

SLAS673 - SEPTEMBER 2010

www.ti.com

MIXED SIGNAL MICROCONTROLLER

FEATURES

- Ultra-Low Supply Voltage (ULV) Range
 - 0.9 V to 1.5 V (1 MHz)
 - 1.5 V to 1.65 V (4 MHz)
- Low Power Consumption
 - Active Mode (AM): 45 μA/MHz (1.3 V)
 - Standby Mode (LPM3, WDT_A Mode): 6 μA
 - Off Mode (LPM4): 3 μA
- Wake-Up From LPMx in Less Than 5 µs
- 16-Bit RISC Architecture
 - Extended Instructions
 - Up to 4-MHz System Clock
- Compact Clock System
 - 1-MHz Internal Trimmable High-Frequency Clock
 - 20-kHz Internal Low-Frequency Clock Source
 - External Clock Input
- 16-Bit Timer0_A3 With Three Capture/Compare Registers
- 16-Bit Timer1_A3 With Three Capture/Compare Registers
- ULV Analog Pool Modes
 - 8-Bit Analog-to-Digital Converter (ADC)
 - 8-Bit Digital-to-Analog Converter (DAC)
 - Programmable Comparator (COMP)
 - Supply Voltage Monitor (SVM)
 - Temperature Sensor
 - Internal Reference Voltage Source

- ULV Port Logic
 - V_{OL} Better Than 0.15 V at 2.5 mA
 - V_{OH} Better Than V_{CC} 0.15 V at 1 mA
 - Timer0 PWM Signal Available on All Ports
 - Timer1 PWM Signal Available on All Ports
- ULV Brownout Circuit (BOR)
- ULV RAM Retention Voltage Below BOR Level
- 32-Bit Watchdog Timer (WDT-A)
- Bootstrap Loader in MSP430L092
 Development/Prototyping Device
- Full Four-Wire JTAG Debug Interface
- Family Members Include
 - MSP430C091
 - 1KB ROM Memory
 - 128 Bytes RAM + 96 Bytes CRAM (Lockable)
 - MSP430C092
 - 2KB ROM Memory
 - 128 Bytes RAM + 96 Bytes CRAM (Lockable)
 - MSP430L092
 - 2KB Loader ROM With Service Functions
 - 2KB RAM
 (1792 + 128 + 96 Bytes Lockable)
- For Complete Module Descriptions, See the MSP430x09x Family User's Guide (SLAU321)

DESCRIPTION

The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled internal oscillators allow wake-up from low-power modes to active mode in less than 5 µs.

The MSP430C09x and MSP430L092 series are microcontroller configurations with two 16-bit timers, an ultra-low-voltage 8-bit analog-to-digital (A/D) converter, an 8-bit digital-to-analog (D/A) converter, and up to 11 I/O pins.

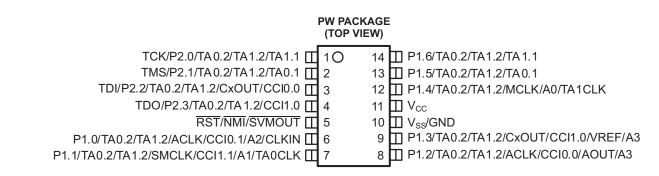
Typical applications for this device include single-cell systems requiring a full analog signal chain.

53

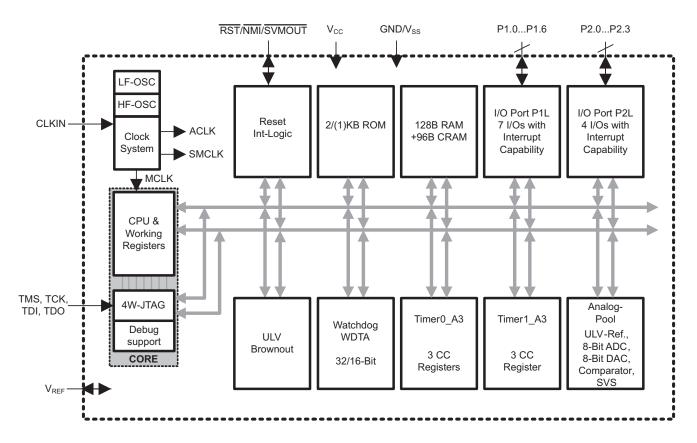
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS INSTRUMENTS

SLAS673 -SEPTEMBER 2010


ORDERING INFORMATION⁽¹⁾

T _A	PACKAGED DEVICES ⁽²⁾ PLASTIC 14-PIN TSSOP (PW)
	MSP430C091SPW
0°C to 50°C	MSP430C092SPW
	MSP430L092SPW


(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

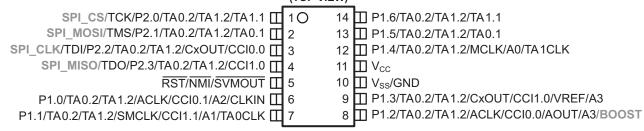
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/package.

Pin Designation, MSP430C091PW, MSP430C092PW

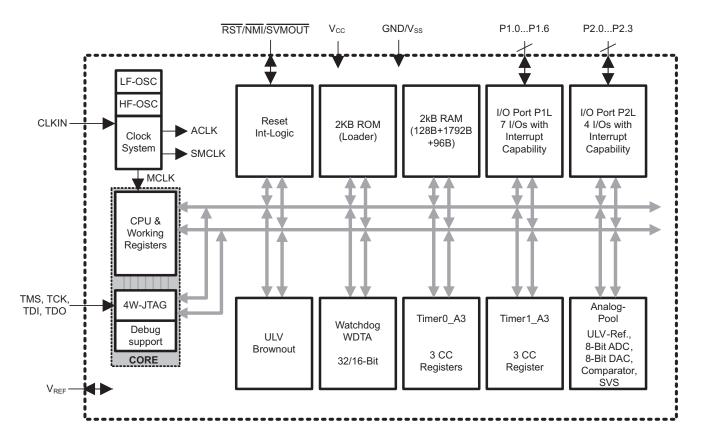
Functional Block Diagram, MSP430C092PW, MSP430C091PW

INSTRUMENTS

www.ti.com



SLAS673 -SEPTEMBER 2010


www.ti.com

Pin Designation, MSP430L092PW

PW PACKAGE (TOP VIEW)

Functional Block Diagram, MSP430L092PW

SLAS673 - SEPTEMBER 2010

Table 1. Terminal Functions

TERMINAL		1/O ⁽¹⁾	DESCRIPTION		
NAME	NO.	100	DESCRIPTION		
			JTAG test clock		
			General-purpose digital I/O		
			Timer0_A3 Out2 output		
TCK/P2.0/TA0.2/TA1.2/TA1.1	1	I/O	Timer1_A3 Out2 output		
			Timer1_A3 Out1 output		
			Timer0_A3 CCR2 capture: CCI2A input, compare		
			Timer1_A3 CCR2 capture: CCI2A input, compare		
			JTAG test mode select		
			General-purpose digital I/O		
			Timer0_A3 Out2 output		
TMS/P2.1/TA0.2/TA1.2/TA0.1	2	I/O	Timer1_A3 Out2 output		
			Timer0_A3 Out1 output		
			Timer0_A3 CCR2 capture: CCI2B input, compare		
			Timer1_A3 CCR2 capture: CCI2B input, compare		
			JTAG test data input		
			General-purpose digital I/O		
			Timer0_A3 Out2 output		
TDI/P2.2/TA0.2/TA1.2/CCI0.0/CxOUT	3	I/O	Timer1_A3 Out2 output		
			Comparator output		
			Timer0_A3 CCR0 capture: CCI0A input, compare		
			Test clock input		
			JTAG test data output		
			General-purpose digital I/O		
TDO/P2.3/TA0.2/TA1.2/CCI1.0	4	I/O	Timer0_A3 Out2 output		
			Timer1_A3 Out2 output		
			Timer1_A3 CCR0 capture: CCI0A input, compare		
			Reset input active low		
RST/NMI/SVMOUT	5	I/O	Non-maskable interrupt input		
			SVM output		
			General-purpose digital I/O		
			Timer0_A3 Out2 output		
			Timer1_A3 Out2 output		
P1.0//TA0.2/TA1.2/ACLK/CCI0.1/A2/CLKIN	6	I/O	ACLK output		
			Timer0_A3 CCR1 capture: CCI1B input, compare		
			Analog input A2 – A-Pool		
			Input terminal for external clock		
			General-purpose digital I/O		
			Timer0_A3 Out2 output		
			Timer1_A3 Out2 output		
P1.1/TA0.2/TA1.2/SMCLK/CCI1.1/A1/TA0CLK	7	I/O	SMCLK output		
			Timer1_A3 CCR1 capture: CCI1B input, compare		
			Analog input A1 – A-Pool		
			Timer0_A3 clock signal TACLK input		

(1) I = input, O = output, N/A = not available on this package offering

www.ti.com

www.ti.com

Table 1. Terminal Functions (continued)

TERMINAL		I/O ⁽¹⁾	DESCRIPTION	
NAME NO.		10.		
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
			Timer1_A3 Out2 output	
P1.2/TA0.2/TA1.2/ACLK/CCI0.0/AOUT/A3	8	I/O	ACLK output	
			Timer0_A3 CCR0 capture: CCI0B input, compare	
			Analog input A3 – A-Pool	
			Analog output – A-Pool	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
			Timer1_A3 Out2 output	
P1.3/TA0.2/TA1.2/CxOUT/CCI1.0/VREF/A3	9	I/O	Comparator output	
			Timer1_A3 CCR0 capture: CCI0B input, compare	
			Analog input A3 – A-Pool	
			Reference voltage input / output	
V _{SS} /GND	10		Analog and digital power supply ground reference	
V _{CC}	11		Analog and digital power supply	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.4/TA0.2/TA1.2/MCLK/A0/TA1CLK	12	I/O	Timer1_A3 Out2 output	
			MCLK Output	
			Analog input A0 – A-Pool	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.5/TA0.2/TA1.2/TA0.1	13	I/O	Timer1_A3 OUT2 output	
			Timer0_A3 OUT1 output	
			Timer0_A3 CCR1 capture: CCI1A input, compare	
			General-purpose digital I/O	
			Timer0_A3 Out2 output	
P1.6/TA0.2/TA1.2/TA1.1	14	I/O	Timer1_A3 OUT2 output	
			Timer1_A3 OUT1 output	
			Timer1_A1 CCR1 capture: CCI1A input, compare	

SLAS673 -SEPTEMBER 2010

SLAS673 -SEPTEMBER 2010

SHORT-FORM DESCRIPTION

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 2 shows examples of the three types of instruction formats, Table 3 shows the address modes.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 2. Instruction Word Formats

Dual operands, source-destination	e.g., ADD	R4,R5	$R4 + R5 \rightarrow R5$
Single operands, destination only	e.g., CALL	R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	e.g., JNE		Jump-on-equal bit = 0

Table 3. Address Mode Descriptions

				-	
ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs, Rd	MOV R10, R11	$R10 \rightarrow R11$
Indexed	•	•	MOV X(Rn), Y(Rm)	MOV 2(R5), 6(R6)	$M(2+R5) \rightarrow M(6+R6)$
Symbolic (PC relative)	•	•	MOV EDE, TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	•	•	MOV & MEM, & TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	•		MOV @Rn, Y(Rm)	MOV @R10, Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect autoincrement	•		MOV @Rn+, Rm	MOV @R10+, R11	$\begin{array}{c} M(R10) \rightarrow R11 \\ R10 + 2 \rightarrow R10 \end{array}$
Immediate	•		MOV #X, TONI	MOV #45, TONI	#45 \rightarrow M(TONI)

(1) S = source D = destination

www.ti.com

www.ti.com

Operating Modes

The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
- All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active for all sources
 - MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK and SMCLK remain active (for LF oscillator and CLKIN as source, HF oscillator is mapped to LF oscillator as source)
 - MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK remains active for all sources
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK remains active (for LF oscillator and CLKIN as source, HF oscillator is mapped to LF oscillator as source)
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - MCLK is disabled
 - SMCLK is disabled
 - ACLK is disabled
 - Oscillators are stopped

LPM2 vs LPM3

If only MCLK is feed by the HF oscillator (SELA \neq 00, SELS \neq 00, SELM = 00 of CCSCTL4 register) the following behavior is implemented:

- Entering LPM2 turns off the HF oscillator and starts again with the HF oscillator selected for MCLK
- Entering LPM3 turns off the HF oscillator and starts again with the LF oscillator selected for MCLK

The only difference between LPM2 and LPM3 is the selection of the source for MCLK when re-entering active mode and, therefore, and the level of power savings.

SLAS673 - SEPTEMBER 2010

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up External Reset Watchdog	WDTIFG ⁽¹⁾ Reset		0x0FFFE	15, highest
System NMI Vacant memory access	SVMIFG, VMAIFG ⁽¹⁾	(Non)maskable	0x0FFFC	14
User NMI NMI	NMIIFG ⁽¹⁾⁽²⁾	(Non)maskable	0x0FFFA	13
Timer1_A3	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0x0FFF8	12
Timer1_A3	TA1CCR1 CCIFG1 ⁽¹⁾⁽³⁾	Maskable	0x0FFF6	11
Watchdog Timer_A Interval Timer Mode	WDTIFG	Maskable	0x0FFF4	10
A-Pool	CxIFG	Maskable	0x0FFF2	9
I/O Port P1	P1IFG.0 to P1IFG.6 ⁽¹⁾⁽³⁾	Maskable	0x0FFF0	8
Timer0_A3	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0x0FFEE	7
Timer0_A3	TA0CCR1 CCIFG1 ⁽¹⁾⁽³⁾	Maskable	0x0FFEC	6
I/O Port P2	P2IFG.0 to P2IFG.3 ⁽¹⁾⁽³⁾	Maskable	0x0FFEA	5
			0x0FFE8	4
Reserved	Reserved ⁽⁴⁾		:	:
			0x0FFE0	0

Table 4. Interrupt Sources, Flags, and Vectors

(1) Multiple source flags

(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

(3) Interrupt flags are located in the module.

(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations.

SLAS673 - SEPTEMBER 2010

www.ti.com

Special Function Registers (SFRs)

The MSP430 SFRs are located in the lowest address space and can be accessed via word or byte formats.

Legend	rw:	Bit can be read and written.
	rw-0,1:	Bit can be read and written. It is reset or set by PUC.
	rw-(0,1):	Bit can be read and written. It is reset or set by POR.
		SFR bit is not present in device.

Interrupt Enable 1

15	14	13	12	11	10	9	8	
							SVMIE	
rO	rO	rO	rO	rO	rO	rO	rw-0	
7	6	5	4	3	2	1	0	
JMBOUTIE	JMBINIE		NMIIE	VMAIE		OFIE	WDTIE	
rw-0	rw-0	rO	rw-0	rw-0	rO	rw-0	rw-0	
SVMIE JMBOUTIE JMBINIE								
NMIIE	Nonmaskable-in	terrupt enable						
VMAIE OFIE	Vacant memory access interrupt enable							
WDTIE	Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a general-purpose timer.							

Interrupt Enable 2

15	14	13	12	11	10	9	8		
							SVMIFG		
rO	rO	rO	rO	rO	rO	rO	rw-0		
7	6	5	4	3	2	1	0		
JMBOUTIFG	JMBINIFG		NMIIFG	VMAIFG		OFIFG	WDTIFG		
rw-0	rw-0	rO	rw-0	rw-0	rO	rw-0	rw-0		
SVMIFG JMBOUTIFG JMBINIFG	Set by SVM when voltage falls below set voltage								
NMIIFG	Set via RST/NM	l pin							
VMAIFG	Set on vacant memory access								
OFIFG									
WDTIFG		Set on watchdog timer overflow (in watchdog mode <u>) or secu</u> rity key violation Reset on V _{CC} power-on or a reset condition at the RST/NMI pin in reset mode							

SLAS673 - SEPTEMBER 2010

Reset Pin Control Register

15	14	13	12	11	10	9	8	
rO	rO	rO	rO	rO	rO	rO	rO	
7	6	5	4	3	2	1	0	
				SYSRSTRE	SYSRSTUP	SYSNMIES	SYSNMI	
rO	rO	rO	rO	r1	r1	r1	rw-0	
SYSRSTRE	Indicates resistor present on RST pin							
OVODOTUD	Leaffrente en allere	DOT						

SYSRSTUP Indicates pullup on RST pin

SYSNMIES Indicates NMI edge select

SYSNMI NMI enable on RST/NMI pin

Memory Organization

Table 5. Memory Organization

	, ,								
	TYPE	MSP430C091	MSP430C092	MSP430L092	MSP430L092 (EMU) ⁽¹⁾				
Primary interrupt	DOM	32 B	32 B	32 B	32 B				
vectors		0x0FFE0 ⁽²⁾ – 0x0FFFF							
Secondary interrupt vectors	RAM Lockable			0x01C60 – 0x01C7F					
Application ROM	ROM	864 B	1888 B		ROM not available				
memory	KOW	0x0FC80 – 0x0FFDF	0x0F880 – 0x0FFDF						
Boot Code (BC) / DOM (but TI)		128 B (BC)	128 B (BC)	2016 B (Loader)	Config/loading by tool				
Loader Code	ROM (by TI)	0x0F800 – 0x0F87F	0x0F800 – 0x0F87F	0x0F800 – 0x0FFDF	0x0F800 – 0x0F87F				
DAM mamon	RAM	128B	128B	128 B	128 B				
RAM memory	KAM	0x02380 – 0x023FF	0x02380 – 0x023FF	0x02380 – 0x023FF	0x02380 – 0x023FF				
LRAM memory	DAM			1792 B	1760 B				
(lockable)	RAM			0x01C80 – 0x0237F	0xF900 – 0xFFDF				
CRAM memory	DAM	96 B	96 B	96 B	128 B ⁽³⁾				
(lockable)	RAM	0x01C00 – 0x01C5F	0x01C00 – 0x01C5F	0x01C00 – 0x01C5F	0x0F880 – 0x0F8FF				
Darinharola	Cino	4 kB	4 kB	4 kB	4 kB				
Peripherals	Size	0x00000 – 0x00FFF	0x00000 – 0x00FFF	0x00000 – 0x00FFF	0x00000 – 0x00FFF				

(1) The MSP430L092 emulates the MSP430C092 device (MSP430C091 emulation via tool and software).

(2) Not the whole interrupt vector range of CSYS is used on MSP430x09x devices (see Table 4).

(3) Resets and interrupt redirections in RAM with alternate interrupt vectors cannot be emulated.

Start-Up Code (SUC)

The MSP430C09x start-up code checks the password and releases control to the application or enables JTAG on password match, enters LPM4, and waits for a debug session. The behavior of the SUC is described in the *MSP430L092 Loader Code User's Guide* (SLAU324).

Loader Code (Loader)

The MSP430L092 loader checks the presence of an external SPI/I2C memory device containing a valid code signature, loads validated code into the application LRAM, and starts the application. The loader program uses P1.2 with an external circuit to pump up the voltage required for SPI memory device readout. For complete description of the features of the loader and its implementation, see the *MSP430L092 Loader Code User's Guide* (SLAU324).

www.ti.com

RAM Memory

The RAM memory is split into three ranges for different purposes: application memory, lockable application memory, and calibration memory.

