

MBRS1100T3/MBRS190T3 1.0A Surface Mount Schottky Power Rectifier

Features

- Pb-Free Packages are Available
- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- High Blocking Voltage 100 Volts
- 175°C Operating Junction Temperature
- Guardring for Stress Protection

Mechanical Data

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band

Maximum Ratings and Electrical Characteristics @ T_A = 25°C unless otherwise specified

Rating	Symbol	Value		Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBRS190T3	V _{RRM} V _{RWM} V _R	90		V	
MBRS1100T3		100			
Average Rectified Forward Current T _L = 163°C T _L = 148°C	I _{F(AV)}	1.0 2.0		A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50		A	
Operating Junction Temperature (Note 1)	TJ	-65 to +175		°C	
Voltage Rate of Change	dv/dt	10		V/ns	
Maximum Instantaneous Forward Voltage (Note 1) (i_F = 1.0 A, T_J = 25°C)			V _F	0.75	V
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, TJ = 25° C) (Rated dc Voltage, T _J = 100° C)			I _R	0.5 5.0	mA

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

2. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

⁺G

Е

·H→

Figure 2. Typical Reverse Current*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if V_R is sufficient below rated V_R.

Figure 3. Power Dissipation

Figure 4. Current Derating, Case, Per Leg

Figure 5. Typical Capacitance