

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Typical Applications

The HMC738LP4(E) is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Features

Pout: +9 dBm Phase Noise: -95 dBc/Hz @ 100 kHz Typ. No External Resonator Needed 24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram (RF) VTUNE V/c N/C N/C N/C Vcc 24 23 22 21 20 19 N/C 1 18 N/C 17 ÷8 GND RFOUT/16 2 N/C 3 16 RFOUT Vcc (DIG) 4 15 GND RF/2 N/C 5 14 N/C N/C 6/ 13 N/C 10 11 12 8 9 PACKAGE N/C N/C N/C RFOUT/2 GND N/C BASE GND

General Description

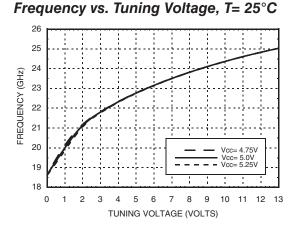
The HMC738LP4(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC738LP4(E) integrates a resonator, negative resistance device, varactor diode and divide-by-16 prescaler. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost leadless QFN 4x4 mm surface mount package

Electrical Specifications, $T_A = +25^{\circ} C$, Vcc (RF), Vcc (DIG) = +5V

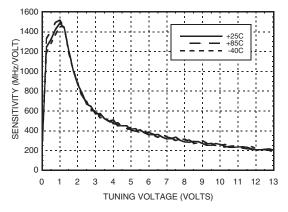
Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		20.9 - 23.9		GHz
Power Output	RF OUT RF OUT/2 RF OUT/16	3 -3.5 -7		15 +3.5 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-95		dBc/Hz
Tune Voltage	Vtune	1		13	V
Supply Current	Icc (RF), Icc (DIG)	160	200	220	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		-23 -40		dBc dBc
Pulling (into a 2.0:1 VSWR)			22		MHz pp
Pushing @ Vtune= 5V			-90		MHz/V
Frequency Drift Rate			3.5		MHz/°C

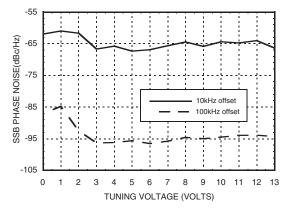
For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

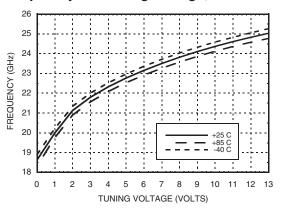
<u>8 - 1</u>

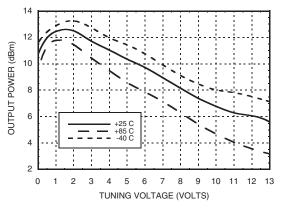

8

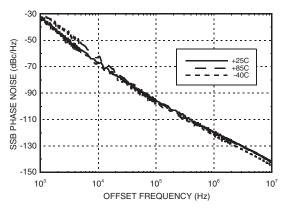
VCOS WITH FO/2 OUTPUT - SMT




MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

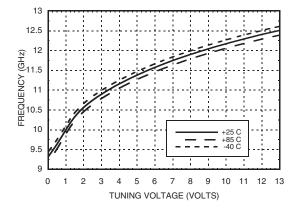

Sensitivity vs. Tuning Voltage, Vcc= +5V


SSB Phase Noise vs. Tuning Voltage

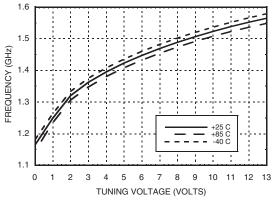


Output Power vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise @ Vtune= 5V

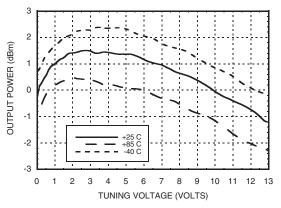


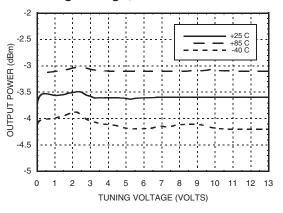
For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V


Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V


Absolute Maximum Ratings

+5.5V
0 to +15V
135° C
1.2 W
43 °C/W
-65 to +150 °C
-40 to +85 °C

RFOUT/2 Output Power Power vs. Tuning Voltage, Vcc= +5V

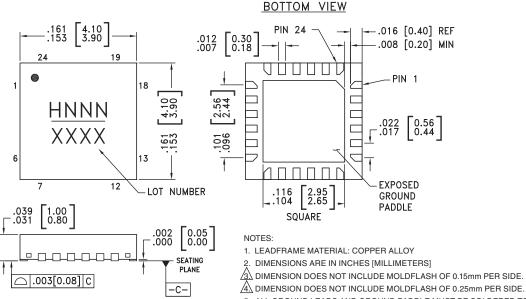
Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	175
5.0	200
5.25	220

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


8

ROHS V

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Outline Drawing

 <u>44.</u> DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC738LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H738 XXXX
HMC738LP4E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 ^[2]	<u>H738</u> XXXX

[1] Max peak reflow temperature of 235 $^{\circ}\mathrm{C}$

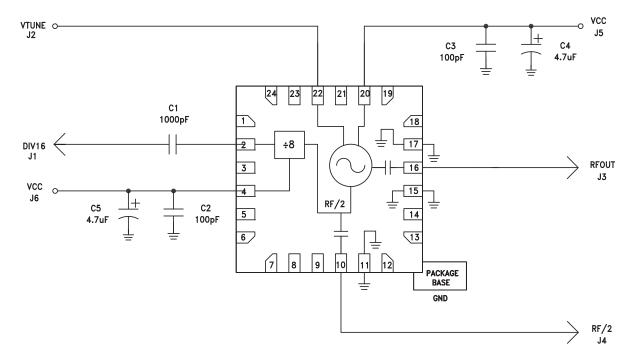
[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 21, 23, 24	N/C	No Connection required. These pins may be connected to RF/DC ground without affecting performance.	
2	RFOUT/16	RF/16 Divided Output. Requires DC Block.	5V RFOUT/16
4	Vcc (DIG)	Supply voltage for prescaler. Can be omitted if prescaler is not needed to conserve approximately 100 mA.	Vcco (DIG)

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com



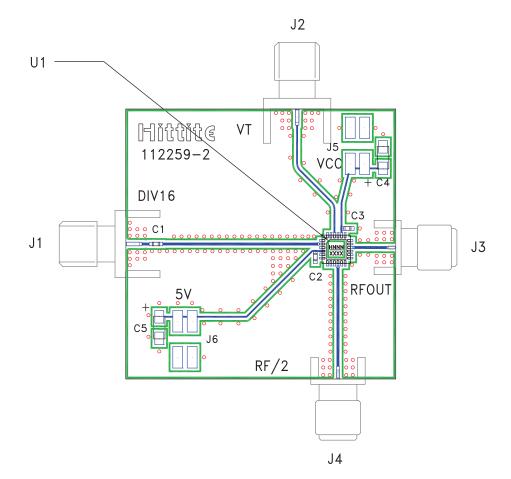
MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
10	RFOUT/2	Half frequency output (AC coupled)	
11, 15, 17	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	
16	RFOUT	RF output (AC coupled).	
20	Vcc (RF)	Supply Voltage	VccO (RF) = 34pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	1.5nH 250Ω VTUNEO 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF

Typical Application Circuit

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com



ROHS V

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Evaluation PCB

List of Materials for Evaluation PCB 112261 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector	
J3	PCB Mount K-Connector	
J4	PCB Mount SRI SMA Connector	
J5 - J6	2 mm SMT 8 Pin Molex Header	
C1	1,000 pF Capacitor, 0402 Pkg.	
C2, C3	100 pF Capacitor, 0402 Pkg.	
C4, C5	4.7 µF Tantalum Capacitor	
U1	HMC738LP4(E)	
PCB [2]	112259 Eval Board	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.