Lockable application memory and calibration memory can be protected against accidental erasure by setting a dedicated lock bit in the special functions register (System Maintenance Register).

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the *MSP430x09x Family User's Guide* (SLAU321).

Digital I/O

There are two I/O ports implemented: P1 (7 I/O lines) and P2 (4 I/O lines).

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt input capability for all ports on P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 and P2) or word-wise in pairs (P1/P2 combo).

Oscillator and System Clock

The clock system in the MSP430x09x family of devices is supported by the Compact Clock System (CCS) module that includes support for an internal 20-kHz current-controlled low-frequency oscillator (LF-OSC), an internal adjustable 1-MHz current-controlled high-frequency oscillator (HF-OSC), and an external clock input from CLKIN; however, a missing CLKIN signal does not trigger an oscillator failsafe mechanism in this family.

The CCS module is designed to meet the requirements of both low system cost and low power consumption. The CCS provides a fast turn-on of the oscillators, less than 1 ms. The CCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from the 20-kHz internal LF-OSC, the 1-MHz internal HF-OSC, or CLKIN.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- VLOCLK is an ultra-low-power low-frequency clock that is available as long the device is powered.

SLAS673 -SEPTEMBER 2010

TEXAS INSTRUMENTS

www.ti.com

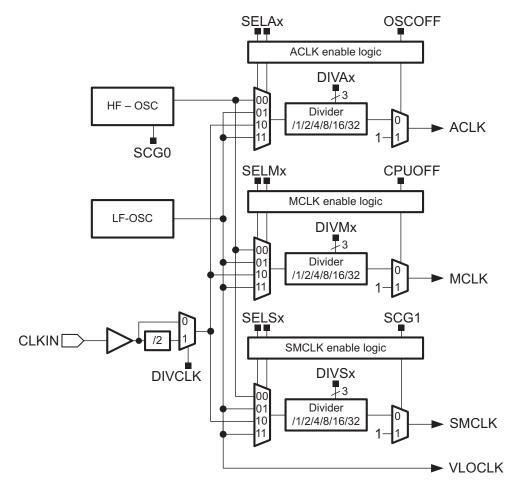


Figure 1. Compact Clock System (CCS) Block Diagram

Watchdog Timer (WDT_A)

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

	-
DEVICE CLOCK SIGNAL	MODULE CLOCK SIGNAL
ACLK	ACLK
SMCLK	SMCLK
LF-OSC-CLK	VLOCLK
LF-OSC-CLK	X-CLK

Table 6.	WDT_	A Signal	Connections
----------	------	----------	-------------

Compact System Module (C-SYS)

The Compact SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, and configuration management. It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.

SLAS673 -SEPTEMBER 2010

www.ti.com

RST/NMI/SVMOUT System

The reset system of the MSP430x09x family features the functions reset input, reset output, NMI input, SVM output, and SVS input.

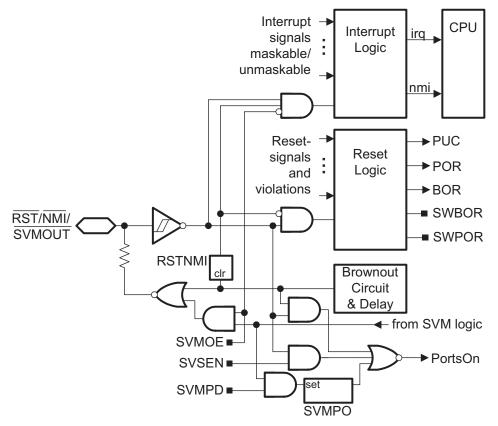


Figure 2. RST/NMI/SVMOUT and PortsOn Logic Block Diagram

www.ti.com

SLAS673 -SEPTEMBER 2010

INTERRUPT VECTOR REGISTER	INTERRUPT VECTOR	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	SVMBOR (BOR)		04h	
	RST/NMI (BOR)		06h	
	DoBOR (BOR)		08h	
	Security violation (BOR)		0Ah	
SYSRSTIV, System Reset	DoPOR(POR)	019Eh	0Ch	
	WDT timeout (PUC)		0Eh	
	WDT key violation (PUC)		10h	
	CCS key violation		12h	
	PMM key violation		14h	
	Peripheral area fetch (PUC)		16h	
	Reserved		18h-3Eh	Lowest
	No interrupt pending		00h	
	SVMIFG		02h	Highest
	VMAIFG	019Ch	04h	
SYSSNIV, System NMI	JMBINIFG	01900	06h	
	JMBOUTIFG		08h	
	Reserved		0Ah-3Eh	Lowest
	No interrupt pending		00h	
	NMIFG		02h	Highest
SYSUNIV, User NMI	OFIFG	019Ah	04h	
	BERR		06h	
	Reserved		08h-3Eh	Lowest
	No interrupt pending	04005	00h	
SYSBERRIV, Bus Error	Reserved	0198h	02h-3Eh	Lowest

Table 7. System Module Interrupt Vector Registers

www.ti.com Timer0_A3

Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

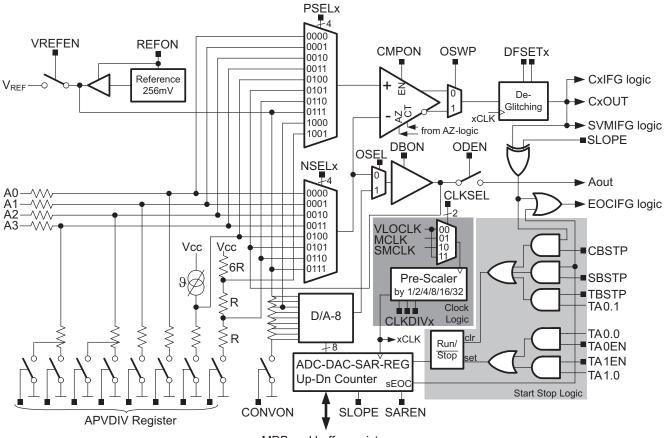
INPUT PIN NUMBER			MODULE BLOCK MODULE	DEVICE OUTPUT	OUTPUT PIN NUMBER		
PW	SIGNAL	SIGNAL		OUTPUT SIGNAL	SIGNAL	PW	
7 – P1.1	TA0CLK	TACLK					
	ACLK	ACLK	Timor	NA	NA		
	SMCLK	SMCLK	Timer	Timer NA	INA		
7 – P1.1	TA0CLK	TACLK					
3 – P2.2	CCI0.0	CCI0A		CCR0 TA0			
8 – P1.2	CCI0.0	CCI0B	0000		TA0.0		
	V _{SS}	GND	CCRU				
	V _{CC}	V _{CC}	-				
13 – P1.5	TA0.1	CCI1A				2 – P2.1	
6 – P1.0	CCI0.1	CCI1B	0004	T 4 4	TA0.1	13 – P1.5	
	V _{SS}	GND	CCR1	TA1			
	V _{CC}	V _{CC}					
1 – P2.0	TA0.2	CCI2A				1-4 – P2.0-P2.3	
2 – P2.1	TA0.2	CCI2B	0000	TA2	TAO O	6-9 – P1.0-P1.3	
	V _{SS}	GND	CCR2		TA0.2	12-14 – P1.4-P1.6	
	V _{CC}	V _{CC}					

 Table 8. Timer0_A3 Signal Connections

SLAS673 - SEPTEMBER 2010

Timer1_A3

Timer1_A3 is a 16-bit timer/counter with three capture/compare registers. Timer1_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.


INPUT PIN NUMBER			MODULE BLOCK			OUTPUT PIN NUMBER
PW	SIGNAL	SIGNAL		OUTPUT SIGNAL	SIGNAL	PW
12 – P1.4	TA1CLK	TACLK				
	ACLK	ACLK	Timor	NIA	NIA	
	SMCLK	SMCLK	Timer	NA	NA	
12 – P1.4	TA1CLK	TACLK				
4 – P2.3	CCI1.0	CCI0A				
9 – P1.3	CCI1.0	CCI0B	0000	TAO	TA1.0	
	V _{SS}	GND	CCR0 TA0			
	V _{CC}	V _{CC}			TA1.1	
14 – P1.6	TA1.1	CCI1A				1 – P2.0
7 – P1.1	CCI1.1	CCI1B	CCR1	TA1		14 – P1.6
	V _{SS}	GND	CCRI	IAI		
	V _{CC}	V _{CC}				
1 – P2.0	TA1.2	CCI2A				1-4 – P2.0-P2.3
2 – P2.1	TA1.2	CCI2B	0000	TA2	T 10	6-9 – P1.0-P1.3
	V _{SS}	GND	CCR2		TA1.2	12-14 – P1.4-P1.6
	V _{CC}	V _{CC}				

A-Pool

www.ti.com

The analog functions pool (A-Pool) provides a series of functions that can be configured to a digital-to-analog converter (DAC), multichannel analog-to-digital converter (ADC), supply voltage supervisor (SVS), and comparator. Input voltage dividers and an internal reference source allow a wide range of combined analog functions.

MDB and buffer register

Figure 3. A-Pool Block Diagram

www.ti.com

SLAS673 -SEPTEMBER 2010

Versatile I/O Port P1, P2

The versatile I/O ports P1 and P2 feature device-dependent reset values. The reset values for the MSP430x09x devices are shown in Table 10.

PORT NUMBER	PxOUT	PxDIR	PxREN	PxSEL0	PxSEL1	RESET	PORTS ON	COMMENT
P1.0	0	0	0	0	0	PUC	yes	P1.0, input
P1.1	0	0	0	0	0	PUC	yes	P1.1, input
P1.2	0	0	0	0	0	PUC	yes	P1.2, input
P1.3	0	0	0	0	0	PUC	yes	P1.3, input
P1.4	0	0	0	0	0	PUC	yes	P1.4, input
P1.5	0	0	0	0	0	PUC	yes	P1.5, input
P1.6	0	0	0	0	0	PUC	yes	P1.6, input
P1.7	-	-	-	-	-	-	-	-
P2.0	1	0	1	1	1	BOR	no	JTAG TCK, input, pullup
P2.1	1	0	1	1	1	BOR	no	JTAG TMS, input, pullup
P2.2	1	0	1	1	1	BOR	no	JTAG TDI, input, pullup
P2.3	0	1	0	1	1	BOR	no	JTAG TDO, output, pullup

Table 10. Versatile Port Reset Values

Peripheral File Map

Table 11. Peripherals

MODULE NAME	REGISTER DESCRIPTION	REGISTER	BASE ADDRESS	OFFSET
	Timer1_A interrupt vector	TA1IV		2Eh
	Capture/compare register 2	TA1CCR2		16h
	Capture/compare register 1	TA1CCR1		14h
	Capture/compare register 0	TA1CCR0		12h
Timer1_A3	Timer1_A register	TA1R	0380h	10h
	Capture/compare control 2	TA1CCTL2		06h
	Capture/compare control 1	TA1CCTL1		04h
	Capture/compare control 0	TA1CCTL0		02h
	Timer1_A control	TA1CTL		00h
	Timer0_A interrupt vector	TA0IV		2Eh
	Capture/compare register 2	TA0CCR2		16h
	Capture/compare register 1	TA0CCR1		14h
	Capture/compare register 0	TA0CCR0		12h
Timer0_A3	Timer1_A register	TAOR	0340h	10h
	Capture/compare control 2	TA0CCTL2		06h
	Capture/compare control 1	TA0CCTL1		04h
	Capture/compare control 0	TAOCCTLO		02h
	Timer1_A control	TA0CTL		00h

www.ti.com

- - --

MSP430L092 MSP430C09x

SLAS673 -SEPTEMBER 2010

MODULE NAME	REGISTER DESCRIPTION	REGISTER	BASE ADDRESS	OFFSET
	Port P2 interrupt Flag	P2IFG		1Dh
	Port P2 interrupt enable	P2IE		1Bh
	Port P2 interrupt edge select	P2IES		19h
	Port P2 interrupt vector word	P2IV		1Eh
	Port P2 selection 1	P2SEL1	00001	0Dh
Port P2	Port P2 selection 0	P2SEL0	0200h	0Bh
	Port P2 pullup/pulldown enable	P2REN		07h
	Port P2 direction	P2DIR		05h
	Port P2 output	P2OUT		03h
	Port P2 input	P2IN		01h
	Port P1 interrupt Flag	P1IFG		1Ch
	Port P1 interrupt enable	P1IE		1Ah
	Port P1 interrupt edge select	P1IES		18h
	Port P1 interrupt vector word	P1IV		0Eh
	Port P1 selection 1	P1SEL1		0Ch
Port P1	Port P1 selection 0	P1SEL0	0200h	0Ah
	Port P1 pullup/pulldown enable	P1REN		06h
	Port P1 direction	P1DIR		04h
	Port P1 output	P10UT		02h
	Port P1 input	P1IN		00h
	Analog pool interrupt vector register	APIV		1Eh
	Analog pool interrupt enable register	APIE		1Ch
	Analog pool interrupt flag register	APIFG		1Ah
	Analog pool fractional value buffer	APFRACTB		16h
	Analog pool fractional value register	APFRACT		14h
-POOL	Analog pool integer value buffer	APINTB	01A0h	12h
	Analog pool integer value register	APINT		10h
	Analog pool voltage divider register	APVDIV		06h
	Analog pool operation mode register	APOMR		04h
	Analog pool control register	APCTL		02h
	Analog pool configuration register	APCNF		00h
	Reset vector generator	SYSRSTIV		1Eh
	System NMI vector generator	SYSSNIV		1Ch
	User NMI vector generator	SYSUNIV		1Ah
	Bus error vector generator	SYSBERRIV		18h
	System Configuration register	SYSCNF		10h
SYS	JTAG mailbox output register #1	SYSJMBO1	0180h	0Eh
	JTAG mailbox output register #0	SYSJMBO0		0Ch
	JTAG mailbox input register #1	SYSJMBI1		00h
	JTAG mailbox input register #0	SYSJMBIO		08h
	JTAG mailbox control register	SYSJMBC		06h
	System control register	SYSCTL		00h

Texas Instruments

www.ti.com

SLAS673 - SEPTEMBER 2010

Table 11. Peripherals (continued)

MODULE NAME	REGISTER DESCRIPTION	REGISTER	BASE ADDRESS	OFFSET
	CCS control 15 register	CCSCTL15		1Eh
	CCS control 8 register	CCSCTL8		10h
	CCS control 7 register	CCSCTL7		0Eh
CCS	CCS control 5 register	CCSCTL5	0160h	0Ah
005	CCS control 4 register	CCSCTL4	016011	08h
	CCS control 2 register	CCSCTL2		04h
	CCS control 1 register	CCSCTL1		02h
	CCS control 0 register	CCSCTL0		00h
WDT_A	Watchdog timer control	WDTCTL	0150h	0Ch
PMM	PMM control 0	PMMCTL0	0120h	00h
ET-Wrapper	ET Key and select	ETKEYSEL	0110h	00h
	SFR Reset pin control register	SFRRPCR		04h
Special Functions	SFR interrupt flag register	SFRIFG1	0100h	02h
	SFR interrupt enable register	SFRIE1		00h

Absolute Maximum Ratings⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Voltage applied at V_{CC} referenced to V_{SS} (V_{AMR})	–0.3 V to 1.90 V
Veltage applied to any pin (references to V)	–0.3 V to V _{CC} + 0.3 V
Voltage applied to any pin (references to V _{SS})	–0.3 V to 1.90 V
Diode current at any device pin ⁽²⁾	±2.5 mA
Current derating factor when I/O ports are switched in parallel electrically and logically ⁽³⁾	0.9
Storage temperature range ⁽⁴⁾	–55°C to 150°C
ESD tolerance, Human-Body Model (HBM)	2000 V

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)

(3)

All voltages referenced to V_{SS} . The diode current increases to ±4.5 mA when two pins are connected, ± 6.75 mA for three pins. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow (4) temperatures not higher than classified on the device label on the shipping boxes or reels.

Recommended Operating Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage during program exe	ecution	0.9		1.65	V
V _{SS}	Supply voltage (GND reference)			0		V
T _A	Operating free-air temperature		0		50	°C
C _{VCC}	Capacitor on V _{CC}			470		nF
f _{SYSTEM} ⁽¹⁾⁽	System energing frequency	$V_{CC} > 0.9 \text{ V}, t_{LOW} \ge 450 \text{ ns}, t_{HIGH} \ge 450 \text{ ns}$		1		MHz
2)	System operating frequency	V_{CC} > 1.5 V, t_{LOW} ≥ 113 ns, t_{HIGH} ≥ 113 ns		4		MHz

The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the (1) specified maximum frequency.

Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. (2)

SLAS673 -SEPTEMBER 2010

SLAS673 - SEPTEMBER 2010

EXAS **STRUMENTS**

www.ti.com

Active Mode Supply Current (Into V_{cc}) Excluding External Current⁽¹⁾⁽²⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN TY	P MAX	UNIT
	$f_{MCLK} = f_{SMCLK} = 1 \text{ MHz}, f_{ACLK} = 20 \text{ kHz},$	0.9 V		5	9 68	
	Program executes in RAM,	1.3 V	0°C	7	2 84	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		8	6 101	
	f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 20 kHz,	0.9 V		5	9 68	
I _{AM,1MHz}	Program executes in RAM,	1.3 V	30°C	7	2 84	μA
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		8	6 101	
	$f_{MCLK} = f_{SMCLK} = 1 \text{ MHz}, f_{ACLK} = 20 \text{ kHz},$	0.9 V		6	0 70	
	Program executes in RAM,	1.3 V	50°C	7	4 87	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		8	8 105	
	f _{MCLK} = f _{SMCLK} = 125 kHz, f _{ACLK} = 20 kHz,	0.9 V		3	1 35	
	Program executes in RAM,	1.3 V	0°C	3	3 38	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		3	7 42	
	f _{MCLK} = f _{SMCLK} = 125 kHz, f _{ACLK} = 20 kHz	0.9 V		3	1 35	
I _{AM,125kHz}	Program executes in RAM	1.3 V	30°C	3	3 38	μA
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		3	7 42	
	$f_{MCLK} = f_{SMCLK} = 125 \text{ kHz}, f_{ACLK} = 20 \text{ kHz},$	0.9 V		3	2 37	
	Program executes in RAM,	1.3 V	50°C	3	5 41	
	CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.65 V		4	0 48	
I _{AM} /MHz	$f_{MCLK} = f_{SMCLK}$: 1 to 5 MHz, $f_{ACLK} = 20$ kHz Program executes in RAM, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.3 V	30°C	4	5	μΑ/ MHz

All inputs are tied to 0 V or to $V_{CC}.$ Outputs do not source or sink any current. Characterized with program executing typical data processing "Type2". (1)

(2)

Low-Power Mode Supply Current (Into V_{CC}) Excluding External Current⁽¹⁾⁽²⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN	TYP	MAX	UNIT
		0.9 V			6.6	8	
		1.3 V	0°C		7.6	9	
		1.65 V			8.6	11	
		0.9 V			7	9	
I _{LPM0}	$f_{MCLK} = f_{SMCLK} = 1 \text{ MHz}, f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0	1.3 V	30°C		8.3	11	μA
		1.65 V			9.5	12	
		0.9 V			8.9	12	
		1.3 V	50°C		11	14	
		1.65 V			12	17	
		0.9 V			6.6	8	
		1.3 V	0°C		7.6	9	
		1.65 V			8.6	11	
		0.9 V			7	9	
I _{LPM1}	$f_{MCLK} = f_{SMCLK} = 1 \text{ MHz}, f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 1, SCG1 = 0, OSCOFF = 0	1.3 V	30°C		8.3	11	μA
	0.00000000000000000000000000000000000	1.65 V			9,5	12	
		0.9 V			8.9	12	
		1.3 V	50°C		11	14	
		1.65 V			12	17	

Current for WDT clocked by ACLK included. (1)

Current for Brownout included. (2)

www.ti.com

MSP430L092 MSP430C09x

SLAS673 -SEPTEMBER 2010

Low-Power Mode Supply Current (Into V_{CC}) Excluding External Current⁽¹⁾⁽²⁾ (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A	MIN	TYP	MAX	UNIT
		0.9 V			26	30	
		1.3 V	0°C to 30°C		28	32	
	$f_{MCLK} = f_{SMCLK} = 1MHz, f_{ACLK} = 1MHz$	1.65 V			29	33	
LPM2,1MHz	$f_{MCLK} = f_{SMCLK} = 1MHz$, $f_{ACLK} = 1MHz$ CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	0.9 V			28	32	μA
		1.3 V	50°C		30	35	
		1.65 V			32	38	
		0.9 V			6.6	8	
		1.3 V	0°C		7.6	10	
		1.65 V			8.6	11	
		0.9 V			7	10	
LPM2,20kHz	$f_{MCLK} = f_{SMCLK} = f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	1.3 V	30°C		8.3	12	μA
·		1.65 V			9.5	13	
		0.9 V			8.9	13	
		1.3 V	50°C		11	15	
		1.65 V			12	17	
		0.9 V			6.6	8	
		1.3 V	0°C		7.6	9	
		1.65 V			8.6	11	
		0.9 V			7.1	9	
I _{LPM3}	$f_{MCLK} = f_{SMCLK} = f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0	1.3 V	30°C		8.3	11	μA
	CFOOFF = 1, 3COF = 1, 3COFF = 0	1.65 V			9.5	12	
		0.9 V			8.9	12	
		1.3 V	50°C		11	14	
		1.65 V	=		12	17	
		0.9 V			3.2	4.7	
		1.3 V	0°C		5.1	6.3	
		1.65 V	=		6.5	8	
		0.9 V			4	5.7	
LPM4	$f_{MCLK} = f_{SMCLK} = f_{ACLK} = 20 \text{ kHz}$ CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	1.3 V	30°C		6	7.9	μA
-	C = 1, S = 1, S = 1, S = 1, O = 1, O = 1	1.65 V	1		7.8	10	-
		0.9 V			6	8.9	
		1.3 V	50°C		8.6	12	
		1.65 V	1		11	16	

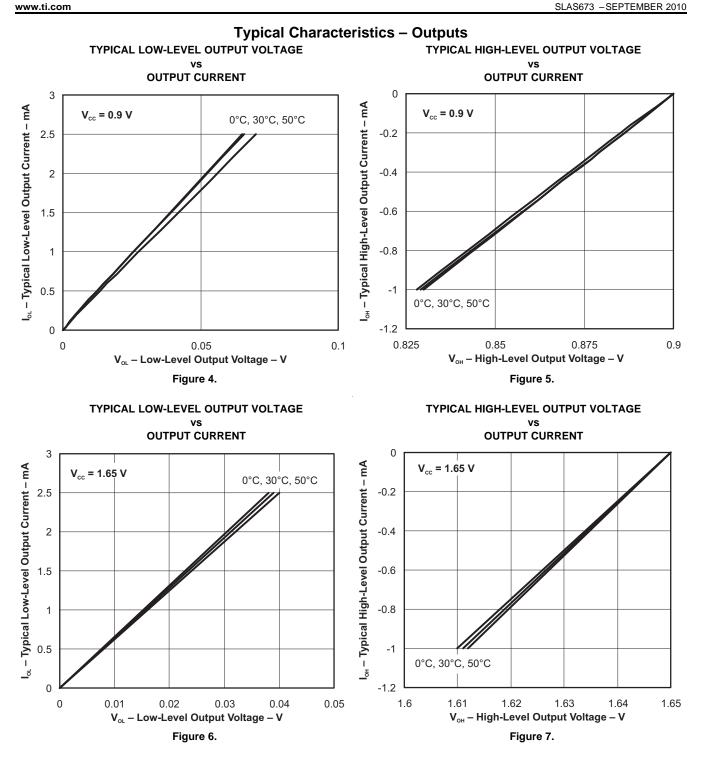
SLAS673 - SEPTEMBER 2010

ÈXAS STRUMENTS

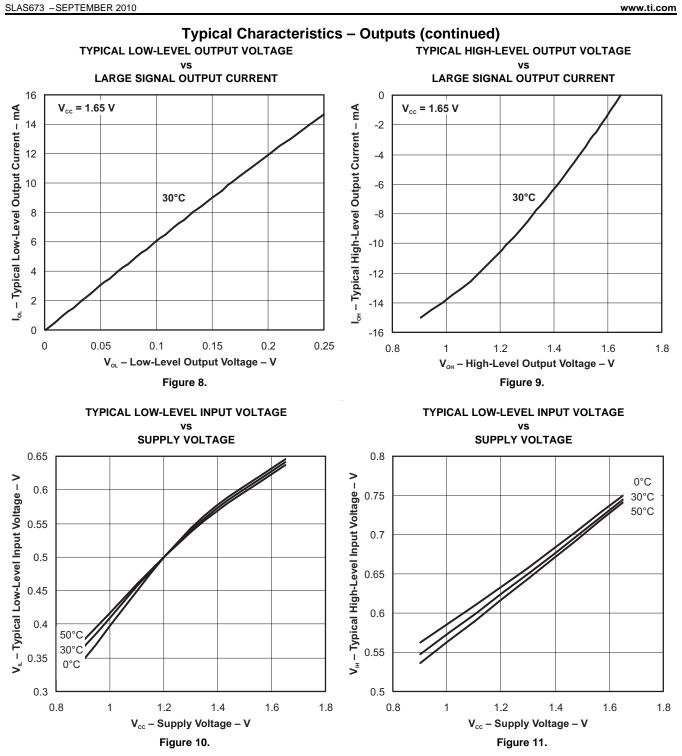
www.ti.com

Ports P1 and P2, RST/NMI/SVMOUT

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	V_{CC} = 0.9 V, I_{OH} = -1 mA ⁽¹⁾ for ports P1, P2	$V_{CC} - 0.25$			
V _{OH}	$V_{CC} = 1.65 \text{ V}, I_{OH} = -1 \text{ mA}^{(1)} \text{ for ports P1, P2}$	V _{CC} – 0.15			V
	V_{CC} = 0.9 V, I_{OH} = –300 $\mu A^{(1)}$ for ports P1, P2	V _{CC} – 0.15			
	$V_{CC} = 0.9 \text{ V}, I_{OL} = 2.5 \text{ mA}^{(2)}$ for ports P1, P2			0.2	
V _{OL}	V_{CC} = 1.65 V, I _{OL} = 2.5 mA ⁽²⁾ for ports P1, P2			0.15	V
	V_{CC} = 0.9 V, I _{OL} = 300 $\mu A^{(2)}$ for ports P1, P2			0.07	
N/	V _{CC} = 1.65 V			$0.3 \times V_{CC}$	V
V _{IL}	$V_{CC} = 0.9 V$			$0.25 \times V_{CC}$	V
N/	V _{CC} = 1.65 V	0.7 × V _{CC}			V
V _{IH}	V _{CC} = 0.9 V	$0.75 \times V_{CC}$			V
V _{HYS}	Intrinsic hysteresis		150		mV
	V_{CC} = 0.9 V, C_L = 15 pF R_L = 750 Ω to V_{SS} on V_{OH} for ports P1, P2			75	
Δt/Δv	V_{CC} = 0.9 V, C_L = 15 pF R_L = 320 Ω to V_{CC} on V_{OL} for ports P1, P2			75	ns/V
$\Delta U \Delta V$	V_{CC} = 1.65 V, C_L = 25 pF R_L = 1600 Ω to V_{SS} on V_{OH} for ports P1, P2			75	115/ V
	V_{CC} = 1.65 V, C_L = 25 pF R_L = 600 Ω to V_{SS} on V_{OL} for ports P1, P2			75	
I _{ОН}	V_{CC} = 0.9 V to 1.65 V for ports P1, P2	-1			mA
I _{OL}	V_{CC} = 0.9 V to 1.65 V for ports P1, P2	2.5			mA
I _{LKG}	V _{CC} = 0.9 V to 1.65 V (at 50°C)			±100	nA
t _{INT}	P0.x, V _{CC} = 0.9 V to 1.65 V		200		ns
R _{PULL}	For pullup: VIN = V_{SS} , For pulldown: VIN = V_{CC} for ports P1, P2	30	35	40	kΩ
R _{RST}	Pullup on RST/NMI/SVMOUT	30	35	40	kΩ
R _{EXT}	External pullup resistor on RST terminal (optional)	680			kΩ
CI	$V_{IN} = V_{SS}$ or V_{CC}		7		pF

(1) The maximum total current I_{OH} , for all outputs combined should not exceed 5 mA to hold the maximum voltage drop specified. (2) The maximum total current I_{OL} , for all outputs combined should not exceed 15 mA to hold the maximum voltage drop specified.



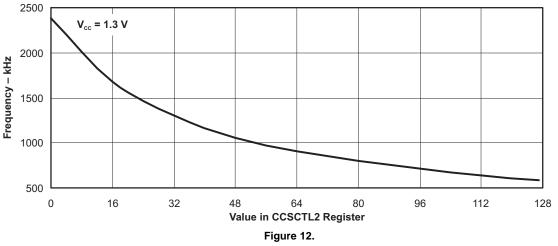
SLAS673 -SEPTEMBER 2010

Texas NSTRUMENTS

www.ti.com

SLAS673 - SEPTEMBER 2010

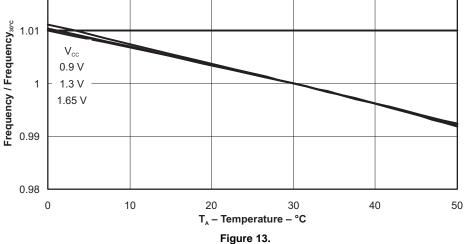
www.ti.com


High-Frequency Oscillator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{HFOSC}	V _{CC} = 0.9 V to 1.65 V (minimum trim range via register)	0.75	1	1.25	MHz
f _{HFOSC}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V} \text{ (trimmed at } 30^{\circ}\text{C)}$	0.92	1	1.08	MHz
Duty cycle	V _{CC} = 0.9 V to 1.65 V	45	50	55	%
tSTART	V _{CC} = 0.9 V to 1.65 V			20	μs
$\Delta f_{HFOSC}/DT$	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, f_{HFOSC} = 1 \text{ MHz}$		±0.07	±0.15	%/°C
$\Delta f_{HFOSC} / \Delta V_{CC}$	V_{CC} = 1.0 V to 1.65 V, f_{HFOSC} = 1 MHz			±1	%/V
$\Delta f_{HFOSC} / \Delta V_{CC}$	V_{CC} = 0.90 V to 1.0 V, f_{HFOSC} = 1 MHz		±1	±2.5	%/V
$\Delta f_{HFOSC}/CALSTEP^{(1)}$	V_{CC} = 0.9 V to 1.65 V, f_{HFOSC} = 1 MHz, ±64 calibration steps	0.1	1	4	%/ Step
losc	V _{CC} = 0.9 V to 1.65 V, f _{HFOSC} = 1 MHz		22		μA

(1) Normalized to typical frequency

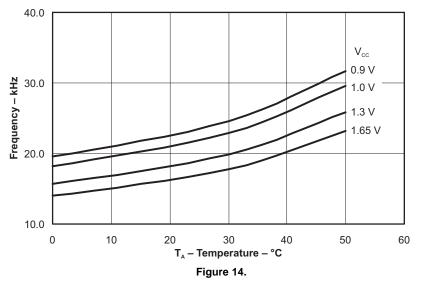

Typical Characteristics – High-Frequency Oscillator

FREQUENCY vs TRIM SETTING

FREQUENCY vs TEMPERATURE

1.02

www.ti.com


SLAS673 - SEPTEMBER 2010

Low-Frequency Oscillator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{LFOSC}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}$	6	20	45	kHz
Duty cycle	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}$	45	50	55	%
t _{START}	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}$			500	μs
I _{OSC}	V_{CC} = 0.9 V to 1.65 V, f _{LFOSC} = 20 kHz		0.6		μA

Typical Characteristics – Low-Frequency Oscillator FREQUENCY vs TEMPERATURE

Brown-Out Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP I	ΛAΧ	UNIT
V _{BOR(Start)}		490			mV
V _(BOR_IT+)	V_{CC} rising, $\Delta V_{CC}/\Delta t < 3$ V/s	1095	1	150	mV
V _(BOR_IT-)	V_{CC} falling, $\Delta V_{CC}/\Delta t < 3$ V/s	860		900	mV
V _{hys(BOR)}			200		mV
V _{MARGIN}	$V_{MARGIN} = V_{(BOR-IT-)} - V_{CRIT}$, $(V_{CRIT} < 820 \text{ mV})^{(1)}$	40			mV
t _{d(BOR)}			30	00 ⁽²)	μs

(1) V_{CRIT} is a temperature depending voltage where the single components of the device become unreliable (the 'L092 provides a safety margin to ensure overall device function).

(2) Strongly depends on voltage ramp in system (actually a maximum typical value).

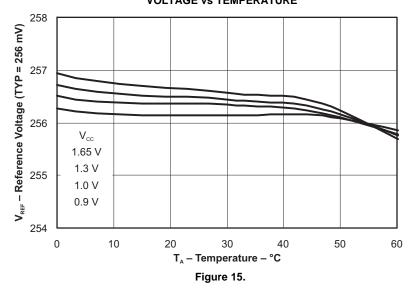
SLAS673 - SEPTEMBER 2010

www.ti.com

A-POOL, External Reference Source

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
N/	V_{CC} = 0.9 V to 1.65 V, ADC / DAC operational	100		275	mV
V _{REF}	V_{CC} = 0.9 V to 1.65 V, ADC / DAC not operational	0		V_{CC}	V
I _{REF(Input)}	$V_{CC} = 0.9 V$ to 1.65 V, load to external sinks		3		μA
C _{REF}	REFON = 0	20		50	pF


A-POOL, Built-In Reference Source

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
V _{REF}	V _{CC} = 0.9 V to 1.65 V (±1.5%, overall 3%)	256		mV
I _{REF}	$V_{CC} = 0.9 V$ to 1.65 V	10		μA
C _{REF}	REFON = 1	20	50	pF
T _{REF}	V_{CC} = 0.9 V to 1.65 V (Δ V/ Δ T × V _{REF} referenced to 25°C)	±250		ppm/ °C
t _{SETTLE}	$V_{CC} = 0.9 V$ to 1.65 V, REFON = 1, $C_{REF} = C_{REF} (max)^{(1)}$	900 ⁽¹⁾		μs
I _{REF(Output)}	$V_{CC} = 0.9 V$ to 1.65 V, REFON = 1, $C_{REF} = C_{REF}$ (max)	2		μA

(1) As the actual on reference enable signal is synchronized with the LF oscillator.

Typical Characteristics – A-POOL Built-In Reference Source VOLTAGE vs TEMPERATURE

www.ti.com

SLAS673 - SEPTEMBER 2010

A-POOL, Temperature Sensor

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISENSOR	V _{CC} = 0.9 V to 1.65 V		2		μA
TC _{SENSOR}	V_{CC} = 0.9 V to 1.65 V, T_A = 0°C to 50°C ($\Delta V / \Delta T$ referenced to 30°C)		464		µV/°C
V _{OFFSET25}	$V_{CC} = 0.9 \text{ V}$ to 1.65 V at $T_A = 30^{\circ}\text{C}$		179		mV
t _{SETTLE}	V_{CC} = 0.9 V to 1.65 V (before start of conversion)			15	μs
V _{SENSOR} ⁽¹⁾	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, \text{ T}_{A} = 0^{\circ}\text{C to } 50^{\circ}\text{C}$		179		mV

(1) This formula can be used to calculate the temperature sensor output voltage: $V_{SENSOR} = V_{OFFSET25} + TC_{SENSOR} \times (T_A - 30^{\circ}C)$.

A-POOL, Input Voltage Dividers

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ΔRx/Rx	Any Rx in dividers		±1.5		%
	Any Rx across switches and internal supply voltage divider (by 4, by 8)		±2		70
	On A0/A1 , VA0/VA1 = 0.5V, ADIV0/ADIV1 = 1 (500-mV range)	120	200	300	
RIN	On A2/A3 , VA2/VA3 = 0.5V, ADIV2/ADIV4 = 1 (1-V range)	80	133	190	kΩ
	On A2/A3 , VA2/VA3 = 0.5V, ADIV2+ADIV3/ADIV4+ADIV5 = 1 (2-V range)	70	114	150	
ΔI _{VCC}	ADIV7 = 1 (supply voltage divider on)		2		μA

A-POOL, DAC-8

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF}	$V_{CC} = 0.9 V$ to 1.65 V		256		mV
	On ±1 LSB steps (6 τ), V _{CC} = 0.9 V to 1.65 V, external V _{REF}		2		
I SETTLE	Between all codes > 20 on AOUT (6 τ), V _{CC} = 0.9 V to 1.65 V, external V _{REF}	14			μs
EI	V_{CC} = 0.9 V to 1.65 V, external V_{REF} , add ±7 mV for V_{OUT} offset ⁽¹⁾ for codes > 7			±3	LSB
ED	V_{CC} = 0.9 V to 1.65 V, external VREF, add ±7 mV for V _{OUT} offset ⁽¹⁾ for codes > 7			±1	LSB

(1) This offset can be compensated using software.

A-POOL, Comparator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	$V_{CC} = 0.9 V$ to 1.65 V	0		275	mV
t _{pd}	Overdrive = 20 mV			0.5	
	Overdrive = 5 mV			0.5	μs
	Overdrive = 1 mV			1	

A-POOL, AOUT Terminal

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT	
I _{LOAD}		$V_{OUT} > 50 \text{ mV}$ (accuracy ±1% of V_{OUT})	5			
	$V_{CC} = 0.9 \text{ V to } 1.65 \text{ V}, C_{LOAD} = 25 \text{ pF}$ $V_{OUT} > 20 \text{ mV}$ (accuracy ±1% of V_{OUT})					μA
t SETTLE	$V_{CC} = 0.9$ V to 1.65 V, $C_{LOAD} = 25$ pF, ± 19	% (6τ) (for AOUT 20 to 256 mV)			4	μs

SLAS673 - SEPTEMBER 2010

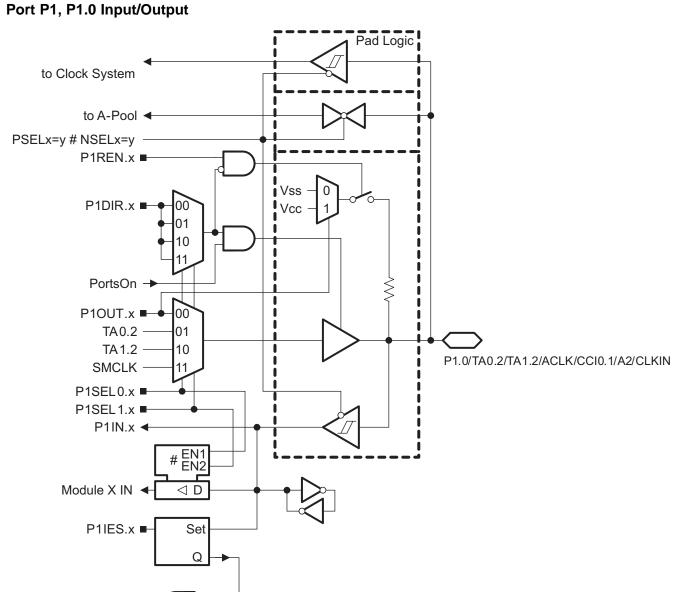
www.ti.com

A-POOL, ADC-8 Counter

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{CNT}	$V_{CC} = 0.9 V \text{ to } 1.65 V$			1	MHz
t _{CONV}	Full conversion (all codes), f _{CNT} = 1 MHz		256		μs

RAM


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OP}	Operating temperature 0°C to 70°C, f _{CPU} = 1MHz	900			mV
V _{RET}	Operating temperature 0°C to 70°C (tracks BOL level)	700			mV

SLAS673 -SEPTEMBER 2010

PORT SCHEMATICS

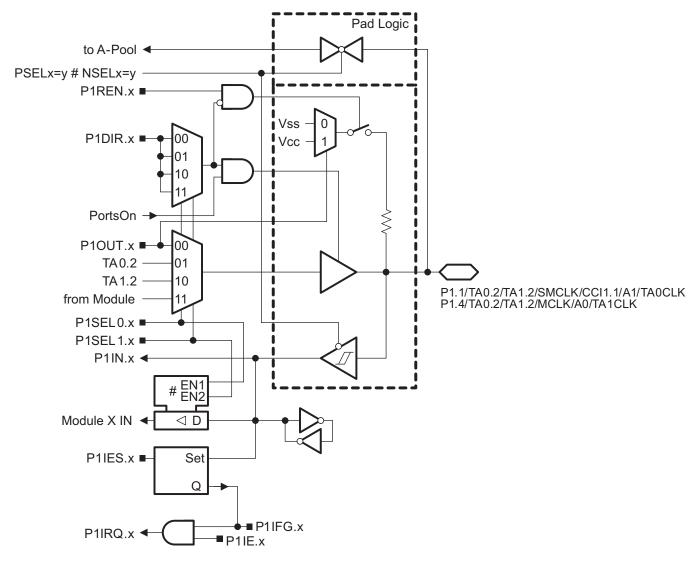
P1IRQ.x ◀	●■P1IFG.x ■P1IE.x

				CONTROL BIT	「S/SIGNALS ⁽¹⁾	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx
		P1.0 (I/O)	I:0, O:1	0	0	0
		Timer_A0.2	1	0	1	0
		Timer_A1.2	1	1	0	0
P1.0/TA0.2/TA1.2/ACLK/ CCI0.1/A2/CLKIN	0	ACLK	1	1	1	0
		Timer A0, CCI1B	0	≠0	≠0	Х
		A2	Х	Х	Х	2
		CLKIN (via Bypass)	Х	Х	Х	Х

Table 12. Port P1 (P1.0) Pin Functions

(1) X = Don't care

www.ti.com



www.ti.com

MSP430L092 MSP430C09x

SLAS673 - SEPTEMBER 2010

Port P1, P1.1 and P1.4 Input/Output

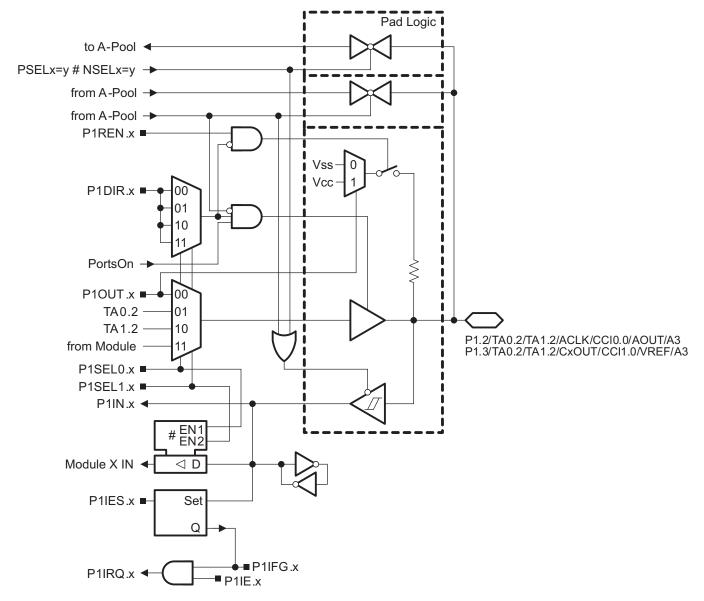
TEXAS INSTRUMENTS

SLAS673 - SEPTEMBER 2010

www.ti.com

				CONTROL BIT	S/SIGNALS ⁽¹⁾	(1)	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx	
		P1.1 (I/O)	I:0, O:1	0	0	0	
		Timer_A0.2	1	0	1	0	
		Timer_A1.2	1	1	0	0	
P1.1/TA0.2/TA1.2/SMCLK/ CCI1.1/A1/TA0CLK	1	SMCLK	1	1	1	0	
		A1	Х	Х	Х	1	
		TimerA0 CLK	Х	≠0	≠0	Х	
		Timer A1, CCI1B	0	≠0	≠0	Х	
		P1.4 (I/O)	I:0, O:1	0	0	0	
		Timer_A0.2	1	0	1	0	
P1.4/TA0.2/TA1.2/MCLK/		Timer_A1.2	1	1	0	0	
A0/TA1CLK	4	MCLK	1	1	1	0	
		A0	Х	х	Х	0	
		TimerA1 CLK	0	≠0	≠0	Х	

Table 13. Port P1 (P1.1, P1.4) Pin Functions


(1) X = Don't care

www.ti.com

SLAS673 - SEPTEMBER 2010

Texas NSTRUMENTS

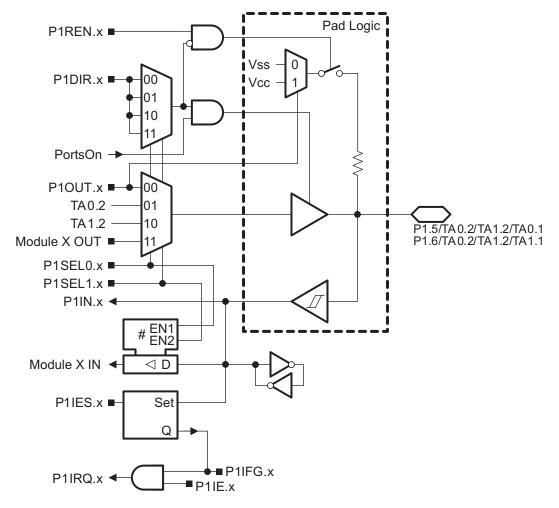
www.ti.com

SLAS673 - SEPTEMBER 2010

				CONTROL BITS/SIGNALS ⁽¹⁾					
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x	RSELx/ASE Lx	Analog Out		
		P1.2 (I/O)	I:0, O:1	0	0	0	0		
		Timer_A0.2	1	0	1	0	0		
		Timer_A1.2	1	1	0	0	0		
P1.2/TA0.2/TA1.2/ACLK/ CCI0.0/AOUT/A3	2	ACLK	1	1	1	0	0		
0010.0// 000 1// 0		Timer A0, CCI0B	0	≠ 0	≠0	Х	Х		
		A3	X	Х	Х	3	Х		
		AOUT ⁽²⁾	X	х	Х	Х	1		
		P1.3 (I/O)	I:0, O:1	0	0	0	0		
		Timer_A0.2	1	0	1	0	0		
		Timer_A1.2	1	1	0	0	0		
P1.3/TA0.2/TA1.2/CxOUT/ CCI1.0//VREF/A3	3	CxOUT	1	1	1	0	0		
CONT.O// VINEL/AS		Timer A1, CCI0B	0	≠ 0	≠0	Х	Х		
		A3	X	Х	Х	3	Х		
		VREF ⁽²⁾	Х	Х	Х	Х	1		

Table 14 Port P1 (P1 2 P1 3) Pin Functions

(1) X = Don't care

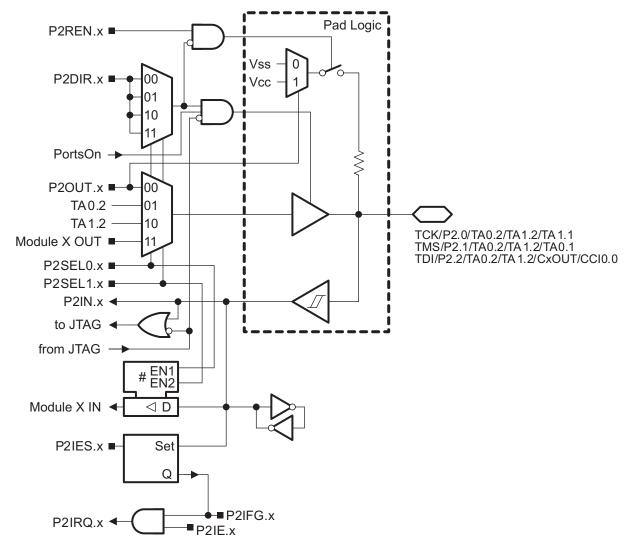

(2) An analog output enable overrides the digital output control.

SLAS673 -SEPTEMBER 2010

Port P1, P1.5 and P1.6 Input/Output

Table 15. Port P1 (P1.5, P1.6) Pin Functions

PIN NAME (P1.x)		FUNCTION	CONT	ROL BITS/SIGN	IALS ⁽¹⁾
PIN NAME (PI.X)	x	FUNCTION	P1DIR.x	P1SEL1.x	P1SEL0.x
		P1.5 (I/O)	I:0, O:1	0	0
		Timer_A0.2	1	0	1
P1.5/TA0.2/TA1.2/TA0.1	5	Timer_A1.2	1	1	0
		Timer A0.1	1	1	1
		Timer_A0.CCI1A	0	≠0	≠0
		P1.6 (I/O)	I:0, O:1	0	0
		Timer_A0.2	1	0	1
P1.6/TA0.2/TA1.2/TA1.1	6	Timer_A1.2	1	1	0
		Timer A1.1	1	1	1
		Timer_A1.CCI1A	0	≠0	≠0


(1) X = Don't care

SLAS673 - SEPTEMBER 2010

www.ti.com

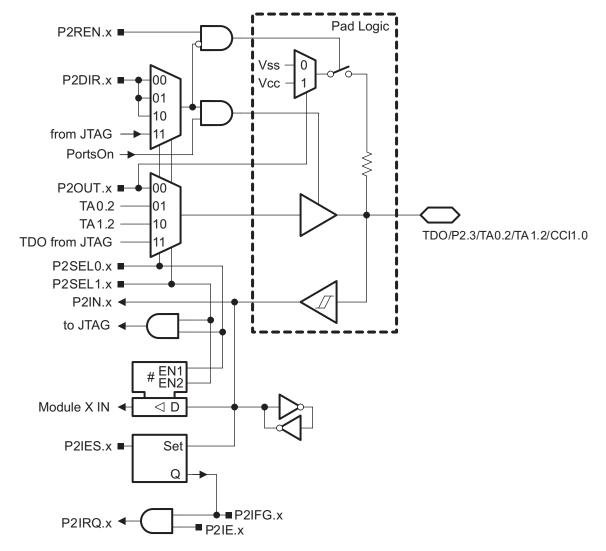
Port P2, P2.0 to P2.2, Input/Output

SLAS673 - SEPTEMBER 2010

www.ti.com

		FUNCTION		CONTROL BI	TS/SIGNALS ⁽¹⁾	
PIN NAME (P2.x)	x	FUNCTION	P2DIR.x	P2SEL1.x	P2SEL0.x	JTAG Mode
		P2.0 (I/O)	I:0, O:1	0	0	0
		Timer_A0.2	1	0	1	0
TCK/P2.0/TA0.2/	0	Timer_A1.2	1	1	0	0
TA1.2/TA1.1	0	Timer_A1.1	1	1	1	0
		Timer_A0.CCI2A and Timer_A1.CCI2A	0	≠0	≠0	0
		JTAG-TCK ⁽²⁾⁽³⁾⁽⁴⁾	х	х	х	1
		P2.1 (I/O)	I:0, O:1	0	0	0
		Timer_A0.2	1	0	1	0
TMS/P2.1/TA0.2/		Timer_A1.2	1	1	0	0
TA1.2/TA0.1	1	Timer_A0.1	1	1	1	0
		Timer_A0.CCI2B and Timer_A1.CCI2B	0	≠ 0	≠ 0	0
		JTAG-TMS ⁽²⁾⁽³⁾⁽⁴⁾	х	х	х	1
		P2.2 (I/O)	I:0, O:1	0	0	0
		Timer_A0.2	1	0	1	0
TDI/P2.2/TA0.2/TA1.2/	2	Timer_A1.2	1	1	0	0
CxOUT/CCI0.0	2	CxOUT	1	1	1	0
		Timer_A0.CCI0A	0	≠ 0	≠0	0
		JTAG-TDI ⁽²⁾⁽³⁾⁽⁴⁾	Х	Х	Х	1

Table 16. Port P2 (P2.0 to P2.2) Pin Functions


X = Don't care
 JTAG signals TMS,TCK and TDI read as "1" when nor configured as explicit JTAG terminals
 JTAG overrides digital output control when configured as explicit JTAG terminals
 JTAG function with enabled pullup resistors is default after power up

SLAS673 - SEPTEMBER 2010

www.ti.com

Port P2, P2.3, Input/Output

Table 17. Port P2 (P2.3) Pin Functions

PIN NAME (P2.x)		FUNCTION	CONTROL BITS/SIGNALS ⁽¹⁾			
	x		P2DIR.x	P2SEL1.x	P2SEL0.x	
		P2.0 (I/O)	I:0, O:1	0	0	
		Timer_A0.2	1	0	1	
TDO/P2.0/TA0.2/TA1.2/ CCI1.0	3	Timer_A1.2	1	1	0	
		JTAG-TDO(2)(3)	1	1	1	
		Timer_A1.CCI0A	0	≠0	≠0	

(1) X = Don't care

11-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430L092SPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 50	L092S	Samples
MSP430L092SPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 50	L092S	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

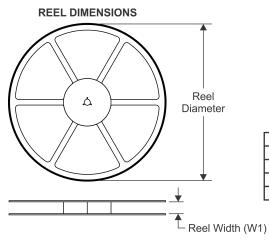
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

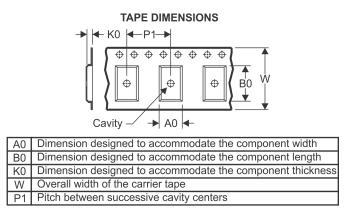
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

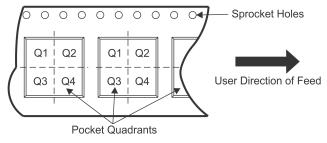
PACKAGE OPTION ADDENDUM

11-Dec-2015


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

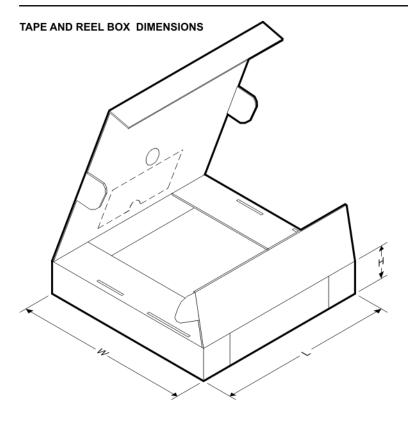
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--

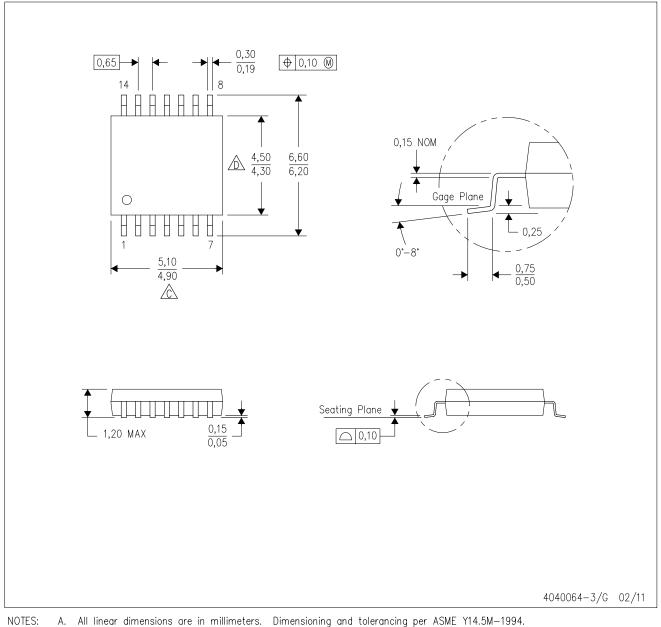

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430L092SPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

15-Feb-2016

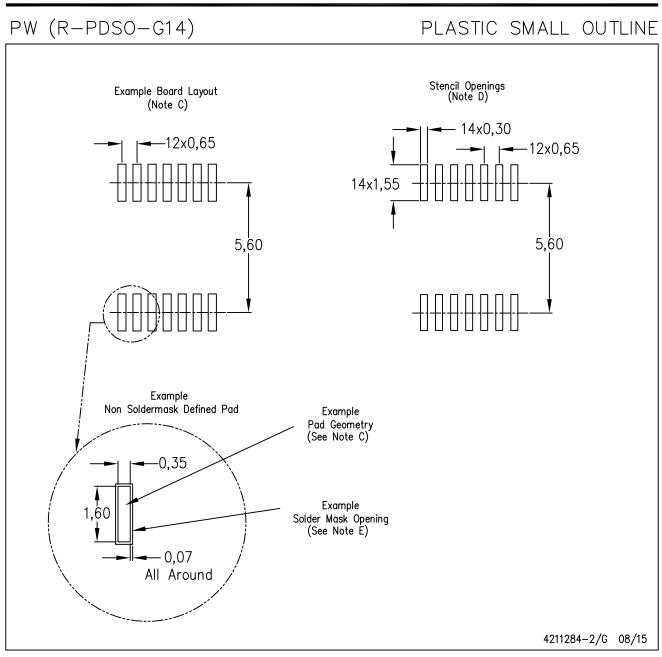


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430L092SPWR	TSSOP	PW	14	2000	367.0	367.0	38.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated