

Sample &

🖥 Buy

SN65DSI83-Q1

SLLSEW7-DECEMBER 2016

SN65DSI83-Q1 Automotive Single-Channel MIPI® DSI to Single-Link LVDS Bridge

Technical

Documents

1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 2: -40°C to _ +105°C Ambient Operating Temperature
 - Device HBM ESD Classification Level 3A
 - **Device CDM ESD Classification Level C6**
- Implements MIPI[®] D-PHY Version 1.00.00 Physical Layer Front-End and Display Serial Interface (DSI) Version 1.02.00
- Single-Channel DSI Receiver Configurable for ٠ One, Two, Three, or Four D-PHY Data Lanes Per Channel Operating up to 1 Gbps Per Lane
- Supports 18-bpp and 24-bpp DSI Video Packets with RGB666 and RGB888 Formats
- Maximum Resolution up to 60 fps WUXGA 1920 x ٠ 1200 at 18 bpp and 24 bpp Color With Reduced Blanking. Suitable for 60 fps 1366 x 768 / 1280 x 800 at 18 bpp and 24 bpp
- Output for Single-Link LVDS .
- Supports Single Channel DSI to Single-Link LVDS **Operating Mode**
- LVDS Output Clock Range of 25 MHz to 154 MHz
- LVDS Pixel Clock May be Sourced from Free-• Running Continuous D-PHY Clock or External Reference Clock (REFCLK)
- 1.8-V Main V_{CC} Power Supply
- Low Power Features Include SHUTDOWN Mode, Reduced LVDS Output Voltage Swing, Common Mode, and MIPI Ultra-Low Power State (ULPS) Support
- LVDS Channel SWAP, LVDS PIN Order Reverse Feature for Ease of PCB Routing
- Packaged in 64-pin 10-mm × 10-mm HTQFP (PAP) PowerPAD[™] IC Package

2 Applications

- Infotainment Head Unit With Integrated Display
- Infotainment Head Unit With Remote Display
- Infotainment Rear-Seat Entertainment
- Hybrid Automotive Cluster
- Portable Navigation Device
- Navigation
- Industrial Human Machine Interface (HMI) and Displays

3 Description

Tools &

Software

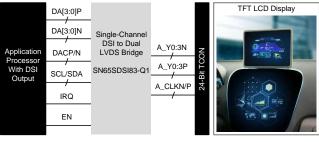
The SN65DSI83-Q1 DSI-to-LVDS bridge features a single-channel MIPI D-PHY receiver front-end configuration with four lanes per channel operating at 1 Gbps per lane and a maximum input bandwidth of 4 Gbps. The bridge decodes MIPI DSI 18-bpp RGB666 and 24-bpp RGB888 packets and converts the formatted video data-stream to an LVDS output operating at pixel clocks operating from 25 MHz to 154 MHz, offering a Single-Link LVDS with four data lanes per link.

Support &

Community

20

The SN65DSI83-Q1 device can support up to WUXGA 1920 x 1200 at 60 frames per second, at 24 bpp with reduced blanking. The SN65DSI83-Q1 device is also suitable for applications using 60 fps 1366 x 768/1280 x 800 at 18 bpp and 24 bpp. Partial line buffering is implemented to accommodate the data stream mismatch between the DSI and LVDS interfaces.


The SN65DSI83-Q1 device is implemented in a small outline 10-mm × 10-mm HTQFP package with a 0.5-mm pitch, and operates across a temperature range from -40°C to +105°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN65DSI83-Q1	HTQFP (64)	10.00 mm × 10.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

SN65DSI83-Q1 Schematic

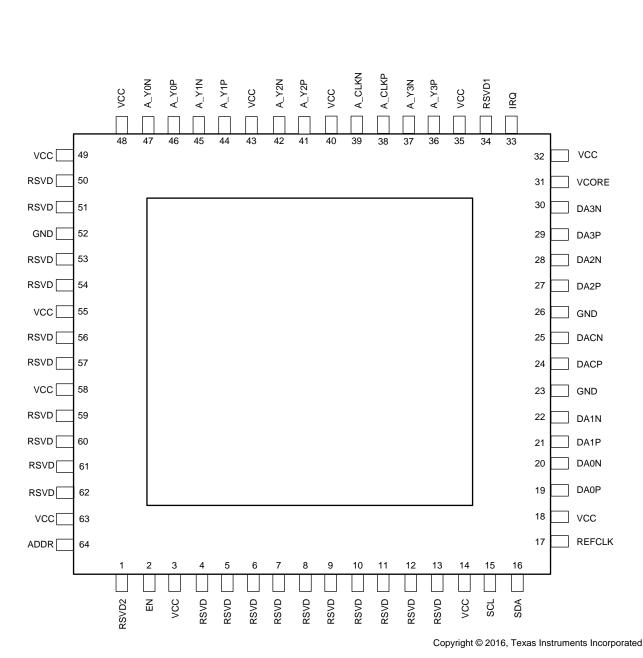
Copyright © 2016, Texas Instruments Incorporated

NSTRUMENTS

Texas

Table of Contents

1	Feat	tures	1
2	Арр	lications	1
3	Des	cription	1
4	Rev	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	6
	6.1	Absolute Maximum Ratings	
	6.2	ESD Ratings	<mark>6</mark>
	6.3	Recommended Operating Conditions	6
	6.4	Thermal Information	<mark>6</mark>
	6.5	Electrical Characteristics	7
	6.6	Switching Characteristics	9
7	Para	ameter Measurement Information	10
8	Deta	ailed Description	13
	8.1	Overview	13
	8.2	Functional Block Diagram	13
	8.3	Feature Description	13
	8.4	Programming	<mark>21</mark>


 9 Applications and Implementation	23
9.2 Typical Application 10 Power Supply Recommendations 10.1 V _{CC} Power Supply 10.2 VCORE Power Supply 11 Layout 11.1 Layout Guidelines 11.2 Layout Example	37
10 Power Supply Recommendations 10.1 V _{CC} Power Supply 10.2 VCORE Power Supply 11 Layout 11.1 Layout Guidelines 11.2 Layout Example	37
10.1 V _{CC} Power Supply	38
 10.2 VCORE Power Supply 11 Layout 11.1 Layout Guidelines 11.2 Layout Example 	43
11 Layout 11.1 Layout Guidelines 11.2 Layout Example	43
11.1 Layout Guidelines 11.2 Layout Example	43
11.2 Layout Example	43
	43
	44
12 Device and Documentation Support	45
12.1 Documentation Support	45
12.2 Receiving Notification of Documentation Updates	45
12.3 Community Resource	45
12.4 Trademarks	45
12.5 Electrostatic Discharge Caution	45
12.6 Glossary	45
13 Mechanical, Packaging, and Orderable	
Information	46

4 Revision History

DATE	REVISION	NOTES
December 2016	*	Initial release.

5 Pin Configuration and Functions

PAP Package 64-Pin HTQFP With PowerPAD™ Top View

See the *Layout* section for layout information.

SN65DSI83-Q1 SLLSEW7 – DECEMBER 2016

www.ti.com

Texas Instruments

Pin Functions

Р	IN	TYPE	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
ADDR	64	I/O	Local I ² C interface target address select. See Table 3. In normal operation this pin is an input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V power rails where the SN65DSI83-Q1 VCC 1.8-V power rail is connected			
A_CLKP	38	0	LV/DS shannel A LV/DS slask sutnut			
A_CLKN	DDR 64 I/O Local I ² C interface target address select. See Table 3. In normal operation thinput. When the ADDR pin is programmed high, it must be tied to the same 1 rails where the SN65DSI83-Q1 VCC 1.8-V power rail is connected CLKP 38 O LVDS channel A, LVDS clock output CLKN 39 O LVDS channel A, LVDS clock output YOP 46 O LVDS channel A, LVDS data output 0 YON 47 O LVDS channel A, LVDS data output 0 Y1P 44 O LVDS channel A, LVDS data output 0 Y1N 455 O LVDS channel A, LVDS data output 1 Y2P 41 O LVDS channel A, LVDS data output 2 Y3N 37 O LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not co Y3N 37 O LVDS channel A, data lane 0; data rate up to 1 Gbps VIP 21 I MIPI D-PHY channel A, data lane 1; data rate up to 1 Gbps V2P 27 I MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps V3P 28 I MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps V2P 27 I MIPI D-PHY channel A, clock lane; data rate up to 1 G	LVDS channel A, LVDS clock output				
A_Y0P	46	0	LV/DS channel A LV/DS date output 0			
A_Y0N	47	0	 Local I²C interface target address select. See Table 3. In normal operation this pin input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V prails where the SN655DSI83-Q1 VCC 1.8-V power rail is connected LVDS channel A, LVDS clock output LVDS channel A, LVDS data output 0 LVDS channel A, LVDS data output 1 LVDS channel A, LVDS data output 2 LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connect (NC) for 18-bpp panels MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps Chip enable and reset. The device is reset (shutdown) when the EN pin is low Reference ground 			
A_Y1P	44	0				
NAMENO.TYPEDESCRIPTIONADDR64I/OLocal I ² C interface target address select. See Table 3. In normal operat input. When the ADDR pin is programmed high, it must be tied to the se rails where the SN65DSI3-Q1 VCC 1.8-V power rail is connectedA_CLKP38OLVDS channel A, LVDS clock outputA_CLKN39OLVDS channel A, LVDS clock outputA_YOP46OLVDS channel A, LVDS data output 0A_YOP44OLVDS channel A, LVDS data output 1A_Y1N45OLVDS channel A, LVDS data output 1A_Y2P41OLVDS channel A, LVDS data output 2A_Y3N37OLVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left in (NC) for 18-bpp panelsDA0P19IMIPI D-PHY channel A, data lane 0; data rate up to 1 GbpsDA1P21IMIPI D-PHY channel A, data lane 1; data rate up to 1 GbpsDA2P277IMIPI D-PHY channel A, data lane 2; data rate up to 1 GbpsDA2P27IMIPI D-PHY channel A, data lane 3; data rate up to 1 GbpsDA2P27IMIPI D-PHY channel A, clock lane; data rate up to 1 GbpsDA2P24IMIPI D-PHY channel A, clock lane; data rate up to 1 GbpsDA2N28IMIPI D-PHY channel A, clock lane; data rate up to 1 GbpsDA2P25IMIPI D-PHY channel A, clock lane; data rate up to 1 GbpsDA2N26GReference groundEN2IChip enable and reset. The device is reset (shutdown) whe	LVDS channel A, LVDS data output 1					
A_Y2P	41	0	LV/DS shannel A LV/DS data sutnut 2			
A_Y2N	42	I/O Local I ² C interface target address select. See Table 3. In normal operation this pin is input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V por rails where the SN65DSI83-Q1 VCC 1.8-V power rail is connected O LVDS channel A, LVDS clock output O LVDS channel A, LVDS data output 0 O LVDS channel A, LVDS data output 1 O LVDS channel A, LVDS data output 2 O LVDS channel A, LVDS data output 2 O LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connecte (NC) for 18-bpp panels I MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps I MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps I MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps I MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps I MIPI D-PHY channel A, clock lane; data rate				
A_Y3P	36	0	LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connected			
A_Y3N	37	0				
DA0P	19	1	MIDLD DLIV shannel A data lana 0; data rata un ta 1 Chao			
DA0N	20					
DA1P	21	1	MIDLD DLIV shannel A data lang 1; data rata up to 1 Chap			
DA1N	22		MIPL D-PHY channel A, data lane 1, data late up to 1 Gbps			
DA2P	27	1	MIDLD DLIV shannel A data lana 2: data rata un ta 1 Chao			
DA2N	28		MIPI D-PHY channel A, data lane 2, data rate up to 1 Gbps			
DA3P	29		MIDLD DLIV shannel A, data lana 2; data rata un ta 1 China			
DA1P21IMIPI D-PHY channel A, data lane 1; data rate up to 1 GbpsDA1N22IMIPI D-PHY channel A, data lane 1; data rate up to 1 GbpsDA2P27IMIPI D-PHY channel A, data lane 2; data rate up to 1 GbpsDA2N28IMIPI D-PHY channel A, data lane 3; data rate up to 1 GbpsDA3P29IMIPI D-PHY channel A, data lane 3; data rate up to 1 GbpsDACP24IMIPI D-PHY channel A, clock lane; data rate up to 1 Gbps						
DACP	24	1	MIDLD DLIV sharped A cleak long, data rate up to 1 Chao			
DACN	25		MIPI D-PHY channel A, clock lane, data rate up to T Gbps			
EN	2	I	Chip enable and reset. The device is reset (shutdown) when the EN pin is low			
	23					
GND	26	G	Reference ground			
	52					
IRQ	33	0	Interrupt signal			
REFCLK	17	I	This pin is an optional external reference clock for the LVDS pixel clock. If an external reference clock is not used, this pin must be pulled to ground with an external resistor. The source of the reference clock must be placed as close as possible with a series resistor near the source to reduce EMI			

Pin Functions (continued)

Р	IN			
NAME NAME NAME	NO.	TYPE	DESCRIPTION	
	4			
	5			
NAME RSVD RSVD1 RSVD2 SCL SDA Vcc	6			
	7			
	8			
NAME RSVD RSVD1 RSVD2 SCL SDA	9			
	10			
NAME RSVD RSVD1 RSVD2 SCL SDA VCC	11			
	12			
	13		Percented and leave them unconnected	
	50	ROVD		
	51			
	53			
	54			
	56			
	57			
	59			
	60			
	34	I/O		
	1	I		
		I		
SDA		I/O	Local I ² C interface data	
4 5 6 7 8 9 10 11 11 12 13 RSVD 50 51 53 54 56 57 59 60 61 62 RSVD 1 RSVD 1 61 62 RSVD 1 62 1 RSVD2 1 1 Reserved. This pin must be left unconnected for normal operation RSVD2 1 1 Reserved. This pin must be left unconnected for normal operation SCL 15 15 1 1 Local I ² C interface clock SDA 16 14 18 32 35 400 - 43 - 44 - 55 - 63 - 63 -				
Vcc		_	1.8-V power supply	
RSVD1 RSVD2 SCL SDA V _{CC}				
	63			
VCORE	31	Р		
PowerPAD	_	—	Reference ground	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.3	2.175	V
		CMOS input pins	-0.5	2.175	V
	Input voltage	DSI input pins (DAxP, DAxN)	-0.4	1.4	V
T _A	Operating free-air temperature		-40	105	°C
TJ	Junction temperature		-40	115	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	M
V _(ESD)	discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	V _{CC} power supply	1.65	1.8	1.95	V
V _{PSN}	Supply noise on any V _{CC} pin	$f_{(noise)} > 1 \text{ MHz}$		0.05	V
V _(DSI)	DSI input pin voltage	-50		1350	mV
$f_{(I2C)}$	Local I ² C input frequency			400	kHz
$f_{\rm HS(CLK)}$	DSI high-speed (HS) clock input frequency	40		500	MHz
t _{su}	DSI HS data to clock setup time; see Figure 1	0.15			UI ⁽¹⁾
t _h	DSI HS data to clock hold time; see Figure 1	0.15			UI ⁽¹⁾
Z _{OD(LVDS)}	LVDS output differential impedance	90		132	Ω
T _C	Case temperature			92.2	°C

(1) The unit interval (UI) is one half of the period of the HS clock; at 500 MHz the minimum setup and hold time is 150 ps.

6.4 Thermal Information

		SN65DSI83-Q1	
	THERMAL METRIC ⁽¹⁾	PAP (HTQFP)	UNIT
		64 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	36.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	18.2	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	20.6	°C/W
ΨJT	Junction-to-top characterization parameter	0.8	°C/W
Ψјв	Junction-to-board characterization parameter	20.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	2.2	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
VIL	Low-level control signal input voltage			0.3 :	< VCC	V
V _{IH}	High-level control signal input voltage		0.7 × VCC			V
V _{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$	1.25			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA			0.4	V
I _{LKG}	Input failsafe leakage current	V _{CC} = 0; V _{CC(PIN)} = 1.8 V			±30	μA
I _{IH}	High level input current	Any input terminal			±30	μΑ
IIL	Low level input current	Any input terminal			±30	μΑ
I _{OZ}	High-impedance output current	CMOS output terminals			±10	μΑ
los	Short-circuit output current	Any output driving GND short			±50	mA
I _{CC}	Device active current	See ⁽²⁾		77	124	mA
I _{ULPS}	Device standby current	All data and clock lanes are in ultra-low power state (ULPS)		7.7	14	mA
I _{RST}	Shutdown current	EN = 0			130	μA
R _{EN}	EN control input resistor			200		kΩ

All typical values are at V_{CC} = 1.8 V and T_A = 25°C
 SN65DSI83-Q1: SINGLE Channel DSI to SINGLE Channel DSI, 1280 × 800

 (a) Number of LVDS lanes = 3 data lanes + 1 CLK lane

(b) Number of DSI lanes = 4 data lanes + 1 CLK lane

(c) LVDS CLK OUT = 83 M

(d) DSI CLK = 500 M

(e) RGB888, LVDS 18 bpp Maximum values are at V_{CC} = 1.95 V and T_A = 85°C

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
MIPI DS	I INTERFACE					
V _{IH-LP}	LP receiver input high threshold	See Figure 2	880			mV
V _{IL-LP}	LP receiver input low threshold	See Figure 2			550	mV
V _{ID}	HS differential input voltage		100		270	mV
V _{IDT}	HS differential input voltage threshold				50	mV
VIL-ULPS	LP receiver input low threshold; ultra-low power state (ULPS)				300	mV
V _{CM-HS}	HS common mode voltage; steady-state		70		330	mV
ΔV _{CM-} HS	HS common mode peak-to-peak variation including symbol delta and interference				100	mV
V _{IH-HS}	HS single-ended input high voltage	See Figure 2			460	mV
V _{IL-HS}	HS single-ended input low voltage	See Figure 2	-40			mV
V _{term-} en	HS termination enable; single-ended input voltage (both Dp AND Dn apply to enable)	Termination is switched simultaneous for Dn and Dp			450	mV
R _{DIFF-} HS	HS mode differential input impedance		80		125	Ω
LVDS O	UTPUT	· · · · · ·			1	
		CSR 0×19.3:2=00 100 Ω near end termination	180	245	330	
	Steady-state differential output voltage A_Y x P/N	CSR 0x19.3:2=01 100 Ω near end termination	215	293	392	
		CSR 0x19.3:2=10 100 Ω near end termination	250	341	455	mV
		CSR 0x19.3:2=11 100 Ω near end termination	290	389	515	
V _{OD}		CSR 0x19.3:2=00 200 Ω near end termination	150	204	275	
		CSR 0×19.3:2=01 200 Ω near end termination	200	271	365	
		CSR 0x19.3:2=10 200 Ω near end termination	250	337	450	
		CSR 0x19.3:2=11 200 Ω near end termination	300	402	535	
		CSR 0x19.3:2=00 near end termination	140	191	262	
		CSR 0×19.3:2=01 100 Ω near end termination	168	229	315	
		CSR 0×19.3:2=10 100 Ω near end termination	195	266	365	
	Steady-state differential output voltage for	CSR 0×19.3:2=11 100 Ω near end termination	226	303	415	
V _{OD}	A_CLЌP/N	CSR 0×19.3:2=00 200 Ω near end termination	117	159	220	mV
		CSR 0×19.3:2=01 200 Ω near end termination	156	211	295	
		CSR 0×19.3:2=10 200 Ω near end termination	195	263	362	
		CSR 0x19.3:2=11 200 Ω near end termination	234	314	435	
∆ V _{OD}	Change in steady-state differential output voltage between opposite binary states	RL = 100 Ω			35	mV
V _{OC(SS)}	Steady state common-mode output voltage ⁽³⁾	CSR 0x19.6 = 1 and CSR 0x1B.6 = 1 Figure 3	0.75	0.9	1.13	V
00(00)		CSR 0×19.6 = 0 see Figure 3	1	1.25	1.5	
	Peak-to-peak common-mode output voltage	see Figure 3			35	mV
V _{OC(PP)}						

(3) Tested at V_{CC} = 1.8V , $T_A = -40^{\circ}$ C for MIN, $T_A = 25^{\circ}$ C for TYP, $T_A = 105^{\circ}$ C for MAX.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
DSI						
t _{GS}	DSI LP glitch suppression pulse width				300	ps
LVDS					1	
t _c	Output clock period		6.49		40	ns
tw	High-level output clock (CLK) pulse duration			4/7 t _c		ns
t ₀	Delay time, CLK↑ to 1st serial bit position		-0.15		0.15	ns
t ₁	Delay time, CLK↑ to 2nd serial bit position		1/7 t _c – 0.15		1/7 t _c + 0.15	ns
t ₂	Delay time, CLK↑ to 3rd serial bit position	t _c = 6.49 ns;	2/7 t _c – 0.15		2/7 t _c + 0.15	ns
t ₃	Delay time, CLK↑ to 4th serial bit position	Input clock jitter < 25 ps (REFCLK)	3/7 t _c – 0.15		3/7 t _c + 0.15	ns
t ₄	Delay time, CLK↑ to 5th serial bit position	See Figure 4	4/7 t _c – 0.15		4/7 t _c + 0.15	ns
t ₅	Delay time, CLK↑ to 6th serial bit position		5/7 t _c – 0.15		5/7 t _c + 0.15	ns
t ₆	Delay time, CLK↑ to 7th serial bit position		6/7 t _c – 0.15		6/7 t _c + 0.15	ns
t _r	Differential output rise time	See Figure 4	100		500	
t _f	Differential output fall time	See Figure 4	180		500	ps
EN, ULPS, R	ESET					
t _{en}	Enable time from EN or ULPS; see Figure 5	t _{c(o)} = 12.9 ns			1	ms
t _{dis}	Disable time to standby; see Figure 5	t _{c(o)} = 12.9 ns			0.1	ms
t _{reset}	Reset yime		10			ms
REFCLK						
F _{REFCLK}	REFCLK freqeuncy. Supported frequencies: 25 MHz - 154 MHz		25		154	MHz
t _r , t _f	REFCLK rise and fall time		100 × 10 ⁻¹²		1×10 ⁻⁹	S
t _{pj}	REFCLK peak-to-peak phase jitter				50	ps
Duty	REFCLK duty cycle		40%	50%	60%	
REFCLK or I	DSI CLK (DACP/N)					
000 01/01	SSC enabled Input CLK center spread depth ⁽²⁾		0.5%	1%	2%	
SSC_CLKIN	Modulation frequency		30		60	kHz

All typical values are at V_{CC} = 1.8 V and T_A = 25°C
 For EMI reduction purpose, the SN65DSI83-Q1 supports the center spreading of the LVDS CLK output through the REFCLK or DSI CLK input. The center spread CLK input to the REFCLK or DSI CLK is passed through to the LVDS CLK output A_CLKP/N.

7 Parameter Measurement Information

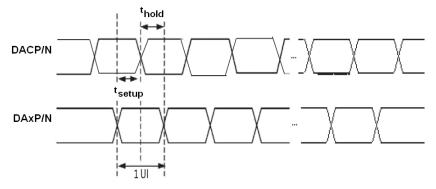


Figure 1. DSI HS Mode Receiver Timing Definitions

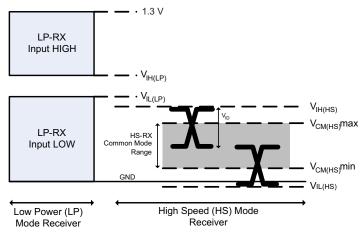
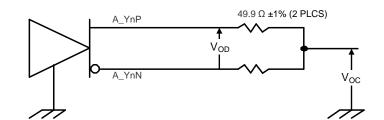
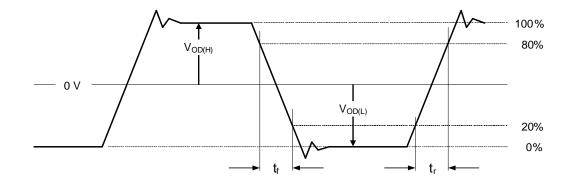




Figure 2. DSI Receiver Voltage Definitions

Parameter Measurement Information (continued)

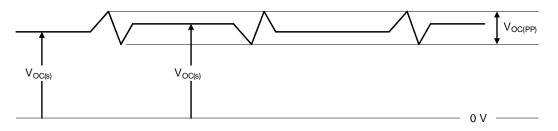
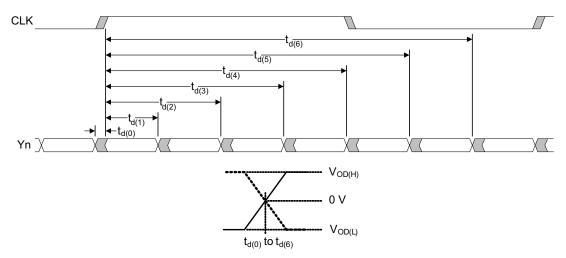
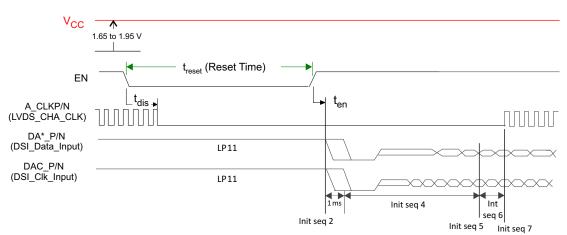
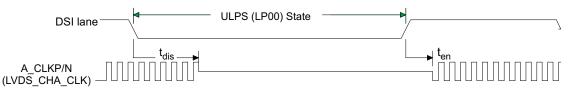




Figure 3. Test Load and Voltage Definitions for LVDS Outputs



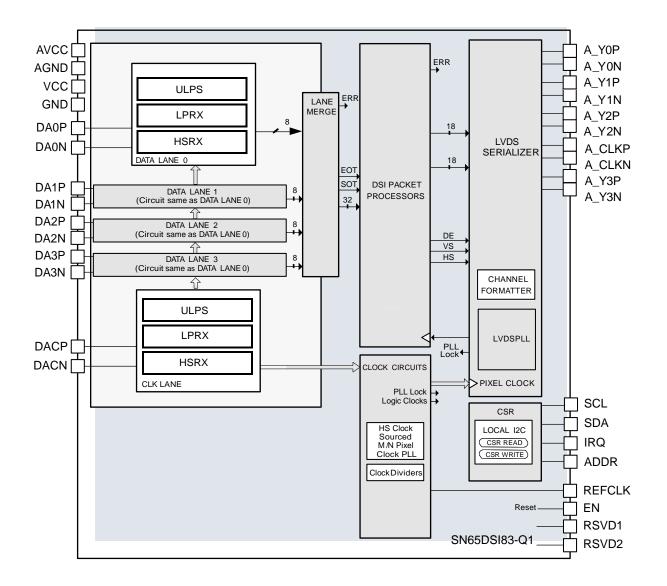
Parameter Measurement Information (continued)

- (1) See the *Recommended Initialization Setup Sequence* section for the initialization sequence. The *Init seq x* corresponds to the sequence number in the section.
- (2) A_CLKP, A_CLKN (LVDS_CHA_CLK), and CHA LVDS data lanes 0 to 2 output valid CLK and data after an internal PLL locks (minimum of 3 ms after PLL_EN is at address offset 0x0D is set). Other LVDS CLK or data lanes stay low until they are configured to be enabled in corresponding CSRs. The CLK source (REF_CLK or DSI HS CLCK) must be at a valid frequency as programmed in CSR for the PLL to lock correctly. See the *Clock Configurations and Multipliers* section for details.
- (3) The LP11 to HS transition to the data lanes and the CLK lane must occur according to the timing requirements specified in the MIPI D-PHY Specification.

Figure 5. RESET and Initialization Timing Definition While V_{CC} is High

- (1) See the ULPS section of the data sheet for the ULPS entry and exit sequence.
- (2) ULPS entry and exit protocol and timing requirements must be met according to the MIPI DPHY specification.

Figure 6. ULPS Timing Definition



8 Detailed Description

8.1 Overview

The SN65DSI83-Q1 DSI to LVDS bridge device features a single-channel MIPI® D-PHY receiver front-end configuration with four lanes per channel operating at 1 Gbps per lane; a maximum input bandwidth of 4 Gbps. The bridge decodes MIPI DSI 18-bpp RGB666 and 24-bpp RGB888 packets and converts the formatted video data stream to an LVDS output operating at pixel clocks operating from 25 MHz to 154 MHz, offering a Single-Link LVDS with four data lanes per link.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Clock Configurations and Multipliers

The LVDS clock may be derived from the DSI channel A clock, or from an external reference clock source. When the MIPI D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane must operate in HS free-running (continuous) mode. This feature eliminates the need for an external reference clock reducing system costs.

Copyright © 2016, Texas Instruments Incorporated

Feature Description (continued)

The reference clock source is selected by HS_CLK_SRC (CSR 0×0A.0) programmed through the local I²C interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR 0×0B.1:0) to generate the LVDS output clock. When an external reference clock is selected, it must be between 25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0×0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0×0A.3:1) and CH_DSI_CLK_RANGE(CSR 0×12) must be set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0×0D.0) must be set to enable the internal PLL.

8.3.2 ULPS

The SN65DSI83-Q1 device supports the MIPI defined ULPS. While the device is in the ULPS, the CSR registers are accessible via I²C interface. ULPS sequence must be issued to all active DSI CLK and, or DSI data lanes of the enabled DSI channels for the SN65DSI83-Q1 device to enter the ULPS. The following sequence must be followed to enter and exit the ULPS.

- 1. The host issues a ULPS entry sequence to all DSI CLK and data lanes enabled.
- 2. When the host is ready to exit the ULPS mode, the host issues a ULPS exit sequence to all DSI CLK and data lanes that need to be active in normal operation.
- 3. Wait for the PLL_LOCK bit (CSR 0×0A.7) to be set.
- 4. Set the SOFT_RESET bit (CSR 0×09.0).
- 5. Device resumes normal operation (that is, video streaming resumes on the panel).

8.3.3 LVDS Pattern Generation

The SN65DSI83-Q1 device supports a pattern generation feature on LVDS channels. This feature can be used to test the LVDS output path and LVDS panels in a system platform. The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C. No DSI data is received while the pattern generation feature is enabled.

There are three modes available for LVDS test pattern generation. The mode of test pattern generation is determined by register configuration, as shown in Table 1.

REGISTER NAME							
CHA_ACTIVE_LINE_LENGTH_LOW							
CHA_ACTIVE_LINE_LENGTH_HIGH							
CHA_VERTICAL_DISPLAY_SIZE_LOW							
CHA_VERTICAL_DISPLAY_SIZE_HIGH							
CHA_HSYNC_PULSE_WIDTH_LOW							
CHA_HSYNC_PULSE_WIDTH_HIGH							
CHA_VSYNC_PULSE_WIDTH_LOW							
CHA_VSYNC_PULSE_WIDTH_HIGH							
CHA_HORIZONTAL_BACK_PORCH							
CHA_VERTICAL_BACK_PORCH							
CHA_HORIZONTAL_FRONT_PORCH							
CHA_VERTICAL_FRONT_PORCH							

Table 1. Video Registers

8.3.4 Reset Implementation

When the EN pin is deasserted (low), the SN65DSI83-Q1 device is in SHUTDOWN or RESET state. In this state, CMOS inputs are ignored, the MIPI D-PHY inputs are disabled and outputs are high impedance. Transitioning the EN input from a low to a high level after the V_{CC} supply has reached the minimum operating voltage as shown in Figure 7 is critical. This transition is achieved by a control signal to the EN input, or by an external capacitor connected between EN and GND.

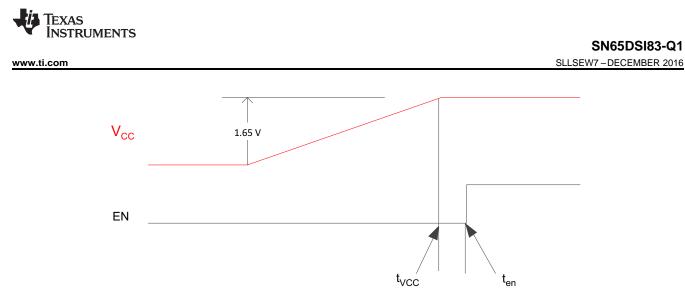
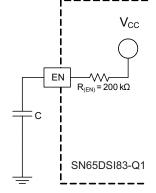



Figure 7. Cold-Start V_{CC} Ramp Up to EN

When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of the V_{CC} supply, where a slower ramp-up results in a larger value external capacitor. Consider an approximately 200-nF capacitor as a reasonable first estimate for the size of the external capacitor.

Figure 8 and Figure 9 show both EN implementations.

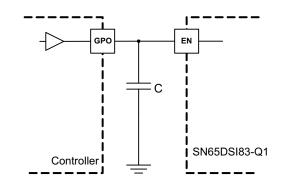


Figure 8. External Capacitor Controlled EN

Figure 9. EN Input from Active Controller

When the SN65DSI83-Q1 device is reset while V_{CC} is high, the EN pin must be held low for at least 10 ms before being asserted high as shown in Figure 5 to ensure that the device is properly reset. The DSI lanes including the CLK lanes MUST be driven to LP11 while the device is in reset until the EN pin is asserted high as shown Figure 5.

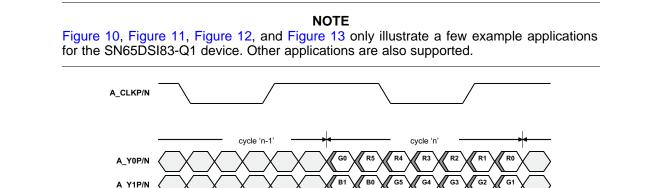
8.3.5 Recommended Initialization Setup Sequence

TI recommends to use the initialization sequence shown in Table 2 for the SN65DSI83-Q1 device (also see Figure 7).

INITIALIZATION SEQUENCE NUMBER	INITIALIZATION SEQUENCE DESCRIPTION
Init seq1	After power is applied and stable, all DSI input lanes including DSI CLK(DA × P/N) must be driven to LP11 state.
Init seq2	Assert the EN pin
Init seq3	Wait for 1 ms for the internal voltage regulator to stabilize
Init seq4	Initialize all CSR registers to their appropriate values based on the implementation. (The SN65DSI83-Q1 device is not functional until the CSR registers are initialized.)
Init seq5	Start the DSI video stream
Init seq6	Set the PLL_EN bit(CSR 0x0D.0)
Init seq7	Wait for a minimum of 3 ms
Init seq8	Set the SOFT_RESET bit (CSR 0×09.0)

Table 2. Initialization Sequence

8.3.6 LVDS Output Formats


The SN65DSI83-Q1 device processes DSI packets and produces video data driven to the LVDS interface in an industry standard format. Single-Link LVDS is supported by the SN65DSI83-Q1 device. During conditions such as the default condition, and some video synchronization periods, where no video stream data is passing from the DSI input to the LVDS output, the SN65DSI83-Q1 device transmits zero value pixel data on the LVDS outputs while maintaining transmission of the vertical sync and horizontal sync status.

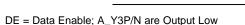
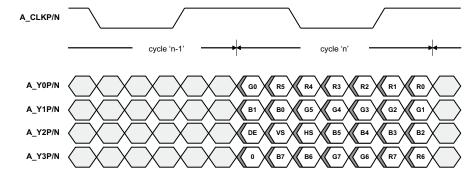
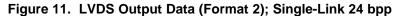

Figure 10 illustrates a Single-Link LVDS 18-bpp application.

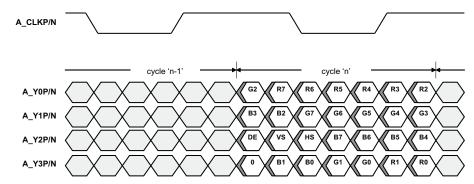
Figure 11 illustrates a Single-Link 24-bpp application using Format 2, controlled by CHA_24BPP_FORMAT1 (CSR 0x18.1). In data Format 2, the two MSB per color are transferred on the Y3P/N LVDS lane.

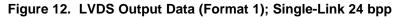
Figure 12 illustrates a 24-bpp Single-Link application using Format 1. In data Format 1, the two LSB per color are transferred on the Y3P/N LVDS lane.

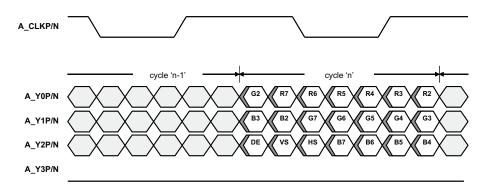
Figure 13 illustrates a Single-Link LVDS application where 24-bpp data is received from DSI and converted to 18 bpp data for transmission to an 18-bpp panel. This application is configured by setting CHA_24BPP_FORMAT1 (CSR 0×18.1) to 1 and CHA_24BPP_MODE (CSR 0×18.3) to 0. In this configuration, the SN65DSI83-Q1 device does not transmit the 2 LSB per color since the Y3P and Y3N LVDS lane is disabled.




A_Y2P/N A Y3P/N






DE = Data Enable

DE = Data Enable

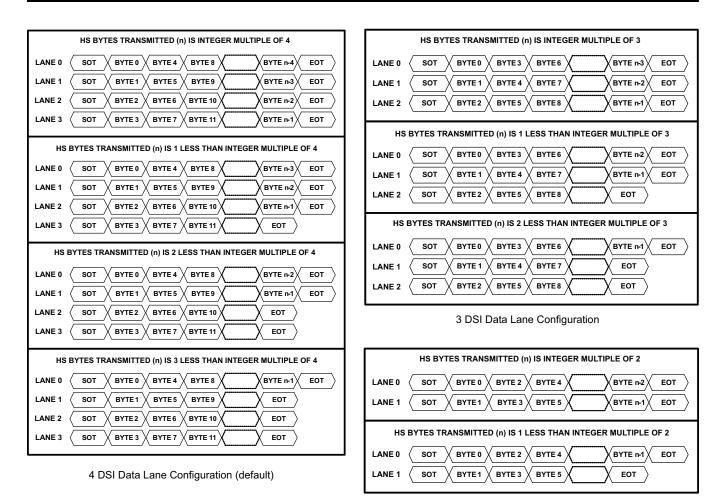

DE = Data Enable; A_Y3P and A_Y3N are output low; A_Y3P and A_Y3N are output low

Figure 13. LVDS Output Data (Format 1); 24 bpp to Single-Link 18 bpp Conversion

8.3.7 DSI Lane Merging

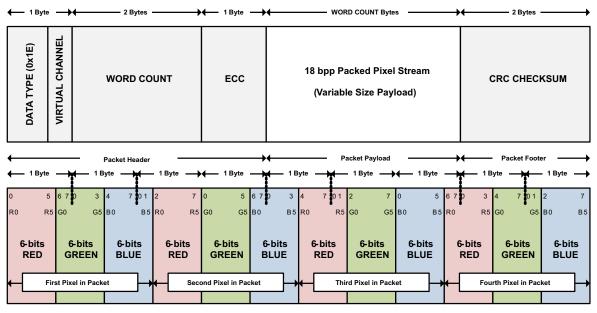
The SN65DSI83-Q1 supports four DSI data lanes per input channel, and may be configured to support one, two, or three DSI data lanes per channel. Unused DSI input pins on the SN65DSI83-Q1 must be left unconnected or driven to LP11 state. The bytes received from the data lanes are merged in HS mode to form packets that carry the video stream. DSI data lanes are bit and byte aligned.

Figure 14 shows the lane merging function for each channel; 4-Lane, 3-Lane, and 2-Lane modes are illustrated.

2 DSI Data Lane Configuration

Figure 14. SN65DSI83-Q1 DSI Lane Merging Illustration

8.3.8 DSI Pixel Stream Packets


The SN65DSI83-Q1 processes 18-bpp (RGB666) and 24-bpp (RGB888) DSI packets as shown in Figure 15, Figure 16, and Figure 17.

← 1	Byte	\rightarrow	•	2 B	ytes		▶	– 1 Byte –	•	·	NOR	D COUNT Bytes	; -		+	2 By	/tes -	
Image: Size Payload Image: Size Payload CRC CHE Image: Size Payload Image: Size Payload CRC CHE						IECI	KSUM											
← 1	Byte	→	_ ←	Packet H			•	– 1 Byte –	→ →	— 1 Byte —		cket Payload 1 Byte→•	-	- 1 Byte	←	− 1 Byte →		,
012 R0				2 7 G0 GE G-bits GREEN st Pixel in Pack		2 7 B0 B5 6-bits BLUE		2 T R0 R 6-bits RED	5	2 7 G0 G5 GREEN ond Pixel in Pack		2 7 B0 B5 6-bits BLUE	•	2 7 R0 R5 6-bits RED	Thi	2 7 G0 G5 G-bits GREEN rd Pixel in Packo		2 7 B0 B5 6-bits BLUE

Variable Size Payload (Three Pixels Per Nine Bytes of Payload)

Figure 15. 18-bpp (Loosely Packed) DSI Packet Structure

Variable Size Payload (Four Pixels Per Nine Bytes of Payload)

Figure 16. 18-bpp (Tightly Packed) DSI Packet Structure

NSTRUMENTS

FXAS

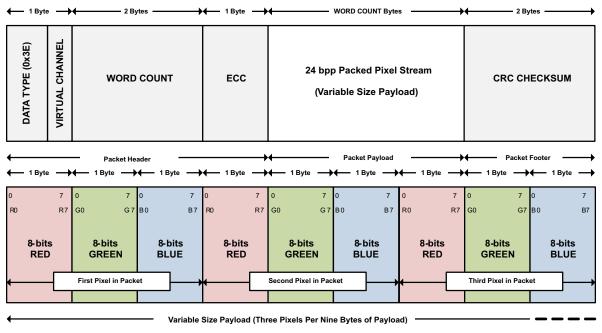
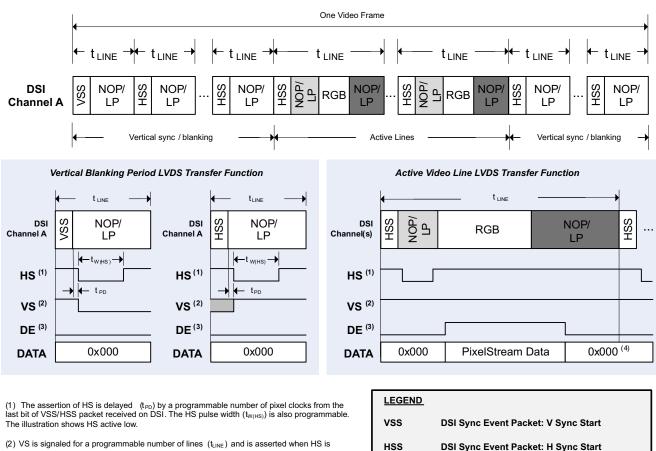


Figure 17. 24-bpp DSI Packet Structure

8.3.9 DSI Video Transmission Specifications

The SN65DSI83-Q1 supports burst video mode and non-burst video mode with sync events or with sync pulses packet transmission as described in the DSI specification. The burst mode supports time-compressed pixel stream packets that leave added time per scan line for power savings LP mode. The SN65DSI83-Q1 requires a transition to LP mode once per frame to enable PHY synchronization with the DSI host processor; however, for a robust and low-power implementation, the transition to LP mode is recommended on every video line.

Figure 18 shows the DSI video transmission applied to SN65DSI83-Q1 applications. In all applications, the LVDS output rate must be less than or equal to the DSI input rate. The first line of a video frame shall start with a VSS packet, and all other lines start with VSE or HSS. The position of the synchronization packets in time is of utmost importance since this has a direct impact on the visual performance of the display panel; that is, these packets generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface after the delay programmed into CHA_SYNC_DELAY_LOW/HIGH (CSR 0x28.7:0 and 0x29.3:0).


As required in the DSI specification, the SN65DSI83-Q1 requires that pixel stream packets contain an integer number of pixels (i.e. end on a pixel boundary); it is recommended to transmit an entire scan line on one pixel stream packet. When a scan line is broken in to multiple packets, inter-packet latency shall be considered such that the video pipeline (ie. pixel queue or partial line buffer) does not run empty (i.e. under-run); during scan line processing, if the pixel queue runs empty, the SNDSI83-Q1 transmits zero data (18'b0 or 24'b0) on the LVDS interface.

NOTE

When the HS clock is used as a source for the LVDS pixel clock, the LP mode transitions apply only to the data lanes, and the DSI clock lane remains in the HS mode during the entire video transmission.

The SN65DSI83-Q1 does not support the DSI Virtual Channel capability or reverse direction (peripheral to processor) transmissions.

c) to be signated on a programmed frame . VS is de -asserted when HS is asserted frame has number of lines programmed has been reached. The illustration shows VS active low

(3) DE is asserted when active pixel data is transmitted on LVDS, and polarity is set independent to HS/VS. The illustration shows DE active high

(4) After the last pixel in an active line is output to LVDS, the LVDS data is output zero

LEGEND	
vss	DSI Sync Event Packet: V Sync Start
HSS	DSI Sync Event Packet: H Sync Start
RGB	A sequence of DSI Pixel Stream Packets and Null Packets
NOP/LP	DSI Null Packet,Blanking Packet,or a transition to LP Mode

Figure 18. DSI Channel Transmission and Transfer Function

8.4 Programming

8.4.1 Local I²C Interface Overview

The SN65DSI83-Q1 device local I²C interface is enabled when EN is input high, access to the CSR registers is supported during ULPS. The SCL and SDA pins are used for I²C clock and I²C data respectively. The SN65DSI83-Q1 device I²C interface conforms to the 2-wire serial interface defined by the I²C Bus Specification, Version 2.1 (January 2000) and supports fast mode transfers up to 400 kbps.

The device address byte is the first byte received following the start condition from the master device. The 7-bit device address for SN65DSI83-Q1 device is factory preset to 010110X with the least significant bit being determined by the ADDR control input. Table 3 clarifies the SN65DSI83-Q1 device target address.

BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (W/R)
0	1	0	1	1	0	ADDR	0/1

Table 3. SN65DSI83-Q1 I ²	C Target Address De	escription ⁽¹⁾⁽²⁾
--------------------------------------	---------------------	------------------------------

(1) When ADDR = 1, Address cycle is 0x5A (write) and 0x5B (read)

(2) When ADDR = 0, Address cycle is 0×58 (write) and 0×59 (read)

The following procedure is followed to write to the SN65DSI83-Q1 device I^2C registers:

- 1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI83-Q1 device 7-bit address and a zero-value W/R bit to indicate a write cycle.
- 2. The SN65DSI83-Q1 device acknowledges the address cycle.
- The master presents the subaddress (I²C register within SN65DSI83-Q1 device) to be written, consisting of one byte of data, MSB-first.
- 4. The SN65DSI83-Q1 device acknowledges the subaddress cycle.
- 5. The master presents the first byte of data to be written to the I^2C register.
- 6. The SN65DSI83-Q1 device acknowledges the byte transfer.
- 7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing with an acknowledge from the SN65DSI83-Q1 device.
- 8. The master terminates the write operation by generating a stop condition (P).

The following procedure is followed to read the SN65DSI83-Q1 I²C registers:

- 1. The master initiates a read operation by generating a start condition (S), followed by the SN65DSI83-Q1 device 7-bit address and a one-value W/R bit to indicate a read cycle.
- 2. The SN65DSI83-Q1 device acknowledges the address cycle.
- The SN65DSI83-Q1 device transmits the contents of the memory registers MSB-first starting at register 00h. If a write to the SN65DSI83-Q1 I²C register occurred prior to the read, then the SN65DSI83-Q1 device starts at the subaddress specified in the write.
- 4. The SN65DSI83-Q1 device waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after each byte transfer; the I²C master acknowledges reception of each data byte transfer.
- 5. If an ACK is received, the SN65DSI83-Q1 device transmits the next byte of data.
- 6. The master terminates the read operation by generating a stop condition (P).

The following procedure is followed for setting a starting subaddress for I²C reads:

- 1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI83-Q1 device 7-bit address and a zero-value W/R bit to indicate a write cycle.
- 2. The SN65DSI83-Q1 device acknowledges the address cycle.
- The master presents the subaddress (I²C register within the SN65DSI83-Q1 device) to be written, consisting of one byte of data, MSB first.
- 4. The SN65DSI83-Q1 device acknowledges the subaddress cycle.
- 5. The master terminates the write operation by generating a stop condition (P).

8.5 Register Maps

8.5.1 Control and Status Registers Overview

Many of the SN65DSI83-Q1 functions are controlled by the Control and Status Registers (CSR). All CSR registers are accessible through the local I^2C interface.

See the following tables for the SN65DSI83-Q1 CSR descriptions. Reserved or undefined bit fields should not be modified. Otherwise, the device may operate incorrectly.

8.5.1.1 CSR Bit Field Definitions – ID Registers

8.5.1.1.1 Registers 0x00 - 0x08

Figure 19. Registers 0x00 – 0x08

7	6	5	4	3	2	1	0			
	Reserved									
				R						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. Registers 0x00 – 0x08 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	Reserved	R		Reserved Addresses 0x08 - 0x00 = {0x01, 0x20, 0x20, 0x20, 0x44, 0x53, 0x49, 0x38, 0x35}

8.5.1.2 CSR Bit Field Definitions – Reset and Clock Registers

8.5.1.2.1 Register 0x09

Figure 20. Register 0x09

7	6	5	4	3	2	1	0
			Reserved				SOFT_RESET
	R						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. Register 0x09 Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	Reserved	R		Reserved
0	SOFT_RESET	W	0	This bit automatically clears when set to '1' and returns zeros when read. This bit must be set after the CSR's are updated. This bit must also be set after making any changes to the DIS clock rate or after changing between DSI burst and non-burst modes. 0 – No action (default) 1 – Reset device to default condition excluding the CSR bits.

SN65DSI83-Q1 SLLSEW7 – DECEMBER 2016 NSTRUMENTS

XAS

www.ti.com

8.5.1.2.2 Register 0x0A

Figure 21. Register 0x0A

7	6	5	4	3	2	1	0
PLL_EN_STAT		Reserved			LVDS_CLK_RANG	Ε	HS_CLK_SRC
R		R			R/W		R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. Register 0x0A Field Descriptions

Bit	Field	Туре	Reset	Description
7	PLL_EN_STAT	R	0	0 – PLL not enabled (default) 1 – PLL enabled Note: After PLL_EN_STAT = 1, wait at least 3ms for PLL to lock.
6-4	Reserved	R		
3-1	LVDS_CLK_RANGE	R/W	101	This field selects the frequency range of the LVDS output clock. $000 - 25 \text{ MHz} \le \text{LVDS}_\text{CLK} < 37.5 \text{ MHz}$ $001 - 37.5 \text{ MHz} \le \text{LVDS}_\text{CLK} < 62.5 \text{ MHz}$ $010 - 62.5 \text{ MHz} \le \text{LVDS}_\text{CLK} < 87.5 \text{ MHz}$ $011 - 87.5 \text{ MHz} \le \text{LVDS}_\text{CLK} < 112.5 \text{ MHz}$ $100 - 112.5 \text{ MHz} \le \text{LVDS}_\text{CLK} < 137.5 \text{ MHz}$ $101 - 137.5 \text{ MHz} \le \text{LVDS}_\text{CLK} \le 154 \text{ MHz}$ (default) 110 - Reserved 111 - Reserved
0	HS_CLK_SRC	R/W	0	0 – LVDS pixel clock derived from input REFCLK (default) 1 – LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock

8.5.1.2.3 Register 0x0B

Figure 22. Register 0x0B

7	6	5	4	3	2	1	0
	[DSI_CLK_DIVIDE	२		Reserved	REFCLK_M	IULTIPLIER
		R/W			R	R	/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. Register 0x0B Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	DSI_CLK_DIVIDER	R/W	00000	When CSR 0x0A.0 = '1', this field controls the divider used to generate the LVDS output clock from the MIPI D-PHY Channel A HS continuous clock. When CSR 0x0A.0 = '0', this field must be programmed to 00000. 00000 - LVDS clock = source clock (default) 00001 - Divide by 2 00010 - Divide by 3 00011 - Divide by 4 • • 10111 - Divide by 24 11000 - Divide by 25 11001 through 11111 - Reserved
2	Reserved	R		
1-0	REFCLK_MULTIPLIER	R/W	00	When CSR 0x0A.0 = '0', this field controls the multiplier used to generate the LVDS output clock from the input REFCLK. When CSR 0x0A.0 = '1', this field must be programmed to 00. 00 - LVDS clock = source clock (default) 01 - Multiply by 2 10 - Multiply by 3 11 - Multiply by 4

8.5.1.2.4 Register 0x0D

Figure 23. Register 0x0D

7	6	5	4	3	2	1	0
			Reserved				PLL_EN
			R				R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Register 0x0D Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	Reserved	R		Reserved
0	PLL_EN	R/W	0	When this bit is set, the PLL is enabled with the settings programmed into CSR 0x0A and CSR 0x0B. The PLL should be disabled before changing any of the settings in CSR 0x0A and CSR 0x0B. The input clock source must be active and stable before the PLL is enabled. 0 – PLL disabled (default) 1 – PLL enabled

8.5.1.3 CSR Bit Field Definitions – DSI Registers

8.5.1.3.1 Register 0x10

Figure 24. Register 0x10

7	6	5	4	3	2	1	0
	Reserved		CHA_DS	I_LANES	Rese	erved	SOT_ERR_TO L_DIS
	R		R	/W		२	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Register 0x10 Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	Reserved	R		Reserved
4-3	CHA_DSI_LANES	R/W	11	This field controls the number of lanes that are enabled for DSI Channel A. 00 – Four lanes are enabled 01 – Three lanes are enabled 10 – Two lanes are enabled 11 – One lane is enabled (default) Note: Unused DSI input pins on the SN65DSI83-Q1 should be left unconnected.
2-1	Reserved	R		Reserved
0	SOT_ERR_TOL_DIS	R/W	0	0 – Single bit errors are tolerated for the start of transaction SoT leader sequence (default) 1 – No SoT bit errors are tolerated

26 Submit Documentation Feedback

Product Folder Links: SN65DSI83-Q1

8.5.1.3.2 Register 0x11

Figure 25. Register 0x11

7	6	5	4	3	2	1	0
CHA_DSI_E	DATA_EQ	Res	erved	CHA_DSI	_CLK_EQ	Rese	erved
R/V	V		R	R/	W	F	3

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Register 0x11 Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	CHA_DSI_DATA_EQ	R/W	00	This field controls the equalization for the DSI Channel A Data Lanes 00 – No equalization (default) 01 – 1 dB equalization 10 – Reserved 11 – 2 dB equalization
5-4	Reserved	R		Reserved
3-2	CHA_DSI_CLK_EQ	R/W	00	This field controls the equalization for the DSI Channel A Clock 00 – No equalization (default) 01 – 1 dB equalization 10 – Reserved 11 – 2 dB equalization
1-0	Reserved	R		Reserved

8.5.1.3.3 Register 0x12

Figure 26. Register 0x12

7	6	5	4	3	2	1	0
			CHA_DSI_(CLK_RANGE			
			R	/W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Register 0x12 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_DSI_CLK_RANGE	R/W	0	This field specifies the DSI Clock frequency range in 5 MHz increments for the DSI Channel A Clock 0x00 through $0x07 - Reserved0x08 - 40 \le frequency < 45 MHz0x09 - 45 \le frequency < 50 MHz0x63 - 495 \le frequency < 500 MHz0x64 - 500$ MHz 0x65 through $0xFF - Reserved$

Copyright © 2016, Texas Instruments Incorporated

www.ti.com

8.5.1.4 CSR Bit Field Definitions – LVDS Registers

8.5.1.4.1 Register 0x18

Figure 27. Register 0x18

7	6	5	4	3	2	1	0
DE_NEG_POL ARITY	HS_NEG_POL ARITY	VS_NEG_POL ARITY	Reserved	CHA_24BPP_ MODE	Reserved	CHA_24BPP_F ORMAT1	Reserved
R/W	R/W	R/W	R	R/W	R	R/W	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Bit	Field	Туре	Reset	Description	
7	DE_NEG_POLARITY	R/W	0	 0 - DE is positive polarity driven '1' during active pixel transmission on LVDS (default) 1 - DE is negative polarity driven '0' during active pixel transmission on LVDS 	
6	HS_NEG_POLARITY	R/W	1	 0 – HS is positive polarity driven '1' during corresponding sync conditions 1 – HS is negative polarity driven '0' during corresponding sync (default) 	
5	VS_NEG_POLARITY	R/W	1	 0 – VS is positive polarity driven '1' during corresponding syr conditions 1 – VS is negative polarity driven '0' during corresponding sy (default) 	
4	Reserved	R		Reserved. Do not write to this filed. Must remain at default.	
3	CHA_24BPP_MODE	R/W	0	0 – Force 18bpp; LVDS channel A lane 4 (A_Y3P/N) is disabled (default) 1 – Force 24bpp; LVDS channel A lane 4 (B_Y3P/N) is enabled	
2	Reserved	R		Reserved. Do not write to this filed. Must remain at default.	
1	CHA_24BPP_FORMAT1	R/W	0	This field selects the 24bpp data format 0 – LVDS channel A lane A_Y3P/N transmits the 2 most significant bits (MSB) per color; Format 2 (default) 1 – LVDS channel B lane A_Y3P/N transmits the 2 least significant bits (LSB) per color; Format 1 Note1: This field must be '0' when 18bpp data is received from DSI. Note2: If this field is set to '1' and CHA_24BPP_MODE is '0', the SN65DSI83-Q1 will convert 24bpp data to 18bpp data for transmission to an 18bpp panel. In this configuration, the SN65DSI83-Q1 will not transmit the 2 LSB per color on LVDS channel A, because LVDS channel A lane A_Y3P/N is disabled.	
0	Reserved	R		Reserved. Do not write to this filed. Must remain at default.	

8.5.1.4.2 Register 0x19

Figure 28. Register 0x19

7	6	5	4	3	2	1	0
Reserved	CHA_LVDS_V OCM	Reserved		CHA_LVDS_	CHA_LVDS_VOD_SWING		rved
R	R/W	R	R		/W	R	2

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

TEXAS INSTRUMENTS

www.ti.com

Bit	Field	Туре	Reset	Description
7	Reserved	R		Reserved. Do not write to this filed. Must remain at default.
6	CHA_LVDS_VOCM	R/W	0	This field controls the common mode output voltage for LVDS Channel A 0 - 1.2V (default) 1 - 0.9V (CSR 0x1B.5:4 CHA_LVDS_CM_ADJUST must be set to '01b')
5-4	Reserved	R		Reserved. Do not write to this filed. Must remain at default.
3-2	CHA_LVDS_VOD_SWING	R/W	01	This field controls the differential output voltage for LVDS Channel A. See the <i>Electrical Characteristics table</i> for $ V_{OD} $ for each setting: 00, 01 (default), 10, 11.
1-0	Reserved	R		Reserved. Do not write to this filed. Must remain at default.

Table 13. Register 0x19 Field Descriptions

8.5.1.4.3 Register 0x1A

Figure 29. Register 0x1A

7	6	5	4	3	2	1	0
Rese	erved	CHA_REVERS E_LVDS		Reserved		CHA_LVDS_TE RM	Reserved
F	र	R/W		R		R/W	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. Register 0x1A Field Descriptions

Bit	Field	Туре	Reset	Description		
7-6	Reserved	R		Reserved. Do not write to this filed. Must remain at default.		
5	CHA_REVERSE_LVDS	R/W	0	This bit controls the order of the LVDS pins for Channel A. 0 – Normal LVDS Channel A pin order. LVDS Channel A pin order is the same as listed in the Terminal Assignments Section. (default) 1 – Reversed LVDS Channel A pin order. LVDS Channel A pin order is remapped as follows: • A_Y0P \rightarrow A_Y3P • A_Y0N \rightarrow A_Y3N • A_Y1P \rightarrow A_CLKP • A_Y1N \rightarrow A_CLKN • A_Y2P \rightarrow A_Y2P • A_Y2N \rightarrow A_Y2N • A_CLKP \rightarrow A_Y1P • A_CLKN \rightarrow A_Y1N • A_Y3P \rightarrow A_Y0P • A Y3N \rightarrow A Y0N		
4-2	Reserved	R		Reserved. Do not write to this filed. Must remain at default.		
1	CHA_LVDS_TERM	R/W	1	This bit controls the near end differential termination for LVDS Channel A. This bit also affects the output voltage for LVDS Channel A. $0 - 100\Omega$ differential termination $1 - 200\Omega$ differential termination (default)		
0	Reserved	R		Reserved. Do not write to this filed. Must remain at default.		

Figure 30. Register 0x1B

7	6	5	4	3	2	1	0	
Reserved		CHA_LVDS_	CHA_LVDS_CM_ADJUST		Reserved			
R		R	/W		F	2		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. Register 0x1B Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	Reserved	R		Reserved
5-4	CHA_LVDS_CM_ADJUST	R/W	00	This field can be used to adjust the common mode output voltage for LVDS Channel A. 00 – No change to common mode voltage (default) 01 – Adjust common mode voltage down 3% 10 – Adjust common mode voltage up 3% 11 – Adjust common mode voltage up 6%
3-0	Reserved	R		Reserved

Note for all video registers:

1. TEST PATTERN GENERATION PURPOSE ONLY registers are for test pattern generation use only. Others are for normal operation unless the test pattern generation feature is enabled.

8.5.1.5 CSR Bit Field Definitions – Video Registers

8.5.1.5.1 Register 0x20

Figure 31. Register 0x20

7	6	5	4	3	2	1	0	
CHA_ACTIVE_LINE_LENGTH_LOW								
			R	/W				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Register 0x20 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_ACTIVE_LINE_LENGTH_LO W	R/W	0	This field controls the length in pixels of the active horizontal line line that are received on DSI Channel A and output to LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the lower 8 bits of the 12-bit value for the horizontal line length.

SN65DSI83-Q1

SLLSEW7-DECEMBER 2016

8.5.1.5.2 Register 0x21

Figure 32. Register 0x21

7	6	5	4	3	2	1	0		
	Rese	erved		CHA_ACTIVE_LINE_LENGTH_HIGH					
	F	२			R	W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. Register 0x21 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	Reserved	R		Reserved
3-0	CHA_ACTIVE_LINE_LENGTH_HIG H	R/W	0	This field controls the length in pixels of the active horizontal line that are received on DSI Channel A and output to LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the upper 4 bits of the 12-bit value for the horizontal line length.

8.5.1.5.3 Register 0x24

Figure 33. Register 0x24

7	6	5	4	3	2	1	0
		(CHA_VERTICAL_D	ISPLAY_SIZE_LO	W		
			R	/W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. Register 0x24 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_VERTICAL_DISPLAY_SIZE_L OW	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the vertical display size in lines for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0. The value in this field is the lower 8 bits of the 12-bit value for the vertical display size.

8.5.1.5.4 Register 0x25

Figure 34. Register 0x25

7	6	5	4	3	2	1	0
Reserved				С	HA_VERTICAL_DI	SPLAY_SIZE_HI	GH
R				R/	N		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. Register 0x25 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	Reserved	R		Reserved
3-0	CHA_VERTICAL_DISPLAY_SIZE_ HIGH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the vertical display size in lines for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the upper 4 bits of the 12-bit value for the vertical display size

8.5.1.5.5 Register 0x28

www.ti.com

Figure 35. Register 0x28

7	6	5	4	3	2	1	0
			CHA_SYNC_	_DELAY_LOW			
	R/W						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Register 0x28 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_SYNC_DELAY_LOW	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI83-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the lower 8 bits of the 12-bit value for the Sync delay.

8.5.1.5.6 Register 0x29

Figure 36. Register 0x29

7	6	5	4	3	2	1	0
Reserved					CHA_SYNC_[DELAY_HIGH	
R					R/	W	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 21. Register 0x29 Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	Reserved	R		Reserved
3-0	CHA_SYNC_DELAY_HIGH	R/W	0	This field controls the delay in pixel clocks from when an HSync or VSync is received on the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The delay specified by this field is in addition to the pipeline and synchronization delays in the SN65DSI83-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay must be programmed to at least 32 pixel clocks to ensure proper operation. The value in this field is the upper 4 bits of the 12-bit value for the Sync delay.

8.5.1.5.7 Register 0x2C

Figure 37. Register 0x2C

7	6	5	4	3	2	1	0
CHA_HSYNC_PULSE_WIDTH_LOW							
			R	/W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Register 0x2C Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_HSYNC_PULSE_WIDTH_LO W	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the lower 8 bits of the 10-bit value for the HSync Pulse Width.

SN65DSI83-Q1

SLLSEW7-DECEMBER 2016

TRUMENTS

XAS

8.5.1.5.8 Register 0x2D

Figure 38. Register 0x2D

7	6	5	4	3	2	1	0
		Rese	erved			CHA_HSYNC_P HIC	PULSE_WIDTH_ GH
	R				R/	W	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23. Re	egister 0x2D	Field Desc	riptions
--------------	--------------	------------	----------

Bit	Field	Туре	Reset	Description
7-2	Reserved	R		Reserved
1-0	CHA_HSYNC_PULSE_WIDTH_HIG H	R/W	0	This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the upper 2 bits of the 10-bit value for the HSync Pulse Width.

8.5.1.5.9 Register 0x30

Figure 39. Register 0x30

7	6	5	4	3	2	1	0			
	CHA_VSYNC_PULSE_WIDTH_LOW									
			R	/W						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 24. Register 0x30 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_VSYNC_PULSE_WIDTH_LO W	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the lower 8 bits of the 10-bit value for the VSync Pulse Width.

8.5.1.5.10 Register 0x31

Figure 40. Register 0x31

7	6	5	4	3	2	1	0	
	Reserved					CHA_VSYNC_PULSE_WIDTH_ HIGH		
	R					R	Ŵ	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 25. Register 0x31 Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	Reserved	R		Reserved
1-0	CHA_VSYNC_PULSE_WIDTH_HIG H	R/W	0	This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0). The value in this field is the upper 2 bits of the 10-bit value for the VSync Pulse Width.

8.5.1.5.11 Register 0x34

Figure 41. Register 0x34

7	6	5	4	3	2	1	0	
CHA_HORIZONTAL_BACK_PORCH								
			R	/W				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Register 0x34 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_HORIZONTAL_BACK_PORC H	R/W	0	This field controls the time in pixel clocks between the end of the HSync Pulse and the start of the active video data for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).

8.5.1.5.12 Register 0x36

Figure 42. Register 0x36

7	6	5	4	3	2	1	0
CHA_VERTICAL_BACK_PORCH							
			R/	/W			

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Register 0x36 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_VERTICAL_BACK_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the VSync Pulse and the start of the active video data for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).

8.5.1.5.13 Register 0x38

Figure 43. Register 0x38

7	6	5	4	3	2	1	0		
	CHA_HORIZONTAL_FRONT_PORCH								
			R/\	N					

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. Register 0x38 Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_HORIZONTAL_FRONT_POR CH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the time in pixel clocks between the end of the active video data and the start of the HSync Pulse for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).

SN65DSI83-Q1 SLLSEW7 – DECEMBER 2016

NSTRUMENTS

EXAS

www.ti.com

8.5.1.5.14 Register 0x3A

Figure 44. Register 0x3A

7	6	5	4	3	2	1	0	
CHA_VERTICAL_FRONT_PORCH								
			R	/W				

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. Register 0x3A Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CHA_VERTICAL_FRONT_PORCH	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. This field controls the number of lines between the end of the active video data and the start of the VSync Pulse for LVDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).

8.5.1.5.15 Register 0x3C

Figure 45. Register 0x3C

7	6	5	4	3	3 2 1		0
	Reserved		CHA_TEST_PA TTERN	Reserved			
	R		R/W		F	R	

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. Register 0x3C Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	Reserved	R		Reserved
4	CHA_TEST_PATTERN	R/W	0	TEST PATTERN GENERATION PURPOSE ONLY. When this bit is set, the SN65DSI83-Q1 will generate a video test pattern based on the values programmed into the Video Registers for LDS Channel A in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).
3-0	Reserved	R		Reserved

8.5.1.6 CSR Bit Field Definitions – IRQ Registers

8.5.1.6.1 Register 0xE0

Figure 46. Register 0xE0

7	6	5	4	3	2	1	0
	Reserved						
	R						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Register 0xE0 Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	Reserved	R		Reserved
0	IRQ_EN	R/W	0	When enabled by this field, the IRQ output is driven high to communicate IRQ events. 0 – IRQ output is high-impedance (default) 1 – IRQ output is driven high when a bit is set in registers 0xE5 that also has the corresponding IRQ_EN bit set to enable the interrupt condition

8.5.1.6.2 Register 0xE1

Figure 47. Register 0xE1

7	6	5	4	3	2	1	0
CHA_SYNCH_	CHA_CRC_ER	CHA_UNC_EC				Reserved	PLL_UNLOCK_
ERR_EN	R_EN	C_ERR_EN	C_ERR_EN	_EN	_ERR_EN		EN
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 32. Register 0xE1 Field Descriptions

Bit	Field	Туре	Reset	Description
7	CHA_SYNCH_ERR_EN	R/W	0	0 – CHA_SYNCH_ERR is masked 1 – CHA_SYNCH_ERR is enabled to generate IRQ events
6	CHA_CRC_ERR_EN	R/W	0	0 – CHA_CRC_ERR is masked 1 – CHA_CRC_ERR is enabled to generate IRQ events
5	CHA_UNC_ECC_ERR_EN	R/W	0	0 – CHA_UNC_ECC_ERR is masked 1 – CHA_UNC_ECC_ERR is enabled to generate IRQ events
4	CHA_COR_ECC_ERR_EN	R/W	0	0 – CHA_COR_ECC_ERR is masked 1 – CHA_COR_ECC_ERR is enabled to generate IRQ events
3	CHA_LLP_ERR_EN	R/W	0	0 – CHA_LLP_ERR is masked 1 – CHA_ LLP_ERR is enabled to generate IRQ events
2	CHA_SOT_BIT_ERR_EN	R/W	0	0 – CHA_SOT_BIT_ERR is masked 1 – CHA_SOT_BIT_ERR is enabled to generate IRQ events
1	Reserved	R		Reserved
0	PLL_UNLOCK_EN	R/W	0	0 – PLL_UNLOCK is masked 1 – PLL_UNLOCK is enabled to generate IRQ events

36 Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

8.5.1.6.3 Register 0xE5

Figure 48. Register 0xE5

7	6	5	4	3	2	1	0
CHA_SYNCH_ ERR	CHA_CRC_ER	CHA_UNC_EC C ERR	CHA_COR_EC C ERR	CHA_LLP_ERR	CHA_SOT_BIT ERR	Reserved	PLL_UNLOCK
EKK	ĸ	C_ERR	C_EKK				
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 33. Register 0xE5 Field Descriptions

		-		-
Bit	Field	Туре	Reset	Description
7	CHA_SYNCH_ERR	R/W	0	When the DSI channel A packet processor detects an HS or VS synchronization error, that is, an unexpected sync packet; this bit is set; this bit is cleared by writing a '1' value.
6	CHA_CRC_ERR	R/W	0	When the DSI channel A packet processor detects a data stream CRC error, this bit is set; this bit is cleared by writing a '1' value.
5	CHA_UNC_ECC_ERR	R/W	0	When the DSI channel A packet processor detects an uncorrectable ECC error, this bit is set; this bit is cleared by writing a '1' value.
4	CHA_COR_ECC_ERR	R/W	0	When the DSI channel A packet processor detects a correctable ECC error, this bit is set; this bit is cleared by writing a '1' value.
3	CHA_LLP_ERR	R/W	0	 When the DSI channel A packet processor detects a low level protocol error, this bit is set; this bit is cleared by writing a '1' value. Low level protocol errors include SoT and EoT sync errors, Escape Mode entry command errors, LP transmission sync errors, and false control errors. Lane merge errors are reported by this status condition.
2	CHA_SOT_BIT_ERR	R/W	0	When the DSI channel A packet processor detects an SoT leader sequence bit error, this bit is set; this bit is cleared by writing a '1' value.
1	Reserved	R		Reserved
0	PLL_UNLOCK	R/W	1	This bit is set whenever the PLL Lock status transitions from LOCK to UNLOCK.

www.ti.com

9 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN65DSI83-Q1 device is primarily targeted for portable applications such as tablets and smart phones that utilize the MIPI DSI video format. The SN65DSI83-Q1 device can be used between a GPU with DSI output and a video panel with LVDS inputs.

9.1.1 Video STOP and Restart Sequence

When the system requires to stop outputting video to the display, TI recommends to use the following sequence for the SN65DSI83-Q1 device:

- 1. Clear the PLL_EN bit to 0 (CSR 0×0D.0).
- 2. Stop video streaming on DSI inputs.
- 3. Drive all DSI input lanes including DSI CLK lane to LP11.

When the system is ready to restart the video streaming.

- 1. Start video streaming on DSI inputs.
- 2. Set the PLL_EN bit to 1 (CSR 0×0D.0).
- 3. Wait for minimum of 3 ms.
- 4. Set the SOFT_RESET bit (0x09.0).

9.1.2 Reverse LVDS Pin Order Option

For ease of PCB routing, the SN65DSI83-Q1 device supports reversing the pin order via configuration register programming. The order of the LVDS pin for LVDS channel A can be reversed by setting the address 0×1A bit 5 CHA_REVERSE_LVDS. See the corresponding register bit definition for details.

9.1.3 IRQ Usage

The SN65DSI83-Q1 device provides an IRQ pin that can be used to indicate when certain errors occur on DSI. The IRQ output is enabled through the IRQ_EN bit (CSR 0×E0.0). The IRQ pin is asserted when an error occurs on DSI, the corresponding error enable bit is set, and the IRQ_EN bit is set. An error is cleared by writing a 1 to the corresponding error status bit.

NOTE

If the SOFT_RESET bit is set while the DSI video stream is active, some of the error status bits may be set.

NOTE

If the DSI video stream is stopped, some of the error status bits may be set. These error status bits must be cleared before restarting the video stream.

NOTE

If the DSI video stream starts before the device is configured, some of the error status bits may be set. TI recommends to start streaming after the device is correctly configured as recommended in the initialization sequence in the *Recommended Initialization Setup Sequence* section.

9.2 Typical Application

Figure 49 shows a typical application using the SN65DSI83-Q1 device for a single channel DSI receiver to interface a single-channel DSI application processor to an LVDS single-link 18 bit-per-pixel panel supporting 1280 x 800 WXGA resolutions at 60 frames per second.

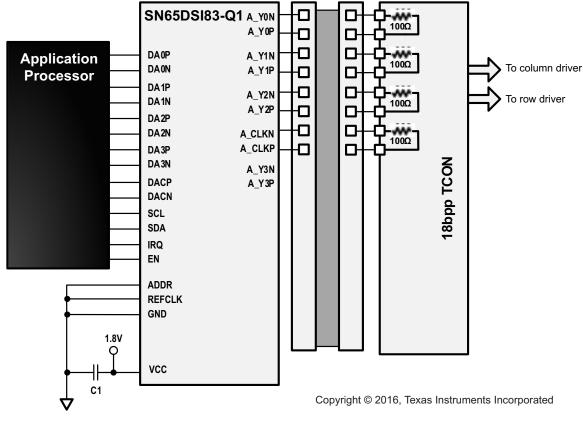


Figure 49. Typical WXGA 18-bpp Panel Application

9.2.1 Design Requirements

Table 34 shows the SN65DSI83-Q1 desgin parameters.

DESIGN PARAMETERS	EXAMPLE VALUE					
VCC	1.8 V (±5%)					
Clock source (REFCLK or DSIA_CLK)	DSIA_CLK					
REFCKL frequency	N/A					
DSIA clock frequency	500 MHz					
PANEL INFORMATION						
Pixel clock (MHz)	83 MHz					
Horizontal active (pixels)	1280					
Horizontal blanking (pixels)	384					
Vertical active (lines)	800					
Vertical blanking (lines)	30					
Horizontal sync offset (pixels)	64					
Horizontal sync pulse width (pixels)	128					
Vertical sync offset (lines)	3					
Vertical sync pulse width (lines)	7					

Table 34. Design Parameters (continued)

DESIGN PARAMETERS	EXAMPLE VALUE					
PANEL INFORMATION (continued)						
Horizontal sync pulse polarity	Negative					
Vertical sync pulse polarity	Negative					
Color bit depth (6 bpc or 8 bpc)	6-bit					
Number of LVDS lanes	1 × [3 Data Lanes + 1 Clock Lane]					
DSI INFORMATION						
Number of DSI lanes	1 × [4 Data Lanes + 1 Clock Lane]					
DSI clock frequency(MHz)	500 MHz					
Dual DSI configuration(odd/even or left/right)	N/A					

9.2.2 Detailed Design Procedure

The video resolution parameters required by the panel need to be programmed into the SN65DSI83-Q1 device. For this example, the parameters programmed are the following:

Horizontal Active = 1280 or 0×500

CHA_ACTIVE_LINE_LENGTH_LOW = 0×00

CHA_ACTIVE_LINE_LENGTH_HIGH = 0×05

Vertical Active = 800 or 0x320 CHA_VERTICAL_DISPLAY_SIZE_LOW = 0x20 CHA_VERTICAL_DISPLAY_SIZE_HIGH = 0x03

Horizontal Pulse Width = 128 or 0x80 CHA_HSYNC_PULSE_WIDTH_LOW = 0x80 CHA_HSYNC_PULSE_WIDTH_HIGH = 0x00

Vertical Pulse Width = 7 CHA_VSYNC_PULSE_WIDTH_LOW = 0×07 CHA_VSYNC_PULSE_WIDTH_HIGH = 0×00

Horizontal Backporch = HorizontalBlanking – (HorizontalSyncOffset + HorizontalSyncPulseWidth) Horizontal Backporch = 384 – (64 + 128) Horizontal Backporch = 192 or 0×C0 CHA_HORIZONTAL_BACK_PORCH = 0×C0

Vertical Backporch = VerticalBlanking – (VerticalSyncOffset +VerticalSyncPulseWidth) Vertical Backporch = 30 – (3 + 7) Vertical Backporch = 20 or 0x14 CHA_VERTICAL_BACK_PORCH = 0x14 SN65DSI83-Q1 SLLSEW7 – DECEMBER 2016

www.ti.com

Horizontal Frontporch = HorizontalSyncOffset Horizontal Frontporch = 64 or 0×40 CHA_HORIZONTAL_FRONT_PORCH = 0×40

Vertical Frontporch = VerticalSyncOffset Vertical Frontporch = 3 CHA_VERTICAL_FRONT_PORCH = 0×03

The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C and configuring the TEST PATTERN GENERATION PURPOSE ONLY register as shown in .

LVDS clock is derived from the DSI channel A clock. When the MIPI D-PHY channel A HS clock is used as the LVDS clock source, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) must be set to enable the internal PLL.

LVDS_CLK_RANGE = 2 - 62.5 MHz \leq LVDS_CLK < 87.5 MHz

HS_CLK_SRC = 1 – LVDS pixel clock derived from MIPI D-PHY channel A

DSI_CLK_DIVIDER = 00101 - Divide by 6

CHA_DSI_LANES = 00 – Four lanes are enabled

CHA_DSI_CLK_RANGE = 0×64 - 500 MHz

Product Folder Links: SN65DSI83-Q1

```
=====DSI_CLK_DIVIDER bit7:3=====
 =====RefCLK multiplier(bit1:0)======
 =====00 - LVDSclk=source clk, 01 - x2, 10 -x3, 11 - x4=====
 <i2c_write addr="0x2D" count="1" radix="16">0B 28</i2c_write> <sleep ms="10"/>
 =====DSI Ch Confg Left_Right Pixels(bit7 - 0 for A ODD, B EVEN, 1 for the other config)======
 =====DSI Ch Mode(bit6:5) 00 - Dual, 01 - single, 10 - two single ======
 =====SOT_ERR_TOL_DIS(bit0)======
 <i2c_write addr="0x2D" count="1" radix="16">10 26</i2c_write> <sleep ms="10"/>
 ====500M====
 <i2c_write addr="0x2D" count="1" radix="16">12 64</i2c_write> <sleep ms="10"/>
 =====bit7: DE_Pol, bit6:HS_Pol, bit5:VS_Pol, bit4: LVDS Link Cfg, bit3:CHA 24bpp, bit2: CHB 24bpp,
 bit1: CHA 24bpp fmt1, bit0: CHB 24bpp fmt1======
 <i2c_write addr="0x2D" count="1" radix="16">18 72</i2c_write> <sleep ms="10"/>
  <i2c_write addr="0x2D" count="1" radix="16">19 00</i2c_write> <sleep ms="10"/>
 =====CHA_LINE_LENGTH_LOW=======
  <i2c_write addr="0x2D" count="1" radix="16">20 00</i2c_write> <sleep ms="10"/>
  =====CHA_LINE_LENGTH_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">21 05</i2c_write> <sleep ms="10"/>
 =====CHA_VERTICAL_DISPLAY_SIZE_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">24 00</i2c_write> <sleep ms="10"/>
  =====CHA_VERTICAL_DISPLAY_SIZE_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">25 04</i2c_write> <sleep ms="10"/>
  =====CHA_SYNC_DELAY_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">28 20</i2c_write> <sleep ms="10"/>
  =====CHA_SYNC_DELAY_HIGH=======
 <i2c_write addr="0x2D" count="1" radix="16">29 01</i2c_write> <sleep ms="10"/>
  =====CHA_HSYNC_PULSE_WIDTH_LOW=======
 <i2c_write addr="0x2D" count="1" radix="16">2C 80</i2c_write> <sleep ms="10"/>
  =====CHA_HSYNC_PULSE_WIDTH_HIGH=======
  <i2c_write addr="0x2D" count="1" radix="16">2D 00</i2c_write> <sleep ms="10"/>
  =====CHA_VSYNC_PULSE_WIDTH_LOW=======
  <i2c_write addr="0x2D" count="1" radix="16">30 07</i2c_write> <sleep ms="10"/>
  =====CHA_VSYNC_PULSE_WIDTH_HIGH=======
  <i2c_write addr="0x2D" count="1" radix="16">31 00</i2c_write> <sleep ms="10"/>
  =====CHA_HOR_BACK_PORCH=======
 <i2c_write addr="0x2D" count="1" radix="16">34 C0</i2c_write> <sleep ms="10"/>
 =====CHA_VER_BACK_PORCH======
 <i2c_write addr="0x2D" count="1" radix="16">36 00</i2c_write> <sleep ms="10"/>
  =====CHA_HOR_FRONT_PORCH======
Copyright © 2016, Texas Instruments Incorporated
```

This example configures the SN65DSI83-Q1 device for the following configuration:

=====PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured====== <i2c_write addr="0x2D" count="1" radix="16">0D 00</i2c_write> <sleep ms="10"/>

<i2c_write addr="0x2D" count="1" radix="16">09 01</i2c_write> <sleep ms="10"/>

<i2c_write addr="0x2D" count="1" radix="16"> 0A 05</i2c_write> <sleep ms="10"/>

<configure i2c="1" spi="1" gpio="0" tpower="1" pullups="1"/>

9.2.2.1 Example Script

<i2c_bitrate khz="100"/> ====SOFTRESET======

=====HS_CLK_SRC bit0===

=====LVDS_CLK_Range bit 3:1=====

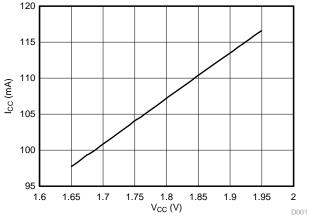
STRUMENTS

www.ti.com

<aardvark>

SN65DSI83-Q1 SLLSEW7-DECEMBER 2016

SN65DSI83-Q1



www.ti.com

```
<i2c_write addr="0x2D" count="1" radix="16">38 00</i2c_write> <sleep ms="10"/>
=====CHA_VER_FRONT_PORCH=======
<i2c_write addr="0x2D" count="1" radix="16">3A 00</i2c_write> <sleep ms="10"/>
=====CHA/CHB TEST PATTERN(bit4 CHA, bit0 CHB)=======
<i2c_write addr="0x2D" count="1" radix="16">3C 00</i2c_write> <sleep ms="10"/>
=====PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======
<i2c_write addr="0x2D" count="1" radix="16">0D 01</i2c_write> <sleep ms="10"/>
=====Read=====
<i2c_write addr="0x2D" count="1" radix="16">00</i2c_write> <sleep ms="10"/>
=====Read=====
<i2c_write addr="0x2D" count="256" radix="16">00</i2c_write> <sleep ms="10"/>
```

</aardvark>

9.2.3 Application Curve

- B. SN65DSI83-Q1: SINGLE Channel DSI to SINGLE Channel DSI, 1280 × 800
- a. number of LVDS lanes = 3 data lanes + 1 CLK lane
- b. number of DSI lanes = 4 data lanes + 1 CLK lane
- c. LVDS CLK OUT = 83 M
- d. DSI CLK = 500 M
- e. RGB666, LVDS 18 bpp

Figure 50. Power Consumption

10 Power Supply Recommendations

10.1 V_{cc} Power Supply

Each VCC power supply pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI83-Q1 device. It is recommended to have one bulk capacitor (1 μ F to 10 μ F) on it. It is also recommended to have the pins connected to a solid power plane.

10.2 VCORE Power Supply

This pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI83-Q1 device. It is recommended to have one bulk capacitor (1 μ F to 10 μ F) on it. It is also recommended to have the pins connected to a solid power plane.

11 Layout

11.1 Layout Guidelines

11.1.1 Package Specific

For the PAP package, to minimize the power supply noise floor, provide good decoupling near the SN65DSI83-Q1 device power pins. The use of four ceramic capacitors ($2 \times 0.1 \mu$ F and $2 \times 0.01 \mu$ F) provides good performance. At the least, TI recommends to install one 0.1- μ F and one 0.01- μ F capacitor near the SN65DSI83-Q1 device. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and device power inputs pins must be minimized. Placing the capacitor underneath the SN65DSI83-Q1 device on the bottom of the PCB is often a good choice.

11.1.2 Differential Pairs

- Differential pairs must be routed with controlled 100-Ω differential impedance (± 20%) or 50-Ω single-ended impedance (±15%).
- Keep away from other high speed signals
- Keep lengths to within 5 mils of each other.
- Length matching must be near the location of mismatch.
- Each pair must be separated at least by 3 times the signal trace width.
- The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left and right bends must be as equal as possible and the angle of the bend must be ≥ 135 degrees. This arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on EMI.
- Route all differential pairs on the same of layer.
- The number of vias must be kept to a minimum. It is recommended to keep the via count to 2 or less.
- Keep traces on layers adjacent to ground plane.
- Do NOT route differential pairs over any plane split.
- Adding Test points cause impedance discontinuity and therefore negatively impacts signal performance. If
 test points are used, they must be placed in series and symmetrically. They must not be placed in a manner
 that causes a stub on the differential pair.

11.1.3 Ground

TI recommends that only one board ground plane be used in the design. This provides the best image plane for signal traces running above the plane. The thermal pad of the SN65DSI83-Q1 must be connected to this plane with vias.

11.2 Layout Example

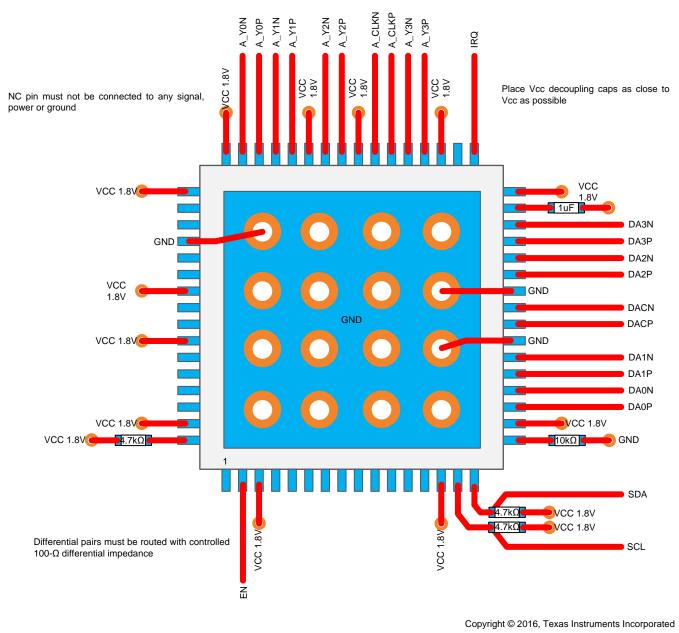


Figure 51. SN65DSI83-Q1 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- SN65DSI8x Video Configuration Guide and Configuration Tool Software Users Manual
- SN65DSI83, SN65DSI84, and SN65DSI85 Hardware Implementation Guide

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. MIPI is a registered trademark of Arasan Chip Systems, Inc. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

9-Dec-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65DSI83TPAPRQ1	PREVIEW	HTQFP	PAP	64	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 105	DSI83TQ1	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

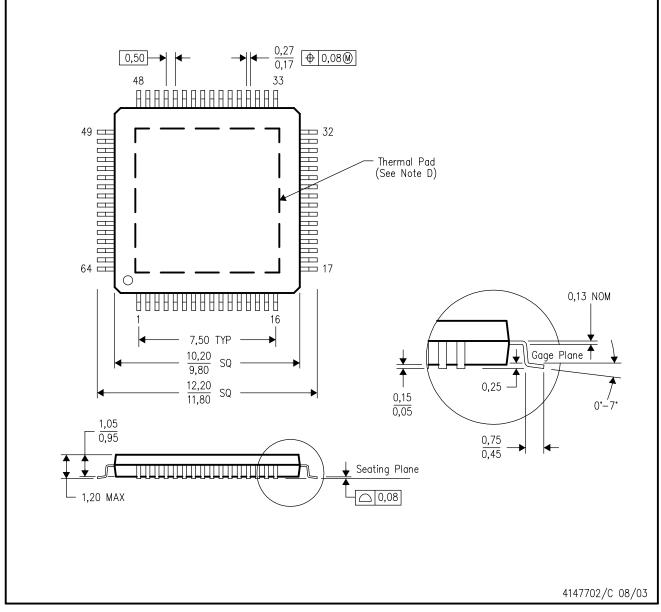
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

9-Dec-2016

OTHER QUALIFIED VERSIONS OF SN65DSI83-Q1 :


Catalog: SN65DSI83

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

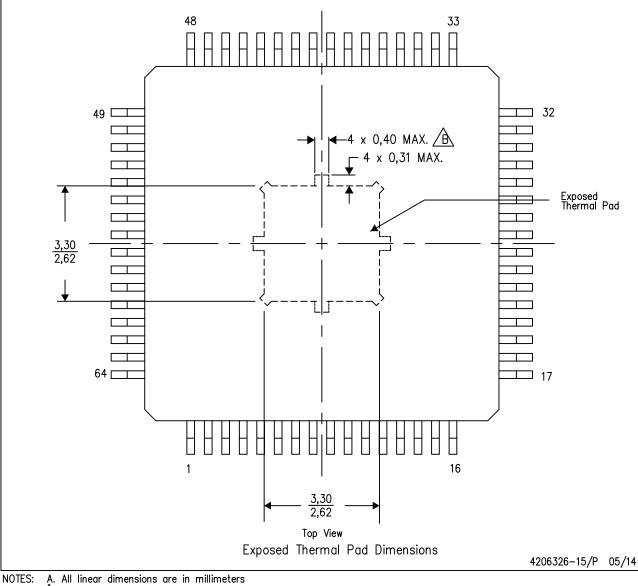
PowerPAD[™] PLASTIC QUAD FLATPACK

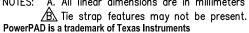
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

PAP (S-PQFP-G64)


PowerPAD[™] PLASTIC QUAD FLATPACK


THERMAL INFORMATION

This PowerPAD^m package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated