3	_	Ground				
Υ	4	4	Output	Output Y				
V _{CC}	5	6	_	Positive Supply				
NC		5	_	No internal connection				

Copyright © 2004–2019, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high-	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND	Continuous current through V _{CC} or GND			
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Flootrostotio discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level	±2000	W
	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Submit Documentation Feedback

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V	Cupply voltage	Operating	1.65	5.5	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V	
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
.,	Landard Sandraka	V _{CC} = 2.3 V to 2.7 V		0.7		
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		0.8	V	
		V _{CC} = 4.5 V to 5.5 V		0.3 × V _{CC}		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
	High-level output current	V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-8		
I _{OH}		V 0V		-16	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 4.5 V		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
I_{OL}	Low-level output current	V 0V		16	mA	
		V _{CC} = 3 V		24		
		V _{CC} = 4.5 V		32		
		V _{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20		
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		10		
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		5		
_	Output is a face of the second	Q-suffix devices	-40	-40 125		
T_A	Operating free-air temperature	I-suffix devices	-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

6.4 Thermal Information

		SN74LVC1G08-Q1					
	THERMAL METRIC ⁽¹⁾	DBV	DCK	DRY - Advance Information	UNIT		
		5 PINS	5 PINS	6 PINS	°C/W		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	209.4	244.2	264.4	°C/W		
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	132.5	156.1	166.6	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	118.1	130.8	142.2	°C/W		
ΨЈТ	Junction-to-top characterization parameter	48.8	47.2	26.1	°C/W		
ΨЈВ	Junction-to-board characterization parameter	117.4	130.0	141.6	°C/W		
R ₀ JCbot	Junction-to-case (bottom) thermal resistance	-	-	-	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

Product Folder Links: SN74LVC1G08-Q1

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	V _{cc}	-40°0	C to 85°C			to 125°C MENDED		UNIT	
				MIN	TYP ⁽¹⁾ M	ΑX	MIN	TYP	MAX		
		$I_{OH} = -100 \mu A$	1.65 V to 5.5 V	V _{CC} - 0.1			V _{CC} - 0.15				
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			1.2				
.,		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.9				
V _{OH}	I _{OH} = -16 mA	3 V	2.4			2.4			V		
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			2.3					
		$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			3.8				
		I _{OL} = 100 μA	1.65 V to 5.5 V		(0.1			0.1		
		I _{OL} = 4 mA	1.65 V		0.	45			0.45		
.,		I _{OL} = 8 mA	2.3 V		(0.3			0.3	V	
V _{OL}		I _{OL} = 16 mA	3 V		(0.4			0.4	V	
		I _{OL} = 24 mA	3 V		0.	55			0.55		
		I _{OL} = 32 mA	4.5 V		0.	55			0.55		
I _I	A or B inputs	V _I = 5.5 V or GND	0 to 5.5 V			±5			±5	μА	
I _{off}		V_I or $V_O = 5.5 \text{ V}$	0		±	:10			±10	μА	
I_{CC}		$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V			10			10	μА	
ΔI_{CC}		One input at V_{CC} – 0.6 V, Other inputs at $V_{C\ C}$ or GND	3 V to 5.5 V		5	00			500	μА	
Ci		V _I = V _{CC} or GND	3.3 V		4			4		pF	

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

6.6 Switching Characteristics, $T_A = -40$ °C to 125°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

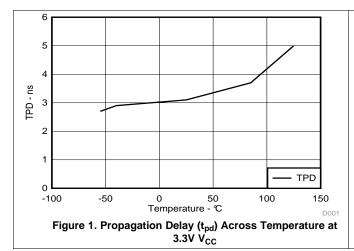
						–40°C to	125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = : ± 0.2		V _{CC} = : ± 0.3		V _{CC} = ± 0.5		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	Y	1	10	1	7.5	1	6.5	1	6	ns

6.7 Switching Characteristics, $T_A = -40$ °C to 85°C

over recommended operating free-air temperature range, (unless otherwise noted) (see Figure 4)

						–40°C t	o 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1 ± 0.1		V _{CC} = : ± 0.2		V _{CC} = 3 ± 0.3		V _{CC} = ± 0.5		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	Υ	2.4	8	1.1	5.5	1	4.5	1	4	ns

6.8 Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER	TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	LINIT
	PARAMETER	CONDITIONS	TYP	TYP	TYP	TYP	UNIT pF
C_{pd}	Power dissipation capacitance	f = 10 MHz	21	24	26	31	pF

Product Folder Links: SN74LVC1G08-Q1

6.9 Typical Characteristics

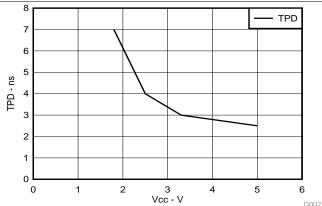
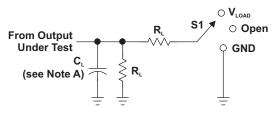
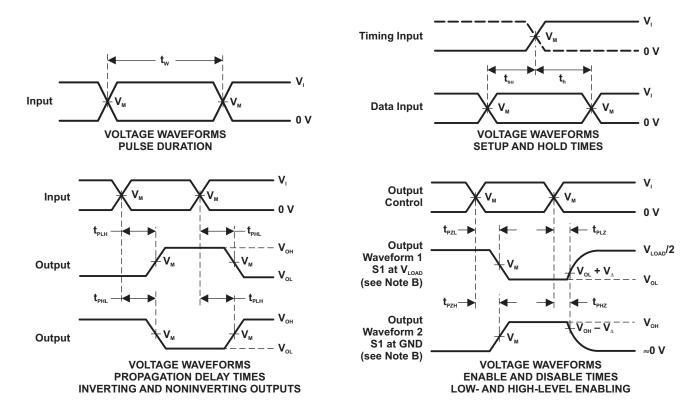



Figure 2. Propagation Delay (tpd) Across V_{CC} at 25°C


7 Parameter Measurement Information

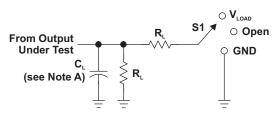
TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

.,	INI	PUTS	.,	.,		_	.,	
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _∟	R _∟	V _A	
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
2.5 V ± 0.2 V	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V	
5 V ± 0.5 V	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V	

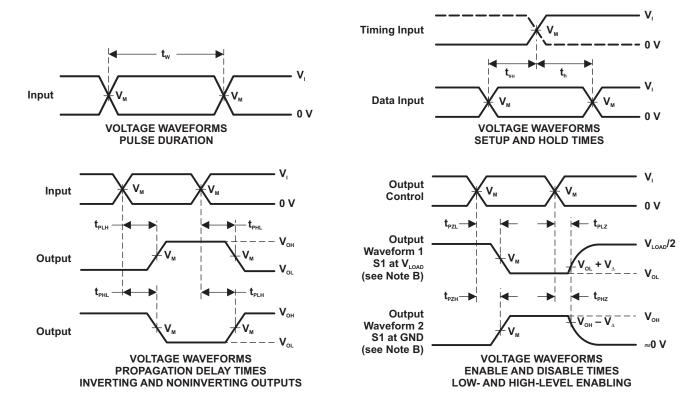
NOTES: A. C, includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PlH} and t_{PHl} are the same as t_{pol}
- H. All parameters and waveforms are not applicable to all devices.


Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2004–2019, Texas Instruments Incorporated


Parameter Measurement Information (continued)

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

,,	INI	PUTS		V		-	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	$V_{\scriptscriptstyle{\Delta}}$
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~\textrm{V}~\pm~0.2~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8 Detailed Description

8.1 Overview

The SN74LVC1G08Q device contains one 2-input positive AND gate device and performs the Boolean function $Y = A \cdot B \text{ or } Y = \overline{A + B}$ This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

Figure 5. Positive Logic

8.3 Feature Description

- · Wide operating voltage range.
 - Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V.

8.4 Device Functional Modes

Table 1. Function Table

INP	UTS	OUTPUT
Α	В	Υ
Н	Н	Н
L	X	L
X	L	L

Submit Documentation Feedback

Application and Implementation

9.1 Application Information

The SN74LVC1G08Q is a high-drive CMOS device that can be used for implementing AND logic with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC}.

9.2 Typical Application

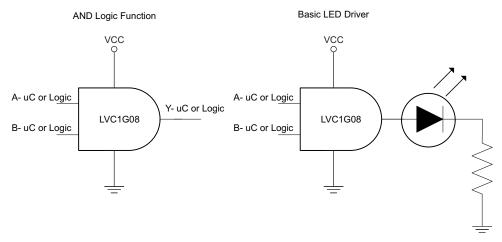


Figure 6. Typical Application Example

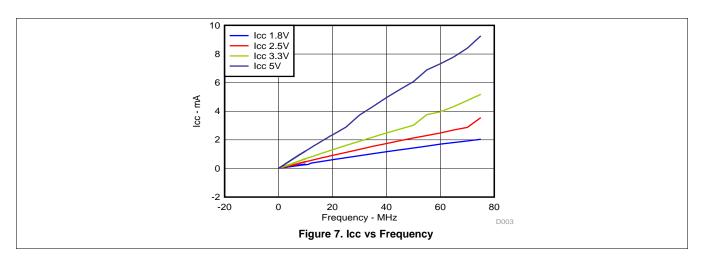
9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in the Recommended Operating Conditions table.
 - Specified high and low levels. See $(V_{IH}$ and $V_{IL})$ in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V_I max) in the Recommended Operating Conditions table at any valid V_{CC} .

2. Recommend Output Conditions


- Load currents should not exceed (I_O max) per output and should not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the *Absolute Maximum Ratings* table.
- Outputs should not be pulled above V_{CC}.

Product Folder Links: SN74LVC1G08-Q1

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the Recommended Operating Conditions table.

Each Vcc pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-μF capacitor is recommended and if there are multiple Vcc pins then 0.01-μF or 0.022-μF capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to Gnd or Vcc whichever make more sense or is more convenient.

11.2 Layout Example

Figure 8. Layout Example

Product Folder Links: SN74LVC1G08-Q1

Submit Documentation Feedback

Copyright © 2004-2019, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LVC1G08-Q1

DRY0006B

PACKAGE OUTLINE

USON - 0.55 mm max height

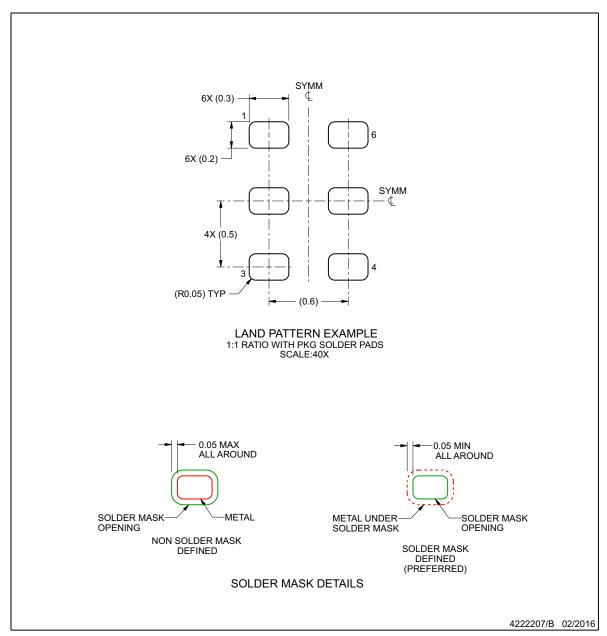
PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14 5M
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

Submit Documentation Feedback



EXAMPLE BOARD LAYOUT

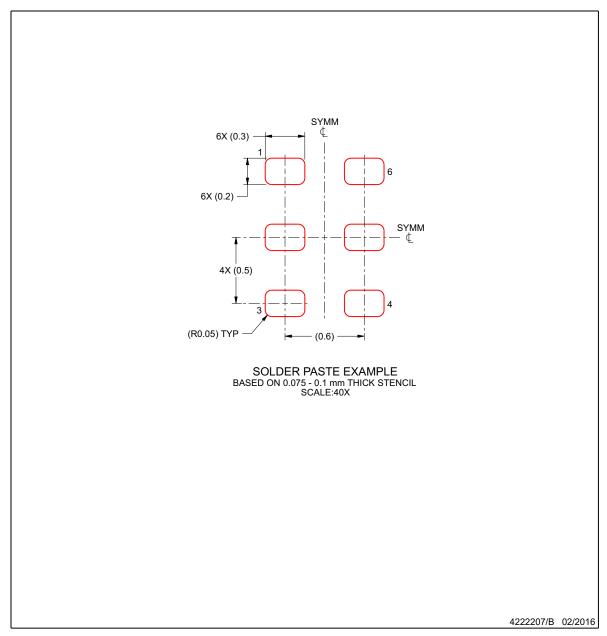
DRY0006B

USON - 0.55 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



EXAMPLE STENCIL DESIGN

DRY0006B

USON - 0.55 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12-Jun-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
PCLVC1G08QDRYRQ1	ACTIVE	SON	DRY	6	5000	TBD	Call TI	Call TI	-40 to 125		Samples
SN74LVC1G08IDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CEO	Samples
SN74LVC1G08QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C08O	Samples
SN74LVC1G08QDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CEO	Samples
SN74LVC1G08QDRYRQ1	PREVIEW	SON	DRY	6	5000	TBD	Call TI	Call TI	-40 to 125		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

12-Jun-2019

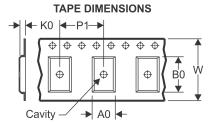
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1G08-Q1:

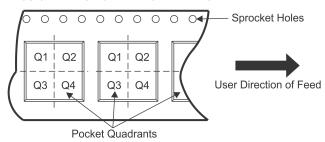
● Enhanced Product: SN74LVC1G08-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Jan-2019


TAPE AND REEL INFORMATION

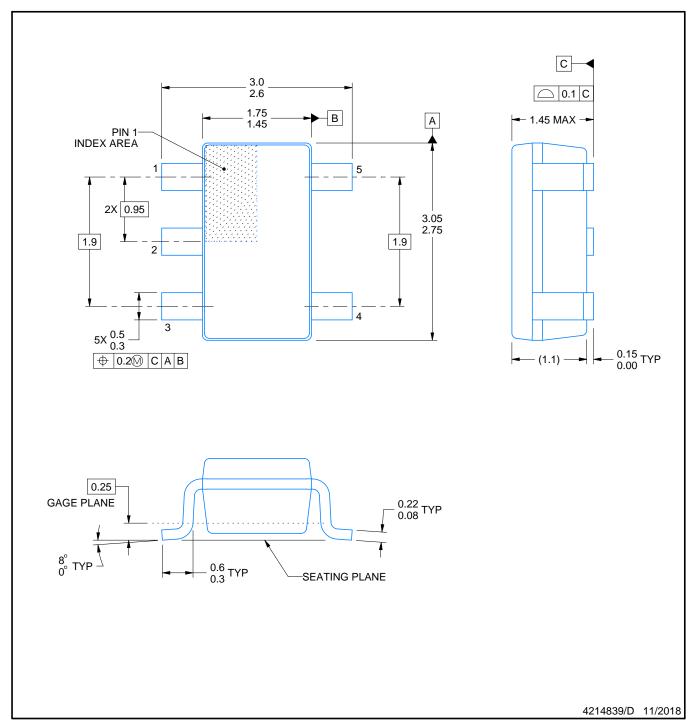
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G08IDCKRQ1	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
SN74LVC1G08QDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74LVC1G08QDCKRQ1	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

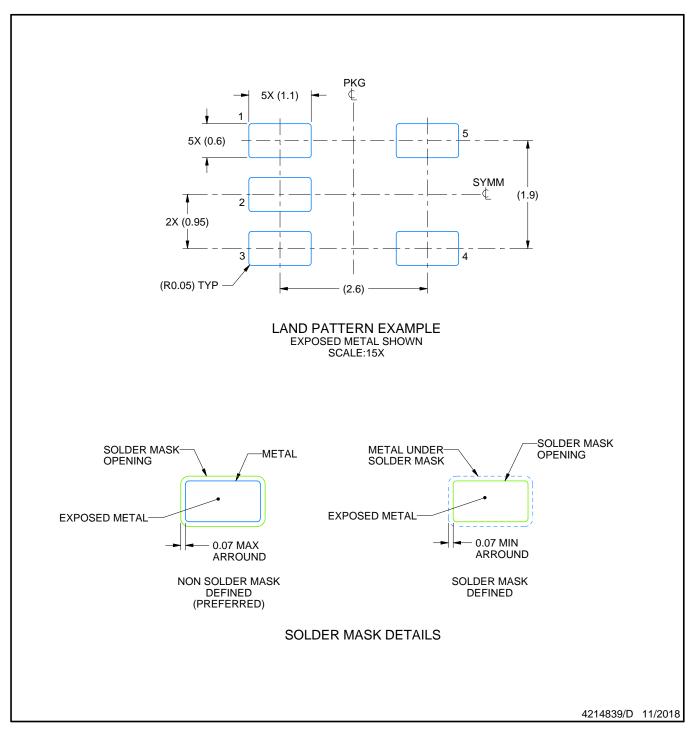
www.ti.com 10-Jan-2019



*All dimensions are nominal

7 III GITTIOTOTOTO GIO TIOTITIGI							
Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G08IDCKRQ1	SC70	DCK	5	3000	203.0	203.0	35.0
SN74LVC1G08QDBVRQ1	SOT-23	DBV	5	3000	203.0	203.0	35.0
SN74LVC1G08QDCKRQ1	SC70	DCK	5	3000	203.0	203.0	35.0

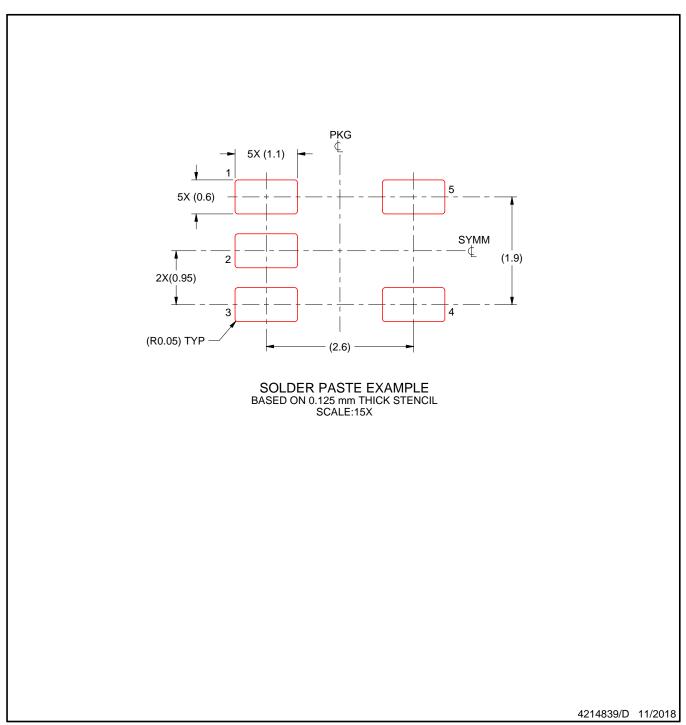
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

SMALL OUTLINE TRANSISTOR

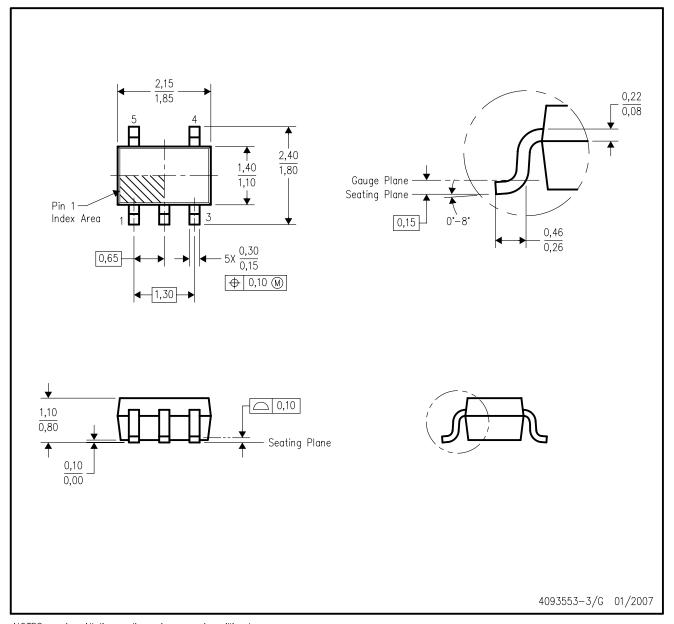


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

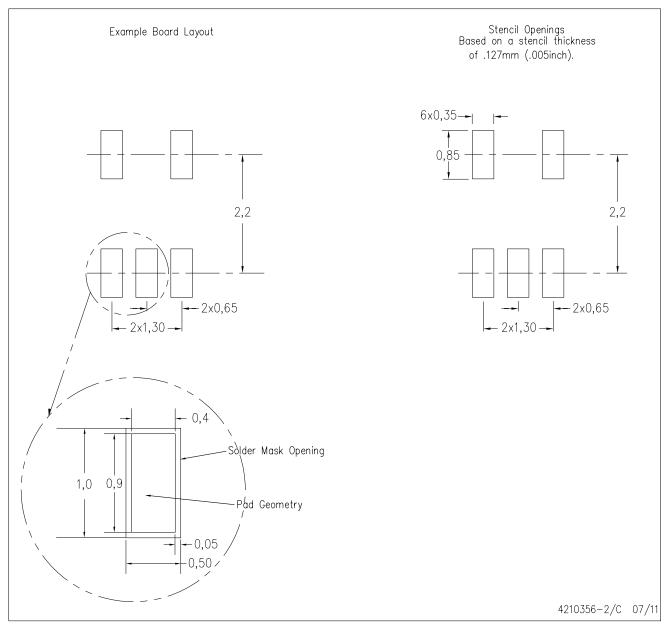


^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated