

SLUSC67A - MARCH 2016 - REVISED MARCH 2016

bq4050

bg4050 CEDV Gas Gauge and Protection Solution for 1-Series to 4-Series Cell Li-Ion Battery Packs

Features

- High-Side Protection N-CH FET Drive Allows Serial Bus Communication During Fault
- Cell Balancing with Internal Bypass Optimizes **Battery Health**
- Diagnostic Lifetime Data Monitor and Black Box Recorder for Failure Analysis
- Full Array of Programmable Protection Features: Voltage, Current, Temperature
- JEITA Charge Algorithms Support Smart Charging
- Analog Front End with Two Independent ADCs
 - Simultaneous Current and Voltage Sampling
 - High-Accuracy Coulomb Counter with Input Offset Error < 1 µV (Typical)
- Supports Battery Trip Point (BTP) Function for Windows® Integration
- LED Display for State of Charge and Battery Status Indication
- 100-KHz SMBus v1.1 Communications Interface for Programming and Data Access with Alternate 400-KHz Mode
- SHA-1 Authentication Responder for Increased **Battery Pack Security**
- Compact 32-pin VQFN Package (RSM)

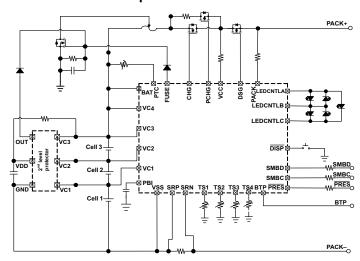
Applications

- Notebook/Netbook PCs
- Medical and Test Equipment
- Portable Instrumentation

3 Description

The Texas Instruments bq4050 device, incorporating Compensated End-of-Discharge Voltage (CEDV) technology, is a highly integrated, accurate, 1-series to 4-series cell gas gauge and protection solution, enabling autonomous charger control and cell balancing.

The bq4050 device provides a fully integrated packbased solution with a flash programmable custom reduced instruction-set CPU (RISC), safety protection, and authentication for Li-Ion and Li-Polymer battery packs.


The bq4050 gas gauge communicates via an SMBuscompatible interface and combines an ultra-low power, high-speed TI bqBMP processor, highaccuracy analog measurement capabilities, integrated memory, an array of peripheral and communication ports, an N-CH FET drive, and a SHA-1 Authentication transform responder into a complete, high-performance battery management solution.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
ba4050	VQFN (32)	4.00 mm × 4.00 mm		

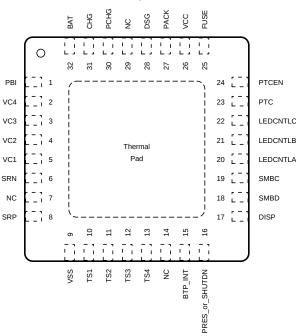
(1) For all available packages, see the orderable addendum at the end of this data sheet.

Simplified Schematic

Table of Contents

	Factures		6.25 Electrical Characteristics: High Fraguency	
1	Features 1		6.25 Electrical Characteristics: High-Frequency Oscillator	14
2	Applications 1		6.26 Electrical Characteristics: Low-Frequency	
3	Description 1		Oscillator	15
4	Revision History2		6.27 Electrical Characteristics: Voltage Reference 1	1 15
5	Pin Configuration and Functions3		6.28 Electrical Characteristics: Voltage Reference 2	2 15
6	Specifications7		6.29 Electrical Characteristics: Instruction Flash	15
	6.1 Absolute Maximum Ratings 7		6.30 Electrical Characteristics: Data Flash	15
	6.2 ESD Ratings 7		6.31 Electrical Characteristics: OCD, SCC, SCD1, S	
	6.3 Recommended Operating Conditions 8		Current Protection Thresholds	
	6.4 Thermal Information 8		6.32 Timing Requirements: OCD, SCC, SCD1, SCI	
	6.5 Electrical Characteristics: Supply Current		Current Protection Timing	
	6.6 Electrical Characteristics: Power Supply Control 9		6.33 Timing Requirements: SMBus	
	6.7 Electrical Characteristics: AFE Power-On Reset 9		6.34 Timing Requirements: SMBus XL	
	6.8 Electrical Characteristics: AFE Watchdog Reset and	_	6.35 Typical Characteristics	
	Wake Timer9	7	Detailed Description	
	6.9 Electrical Characteristics: Current Wake		7.1 Overview	
	Comparator		7.2 Functional Block Diagram	
	6.10 Electrical Characteristics: VC1, VC2, VC3, VC4, BAT, PACK		7.3 Feature Description	
	6.11 Electrical Characteristics: SMBD, SMBC	_	7.4 Device Functional Modes	
	6.12 Electrical Characteristics: PRES, BTP_INT, DISP	8	Applications and Implementation	
			8.1 Application Information	
	6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB,		8.2 Typical Applications	
	LEDCNTLC 11	9	Power Supply Recommendations	
	6.14 Electrical Characteristics: Coulomb Counter 11	10	Layout	42
	6.15 Electrical Characteristics: CC Digital Filter 11		10.1 Layout Guidelines	42
	6.16 Electrical Characteristics: ADC 12		10.2 Layout Example	
	6.17 Electrical Characteristics: ADC Digital Filter 12	11	Device and Documentation Support	47
	6.18 Electrical Characteristics: CHG, DSG FET Drive . 12		11.1 Documentation Support	47
	6.19 Electrical Characteristics: PCHG FET Drive 13		11.2 Community Resources	
	6.20 Electrical Characteristics: FUSE Drive		11.3 Trademarks	47
	6.21 Electrical Characteristics: Internal Temperature		11.4 Electrostatic Discharge Caution	47
	Sensor		11.5 Glossary	47
	6.22 Electrical Characteristics: TS1, TS2, TS3, TS4 14	12	Mechanical, Packaging, and Orderable	
	6.23 Electrical Characteristics: PTC, PTCEN		Information	47

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
March 2016	Α	PRODUCT PREVIEW to Production Data

5 Pin Configuration and Functions

Pin Functions

P	IN	TYPE	DESCRIPTION		
NAME	NUMBER	ITPE	DESCRIPTION		
PBI	1	P ⁽¹⁾	Power supply backup input pin		
VC4	2	IA	Sense voltage input pin for the most positive cell, and balance current input for the most positive cell		
VC3	3	IA	Sense voltage input pin for the second most positive cell, balance current input for the second most positive cell, and return balance current for the most positive cell		
VC2	4	IA	Sense voltage input pin for the third most positive cell, balance current input for the third most positive cell, and return balance current for the second most positive cell		
VC1	5	IA	Sense voltage input pin for the least positive cell, balance current input for the least positive cell, and return balance current for the third most positive cell		
SRN	6	1	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.		
NC	7	_	Not internally connected. Connect to V _{SS} .		
SRP	8	I	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.		
VSS	9	Р	Device ground		
TS1	10	IA	Temperature sensor 1 thermistor input pin		
TS2	11	IA	Temperature sensor 2 thermistor input pin		
TS3	12	IA	Temperature sensor 3 thermistor input pin		
TS4	13	IA	Temperature sensor 4 thermistor input pin		
NC	14	_	Not internally connected. Connect to V _{SS} .		
BTP_INT	15	0	Battery Trip Point (BTP) interrupt output		
PRES or SHUTDN	16	I	Host system present input for removable battery pack or emergency system shutdown input for embedded packs		

(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output

Pin Functions (continued)

P	IN	TVDE	DECORIDATION	
NAME	NUMBER	TYPE	DESCRIPTION	
DISP	17	_	Display control for LEDs	
SMBD	18	I/OD	SMBus data pin	
SMBC	19	I/OD	SMBus clock pin	
LEDCNTLA	20	_	LED display segment that drives the external LEDs depending on the firmware configuration	
LEDCNTLB	21	_	LED display segment that drives the external LEDs depending on the firmware configuration	
LEDCNTLC	22	_	LED display segment that drives the external LEDs depending on the firmware configuration	
PTC	23	IA	Safety PTC thermistor input pin. To disable, connect PTC and PTCEN to V _{SS} .	
PTCEN	24	IA	Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect PTC and PTCEN to V_{SS} .	
FUSE	25	0	Fuse drive output pin	
VCC	26	Р	Secondary power supply input	
PACK	27	IA	Pack sense input pin	
DSG	28	0	NMOS Discharge FET drive output pin	
NC	29	_	Not internally connected. Connect to V _{SS} .	
PCHG	30	0	PMOS Precharge FET drive output pin	
CHG	31	0	NMOS Charge FET drive output pin	
BAT	32	Р	Primary power supply input pin	

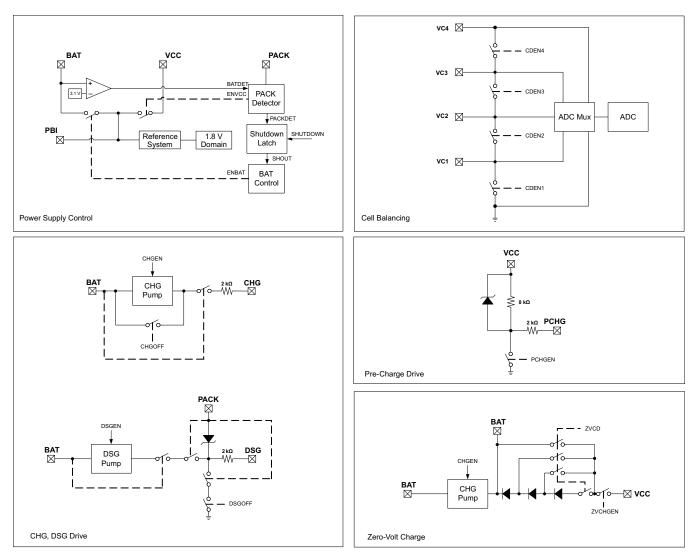


Figure 1. Pin Equivalent Diagram 1

Copyright © 2016, Texas Instruments Incorporated

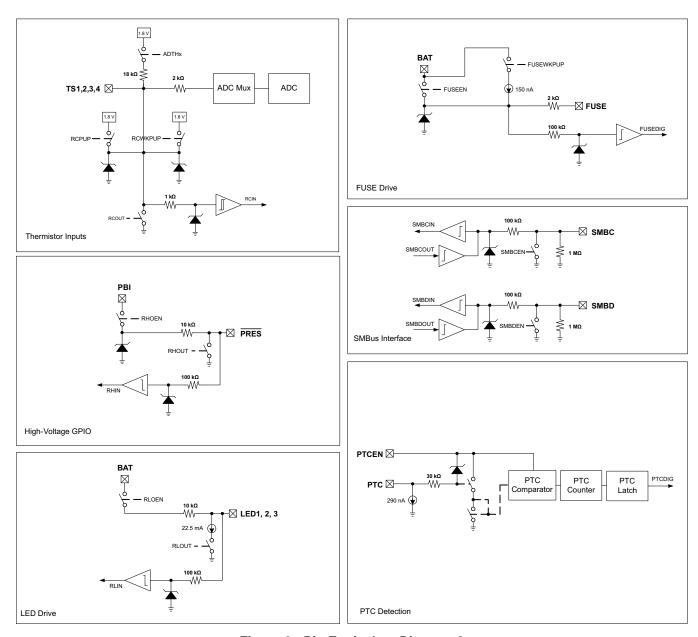
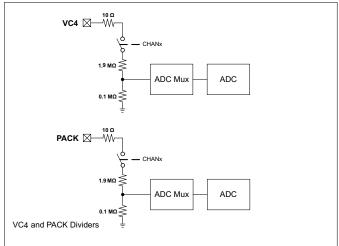



Figure 2. Pin Equivalent Diagram 2

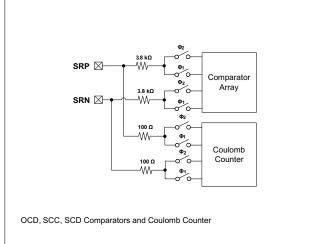


Figure 3. Pin Equivalent Diagram 3

Specifications

6.1 Absolute Maximum Ratings

Over-operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Supply voltage range, V _{CC}	BAT, VCC, PBI	-0.3	30	V
	PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP	-0.3	30	V
Supply voltage range, V _{CC} BAT, VCC, PBI -0.3	TS1, TS2, TS3, TS4	-0.3	$V_{REG} + 0.3$	V
	$V_{BAT} + 0.3$	V		
	SRP, SRN	-0.3	0.3	V
Input voltage range, V _{IN}	VC4	VC3 - 0.3	VC3 + 8.5 V, or VSS + 30	V
	VC3	VC2 - 0.3	VC2 + 8.5 V, or VSS + 30	V
	VC2	VC1 - 0.3	VC1 + 8.5 V, or VSS + 30	V
	VC1	VSS - 0.3	VSS + 8.5 V, or VSS + 30 V	V
Outrot valtage series V	CHG, DSG	-0.3	32	
Output voltage range, v _O	PCHG, FUSE	-0.3	30	V
Maximum VSS current, I _{SS}			50	mA
T _{STG}	Storage temperature	-65	150	°C
Lead temperature (soldering	, 10 s), T _{SOLDER}		300	°C

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
			Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
,	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	BAT, VCC, PBI	2.2		26	V
V _{SHUTDOWN} -	Shutdown voltage	V _{PACK} < V _{SHUTDOWN}	1.8	2.0	2.2	V
V _{SHUTDOWN+}	Start-up voltage	V _{PACK} > V _{SHUTDOWN} + V _{HYS}	2.05	2.25	2.45	V
V _{HYS}	Shutdown voltage hysteresis	V _{SHUTDOWN+} - V _{SHUTDOWN-}		250		mV
		PACK, SMBC, SMBD, PRES, BTP_IN, DISP			26	
		TS1, TS2, TS3, TS4			V_{REG}	V
	Input voltage range	PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC			V_{BAT}	
V		SRP, SRN	-0.2		0.2	
V_{IN}		VC4	V _{VC3}		V _{VC3} + 5	V
		VC3	V_{VC2}		V _{VC2} + 5	
		VC2	V _{VC1}		V _{VC1} + 5	
		VC1	V _{VSS}		V _{VSS} + 5	
Vo	Output voltage range	CHG, DSG, PCHG, FUSE			26	V
C _{PBI}	External PBI capacitor		2.2			μF
T _{OPR}	Operating temperature		-40		85	°C

6.4 Thermal Information

		bq4050	
	THERMAL METRIC ⁽¹⁾	RSM (QFN)	UNIT
		32 PINS	
R _{0JA, High K}	Junction-to-ambient thermal resistance	47.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance	40.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	14.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	14.4	°C/W
$R_{\theta JC(bottom)}$	Junction-to-case(bottom) thermal resistance	3.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: Supply Current

Submit Documentation Feedback

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 20 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{NORMAL}	NORMAL mode	CHG on. DSG on, no Flash write		336		μA
	I _{SLEEP} SLEEP mode	CHG off, DSG on, no SBS communication		75		
ISLEEP		CHG off, DSG off, no SBS communication		52		μA
I _{SHUTDOWN}	SHUTDOWN mode			1.6		μA

6.6 Electrical Characteristics: Power Supply Control

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SWITCHOVER} -	BAT to V _{CC} switchover voltage	V _{BAT} < V _{SWITCHOVER} -	1.95	2.1	2.2	V
V _{SWITCHOVER+}	V _{CC} to BAT switchover voltage	V _{BAT} > V _{SWITCHOVER} - + V _{HYS}	2.9	3.1	3.25	V
V _{HYS}	Switchover voltage hysteresis	V _{SWITCHOVER+} - V _{SWITCHOVER-}		1000		mV
	Input Leakage current	BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V			1	μA
I _{LKG}		PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V			1	
·LNG		BAT and PACK terminals, BAT = 0 V, VCC = 0 V, PACK = 0 V, PBI = 25 V			1	μπ
R _{PD}	Internal pulldown resistance	PACK	30	40	50	kΩ

6.7 Electrical Characteristics: AFE Power-On Reset

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REGIT}	Negative-going voltage input	V _{REG}	1.51	1.55	1.59	V
V _{HYS}	Power-on reset hysteresis	V _{REGIT+} - V _{REGIT-}	70	100	130	mV
t _{RST}	Power-on reset time		200	300	400	μs

6.8 Electrical Characteristics: AFE Watchdog Reset and Wake Timer

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		t _{WDT} = 500	372	500	628	
	AFE watchdog	t _{WDT} = 1000	744	1000	1256	ma
t _{WDT}	timeout	t _{WDT} = 2000	1488	2000	2512	ms
		t _{WDT} = 4000	2976	4000	5024	
		t _{WAKE} = 250	186	250	314	
	AFE wake timer	t _{WAKE} = 500	372	500	628	
t _{WAKE}	Are wake timer	t _{WAKE} = 1000	744	1000	1256	ms
		t _{WAKE} = 512	1488	2000	2512	
t _{FETOFF}	FET off delay after reset	$t_{\text{FETOFF}} = 512$	409	512	614	ms

6.9 Electrical Characteristics: Current Wake Comparator

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{WAKE}		$V_{WAKE} = \pm 0.625 \text{ mV}$	±0.3	±0.625	±0.9	
	Wake voltage	V _{WAKE} = ±1.25 mV	±0.6	±1.25	±1.8	m)/
	threshold	$V_{WAKE} = \pm 2.5 \text{ mV}$	±1.2	±2.5	±3.6	mV
		V _{WAKE} = ±5 mV	±2.4	±5.0	±7.2	

Electrical Characteristics: Current Wake Comparator (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{WAKE(DRIFT)}	Temperature drift of V _{WAKE} accuracy			0.5%		°C
t _{WAKE}	Time from application of current to wake interrupt				700	μs
t _{WAKE(SU)}	Wake comparator startup time			500	1000	μs

6.10 Electrical Characteristics: VC1, VC2, VC3, VC4, BAT, PACK

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		VC1-VSS, VC2-VC1, VC3-VC2, VC4-VC3	0.1980	0.2000	0.2020	
K	Scaling factor	BAT-VSS, PACK-VSS	0.049	0.050	0.051	_
		V _{REF2}	0.490	0.500	0.510	
V _{IN} Input v	land to alternation	VC1-VSS, VC2-VC1, VC3-VC2, VC4-VC3	-0.2		5	V
	Input voltage range	BAT-VSS, PACK-VSS	-0.2		20	V
I _{LKG}	Input leakage current	VC1, VC2, VC3, VC4, cell balancing off, cell detach detection off, ADC multiplexer off			1	μΑ
R _{CB}	Internal cell balance resistance	R _{DS(ON)} for internal FET switch at 2 V < V _{DS} < 4 V			200	Ω
I _{CD}	Internal cell detach check current	VCx > VSS + 0.8 V	30	50	70	μA

6.11 Electrical Characteristics: SMBD, SMBC

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IH}	Input voltage high	SMBC, SMBD, V _{REG} = 1.8 V	1.3			V
V_{IL}	Input voltage low	SMBC, SMBD, V _{REG} = 1.8 V			0.8	V
V_{OL}	Output low voltage	SMBC, SMBD, $V_{REG} = 1.8 \text{ V}$, $I_{OL} = 1.5 \text{ mA}$			0.4	V
C _{IN}	Input capacitance			5		pF
I_{LKG}	Input leakage current				1	μΑ
R _{PD}	Pulldown resistance		0.7	1.0	1.3	ΜΩ

6.12 Electrical Characteristics: PRES, BTP_INT, DISP

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IH}	High-level input		1.3			V
V_{IL}	Low-level input				0.55	V
.,	V _{OH} Output voltage high	$V_{BAT} > 5.5 \text{ V}, I_{OH} = -0 \mu A$	3.5			V
VOH		$V_{BAT} > 5.5 \text{ V}, I_{OH} = -10 \mu\text{A}$	1.8			V
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
C _{IN}	Input capacitance			5		pF
I_{LKG}	Input leakage current				1	μΑ

Electrical Characteristics: PRES, BTP_INT, DISP (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R	Output reverse resistance	Between PRES or BTP_INT or DISP and PBI	8			kΩ

6.13 Electrical Characteristics: LEDCNTLA, LEDCNTLB, LEDCNTLC

Typical values stated where $T_A = 25^{\circ}\text{C}$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}\text{C}$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input		1.45			V
V _{IL}	Low-level input				0.55	V
V _{OH}	Output voltage high	$V_{BAT} > 3.0 \text{ V}, I_{OH} = -22.5 \text{ mA}$	V _{BAT} – 1.6			V
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
I _{SC}	High level output current protection		-30	-45	-6 0	mA
I _{OL}	Low level output current	V _{BAT} > 3.0 V, V _{OH} = 0.4 V	15.75	22.5	29.25	mA
I _{LEDCNTLx}	Current matching between LEDCNTLx	V _{BAT} = V _{LEDCNTLx} + 2.5 V		±1%		
C _{IN}	Input capacitance			20		pF
I _{LKG}	Input leakage current				1	μA
f _{LEDCNTLx}	Frequency of LED pattern			124		Hz

6.14 Electrical Characteristics: Coulomb Counter

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range		-0.1		0.1	V
Full scale range		-V _{REF1} /10		V _{REF1} /10	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit over input voltage range		±5.2	±22.3	LSB
Offset error	16-bit, Post-calibration		±5	±10	μV
Offset error drift	15-bit + sign, Post-calibration		0.2	0.3	μV/°C
Gain error	15-bit + sign, over input voltage range		±0.2%	±0.8%	FSR
Gain error drift	15-bit + sign, over input voltage range			150	PPM/°C
Effective input resistance		2.5			ΜΩ

^{(1) 1} LSB = $V_{REF1}/(10 \times 2^N) = 1.215/(10 \times 2^{15}) = 3.71 \,\mu\text{V}$

6.15 Electrical Characteristics: CC Digital Filter

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP M	X	UNIT
Conversion time	Single conversion		250		ms
Effective resolution	Single conversion	15			Bits

6.16 Electrical Characteristics: ADC

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $95^{\circ}C$ and $95^{\circ}C$ to $95^{\circ}C$ and $95^$ 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
land traite as assess	Internal reference (V _{REF1})	-0.2		1	
Input voltage range	External reference (V _{REG})	-0.2		0.8 x V _{REG}	V
Full scale range	$V_{FS} = V_{REF1}$ or V_{REG}	-V _{FS}		V_{FS}	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit, -0.1 V to 0.8 x V _{REF1}			±6.6	LSB
	16-bit, best fit, -0.2 V to -0.1 V			±13.1	LOD
Offset error ⁽²⁾	16-bit, Post-calibration, V _{FS} = V _{REF1}		±67	±157	μV
Offset error drift	16-bit, Post-calibration, V _{FS} = V _{REF1}		0.6	3	μV/°C
Gain error	16-bit, -0.1 V to 0.8 x V _{FS}		±0.2%	±0.8%	FSR
Gain error drift	16-bit, -0.1 V to 0.8 x V _{FS}			150	PPM/°C
Effective input resistance		8			ΜΩ

6.17 Electrical Characteristics: ADC Digital Filter

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Single conversion		31.25		
Conversion time	Single conversion		15.63		
Conversion time	Single conversion		7.81		ms
	Single conversion		1.95		
Resolution	No missing codes	16			Bits
	With sign, t _{CONV} = 31.25 ms	14	15		
Effective resolution	With sign, t _{CONV} = 15.63 ms	13	14		D:t-
Effective resolution	With sign, t _{CONV} = 7.81 ms	11	12		Bits
	With sign, t _{CONV} = 1.95 ms	9	10		

6.18 Electrical Characteristics: CHG, DSG FET Drive

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $95^{\circ}C$ and $95^{$ 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Output voltage	Ratio_{DSG} = (V_{DSG} - V_{BAT})/V_{BAT}, 2.2 V < V_{BAT} < 4.92 V, 10 M Ω between PACK and DSG	2.133	2.333	2.433	
	ratio	Ratio CHG = (VCHG - VBAT)/VBAT, 2.2 V < VBAT < 4.92 V, 10 M Ω between BAT and CHG	2.133	2.333	2.433	_
	V _(FETON) Output voltage, CHG and DSG on	$V_{DSG(ON)} = V_{DSG} - V_{BAT}, 4.92 \text{ V} \le V_{BAT} \le 18 \text{ V}, 10 \text{ M}\Omega$ between PACK and DSG	10.5	11.5	12	V
V(FETON)		$V_{\rm CHG(ON)} = V_{\rm CHG} - V_{\rm BAT}, 4.92 \ {\rm V} \le {\rm V}_{\rm BAT} \le 18 \ {\rm V}, \ 10 \ {\rm M}\Omega$ between BAT and CHG	10.5	11.5	12	V
V _(FETOFF)	Output voltage, CHG and DSG off	$V_{DSG(OFF)}$ = V_{DSG} – V_{PACK} , 10 M Ω between PACK and DSG	-0.4		0.4	V
(= : - :)	CHG and DSG on	$V_{CHG(OFF)} = V_{CHG} - V_{BAT}$, 10 M Ω between BAT and CHG	-0.4		0.4	
		V_{DSG} from 0% to 35% $V_{DSG(ON)(TYP)}$, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between DSG and PACK, 5.1 kΩ between DSG and C_L , 10 MΩ between PACK and DSG		200	500	
t _R Rise time	V_{CHG} from 0% to 35% $V_{CHG(ON)(TYP)}$, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between CHG and BAT, 5.1 kΩ between CHG and C_L , 10 MΩ between BAT and CHG		200	500	μs	

⁽¹⁾ $1 LSB = V_{REF1}/(2^N) = 1.225/(2^{15}) = 37.4 \,\mu\text{V}$ (when $t_{CONV} = 31.25 \,\text{ms}$) (2) For VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3, VC4–VSS, PACK–VSS, and $V_{REF1}/2$, the offset error is multiplied by (1/ADC multiplexer scaling factor (K)).

Electrical Characteristics: CHG, DSG FET Drive (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _F	Fall time	V_{DSG} from $V_{DSG(ON)(TYP)}$ to 1 V, $V_{BAT} \geq 2.2$ V, $C_L = 4.7$ nF between DSG and PACK, 5.1 k Ω between DSG and $C_L,$ 10 M Ω between PACK and DSG		40	300	
	ran ume	V_{CHG} from $V_{CHG(ON)(TYP)}$ to 1 V, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between CHG and BAT, 5.1 kΩ between CHG and C_L , 10 MΩ between BAT and CHG		40	200	μs

6.19 Electrical Characteristics: PCHG FET Drive

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(FETON)	Output voltage, PCHG on	$V_{PCHG(ON)}$ = VV_{CC} – $V_{PCHG},$ 10 $M\Omega$ between V_{CC} and PCHG	6	7	8	V
V _(FETOFF)	Output voltage, PCHG off	$V_{PCHG(OFF)}$ = $VV_{CC} - V_{PCHG}$, 10 MΩ between V_{CC} and PCHG	-0.4		0.4	V
t _R	Rise time	V_{PCHG} from 10% to 90% $V_{PCHG(ON)(TYP)}$, $VV_{CC} \ge 8$ V, $C_L = 4.7$ nF between PCHG and V_{CC} , 5.1 kΩ between PCHG and C_L , 10 MΩ between V_{CC} and CHG		40	200	μs
t _F	Fall time	V_{PCHG} from 90% to 10% $V_{PCHG(ON)(TYP)}$, $V_{CC} \ge 8$ V, $C_L = 4.7$ nF between PCHG and V_{CC} , 5.1 kΩ between PCHG and C_L , 10 MΩ between V_{CC} and CHG		40	200	μs

6.20 Electrical Characteristics: FUSE Drive

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Outp	Output voltage	$V_{BAT} \ge 8 \text{ V, } C_L = 1 \text{ nF, } I_{AFEFUSE} = 0 \mu\text{A}$	6	7	8.65	V
V _{OH}	high	V_{BAT} < 8 V, C_L = 1 nF, $I_{AFEFUSE}$ = 0 μ A	V _{BAT} – 0.1		V_{BAT}	V
V _{IH}	High-level input		1.5	2.0	2.5	V
I _{AFEFUSE(PU)}	Internal pullup current	V _{BAT} ≥ 8 V, V _{AFEFUSE} = VSS		150	330	nA
R _{AFEFUSE}	Output impedance		2	2.6	3.2	kΩ
C _{IN}	Input capacitance			5		pF
t _{DELAY}	Fuse trip detection delay		128		256	μs
t _{RISE}	Fuse output rise time	V _{BAT} ≥ 8 V, C _L = 1 nF, V _{OH} = 0 V to 5 V		5	20	μs

6.21 Electrical Characteristics: Internal Temperature Sensor

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{TEMP}	Internal temperature	V _{TEMPP}	-1.9	-2.0	-2.1	mV/°C
	sensor voltage drift	V _{TEMPP} – V _{TEMPN} , assured by design	0.177	0.178	0.179	IIIV/ C

6.22 Electrical Characteristics: TS1, TS2, TS3, TS4

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PAI	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range	TS1, TS2, TS3, TS4, V _{BIAS} = V _{REF1}	-0.2		0.8 x V _{REF1}	
		TS1, TS2, TS3, TS4, $V_{BIAS} = V_{REG}$	-0.2		$0.8 \times V_{REG}$	V
R _{NTC(PU)}	Internal pullup resistance	TS1, TS2, TS3, TS4	14.4	18	21.6	kΩ
R _{NTC(DRIFT)}	Resistance drift over temperature	TS1, TS2, TS3, TS4	-360	-280	-200	PPM/°C

6.23 Electrical Characteristics: PTC, PTCEN

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PTC(TRIP)}	PTC trip resistance		1.2	2.5	3.95	ΜΩ
V _{PTC(TRIP)}	PTC trip voltage	$V_{PTC(TRIP)} = V_{PTCEN} - V_{PTC}$	200	500	890	mV
I _{PTC}	Internal PTC current bias	$T_A = -40^{\circ}C$ to 110°C	200	290	350	nA
t _{PTC(DELAY)}	PTC delay time	$T_A = -40^{\circ}C \text{ to } 110^{\circ}C$	40	80	145	ms

6.24 Electrical Characteristics: Internal 1.8-V LDO

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

Р	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{REG}	Regulator voltage		1.6	1.8	2.0	V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{REG}/\Delta T_A$, $I_{REG} = 10 \text{ mA}$		±0.25%		
$\Delta V_{O(LINE)}$	Line regulation	$\Delta V_{REG}/\Delta V_{BAT}$, $V_{BAT} = 10 \text{ mA}$	-0 .6%		0.5%	
$\Delta V_{O(LOAD)}$	Load regulation	$\Delta V_{REG}/\Delta I_{REG}$, $I_{REG} = 0$ mA to 10 mA	-1.5%		1.5%	
I _{REG}	Regulator output current limit	$V_{REG} = 0.9 \text{ x } V_{REG(NOM)}, V_{IN} > 2.2 \text{ V}$	20			mA
I _{SC}	Regulator short- circuit current limit	$V_{REG} = 0 \times V_{REG(NOM)}$	25	40	55	mA
PSRR _{REG}	Power supply rejection ratio	$\Delta V_{BAT}/\Delta V_{REG}$, I _{REG} = 10 mA ,V _{IN} > 2.5 V, f = 10 Hz		40		dB
V _{SLEW}	Slew rate enhancement voltage threshold	V _{REG}	1.58	1.65		V

6.25 Electrical Characteristics: High-Frequency Oscillator

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{HFO}	Operating frequency			16.78		MHz
f _{HFO(ERR)} Frequency error	$T_A = -20$ °C to 70°C, includes frequency drift	-2.5%	±0.25%	2.5%		
	Frequency error	$T_A = -40$ °C to 85°C, includes frequency drift	-3.5%	±0.25%	3.5%	
t _{HFO(SU)}	Start-up time	$T_A = -20$ °C to 85°C, oscillator frequency within +/-3% of nominal			4	ms
5(55)	·	oscillator frequency within +/-3% of nominal			100	μs

6.26 Electrical Characteristics: Low-Frequency Oscillator

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{LFO}	Operating frequency			262.144		kHz
,	F	$T_A = -20$ °C to 70°C, includes frequency drift	-1.5%	±0.25%	1.5%	
TLFO(ERR)	Frequency error	$T_A = -40$ °C to 85°C, includes frequency drift	-2.5	±0.25	2.5	
f _{LFO(FAIL)}	Failure detection frequency		30	80	100	kHz

6.27 Electrical Characteristics: Voltage Reference 1

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF1}	Internal reference voltage	T _A = 25°C, after trim	1.21	1.215	1.22	V
M	Internal reference voltage drift	$T_A = 0$ °C to 60°C, after trim		±50		DDM/9C
V _{REF1(DRIFT)}		$T_A = -40$ °C to 85°C, after trim		±80		PPM/°C

6.28 Electrical Characteristics: Voltage Reference 2

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF2}	Internal reference voltage	$T_A = 25$ °C, after trim	1.22	1.225	1.23	٧
V	Internal reference	T _A = 0°C to 60°C, after trim		±50		PPM/°C
VREF2(DRIFT)	voltage drift	$T_A = -40$ °C to 85°C, after trim		±80		PPIVI/ C

6.29 Electrical Characteristics: Instruction Flash

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		1000			Cycles
tprogword	Word programming time	$T_A = -40$ °C to 85°C			40	μs
t _{MASSERASE}	Mass-erase time	$T_A = -40$ °C to 85°C			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40$ °C to 85°C			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40$ °C to 85°C			2	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40$ °C to 85°C			5	mA
I _{FLASHERASE}	Flash-erase current	$T_A = -40$ °C to 85°C			15	mA

6.30 Electrical Characteristics: Data Flash

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		20000			Cycles
t _{PROGWORD}	Word programming time	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			40	μs

Electrical Characteristics: Data Flash (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{MASSERASE}	Mass-erase time	$T_A = -40$ °C to 85°C			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40$ °C to 85°C			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40$ °C to 85°C			1	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40$ °C to 85°C			5	mA
I _{FLASHERASE}	Flash-erase current	$T_A = -40$ °C to 85°C			15	mA

6.31 Electrical Characteristics: OCD, SCC, SCD1, SCD2 Current Protection Thresholds

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V	OCD detection threshold voltage range	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-16.6		-100	mV	
V _{OCD}		$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	-8.3		-50	IIIV	
A) /	OCD detection	V _{OCD} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		-5.56		mV	
ΔV _{OCD}	threshold voltage program step	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		-2.78		IIIV	
V	SCC detection	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1	44.4		200	mV	
V _{SCC}	threshold voltage range	$V_{SCC} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	22.2		100	IIIV	
A\/	SCC detection threshold voltage program step	V _{SCC} = V _{SRP} - V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		22.2		\/	
ΔV _{SCC}		$V_{SCC} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		11.1		mV	
	SCD1 detection threshold voltage range	$V_{SCD1} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200	mV	
V _{SCD1}		V _{SCD1} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100		
A)/	SCD1 detection threshold voltage program step	V _{SCD1} = V _{SRP} – V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		-22.2		.,	
∆V _{SCD1}		V _{SCD1} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 0		-11.1		mV	
.,	SCD2 detection	$V_{SCD2} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200		
V _{SCD2}	threshold voltage range	$V_{SCD2} = V_{SRP} - V_{SRN,}$ AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	mV	
A)/	SCD2 detection threshold voltage program step	V _{SCD2} = V _{SRP} – V _{SRN} , AFE PROTECTION CONTROL[RSNS] = 1		-22.2		mV	
ΔV _{SCD2}		V _{SCD2} = V _{SRP} – V _{SRN,} AFE PROTECTION CONTROL[RSNS] = 0		-11.1			
V _{OFFSET}	OCD, SCC, and SCDx offset error	Post-trim	-2.5		2.5	mV	
\/	OCD, SCC, and SCDx	No trim	-10%		10%		
V_{SCALE}	scale error	Post-trim	-5%		5%		

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

6.32 Timing Requirements: OCD, SCC, SCD1, SCD2 Current Protection Timing

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
t _{OCD}	OCD detection delay time		1		31	ms
Δt_{OCD}	OCD detection delay time program step			2		ms
t _{SCC}	SCC detection delay time		0		915	μs
Δt_{SCC}	SCC detection delay time program step			61		μs
	SCD1 detection delay time	AFE PROTECTION CONTROL[SCDDx2] = 0	0		915	μs
t _{SCD1}		AFE PROTECTION CONTROL[SCDDx2] = 1	0		1850	
	SCD1 detection delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 0		61		
∆t _{SCD1}		AFE PROTECTION CONTROL[SCDDx2] = 1		121		μs
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0	0		458	
t _{SCD2}	delay time	AFE PROTECTION CONTROL[SCDDx2] = 1	0		915	μs
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0		30.5		
Δt_{SCD2}	delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 1		61		μs
t _{DETECT}	Current fault detect time	$V_{SRP} - V_{SRN} = V_T - 3$ mV for OCD, SCD1, and SC2, $V_{SRP} - V_{SRN} = V_T + 3$ mV for SCC			160	μs
t _{ACC}	Current fault delay time accuracy	Max delay setting	-10%		10%	

6.33 Timing Requirements: SMBus

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
f _{SMB}	SMBus operating frequency	SLAVE mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	MASTER mode, no clock low slave extend		51.2		kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD(START)}	Hold time after (repeated) start		4.0			μs
t _{SU(START)}	Repeated start setup time		4.7			μs
t _{SU(STOP)}	Stop setup time		4.0			μs
t _{HD(DATA)}	Data hold time		300			ns
t _{SU(DATA)}	Data setup time		250			ns
t _{TIMEOUT}	Error signal detect time		25		35	ms
t_{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period		4.0		50	μs
t _R	Clock rise time	10% to 90%			1000	ns
t _F	Clock fall time	90% to 10%			300	ns
t _{LOW(SEXT)}	Cumulative clock low slave extend time				25	ms
t _{LOW(MEXT)}	Cumulative clock low master extend time				10	ms

6.34 Timing Requirements: SMBus XL

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	NOM MAX	UNIT
f _{SMBXL}	SMBus XL operating frequency	SLAVE mode	40	400	kHz
t _{BUF}	Bus free time between start and stop		4.7		μs
t _{HD(START)}	Hold time after (repeated) start		4.0		μs
t _{SU(START)}	Repeated start setup time		4.7		μs
t _{SU(STOP)}	Stop setup time		4.0		μs
t _{TIMEOUT}	Error signal detect time		5	20	ms
t _{LOW}	Clock low period			20	μs
t _{HIGH}	Clock high period			20	μs

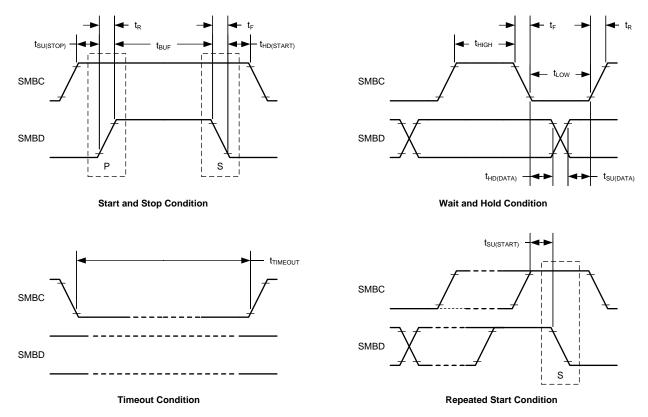
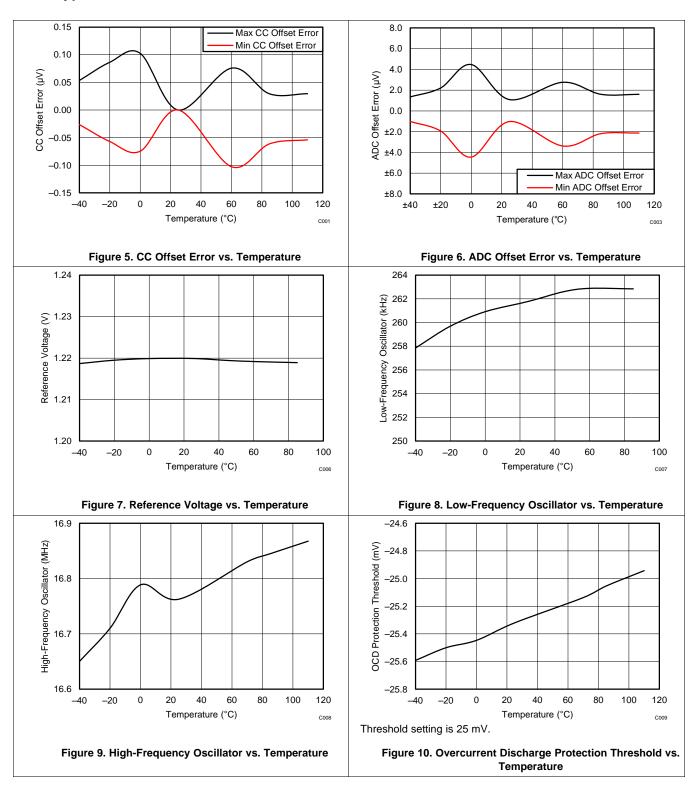



Figure 4. SMBus Timing Diagram

6.35 Typical Characteristics

Copyright © 2016, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

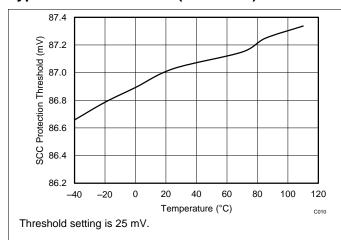


Figure 11. Short Circuit Charge Protection Threshold vs.
Temperature

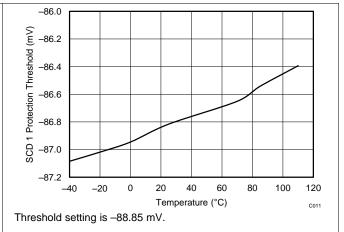


Figure 12. Short Circuit Discharge 1 Protection Threshold vs. Temperature

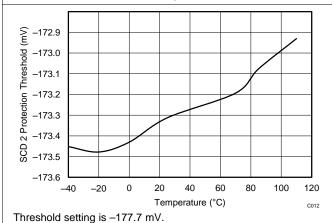


Figure 13. Short Circuit Discharge 2 Protection Threshold vs. Temperature

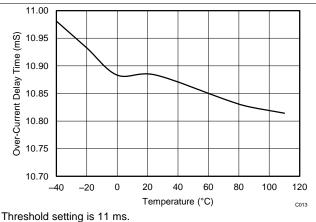


Figure 14. Overcurrent Delay Time vs. Temperature

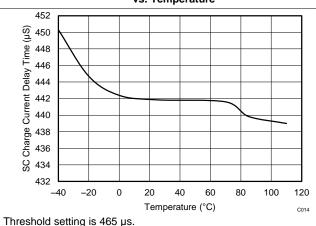
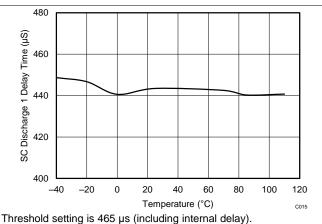
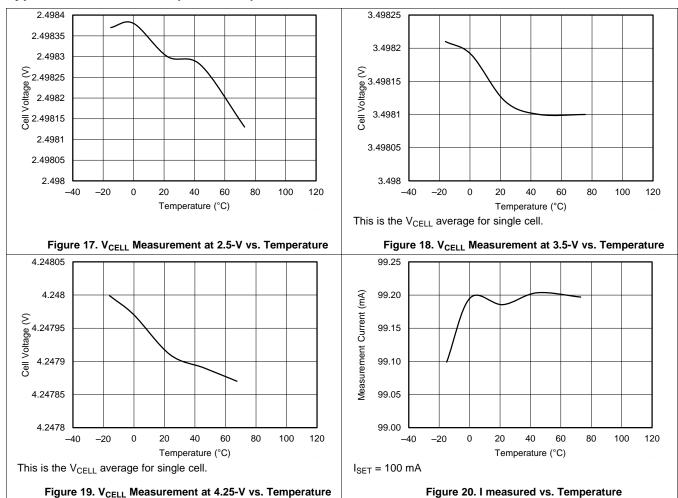



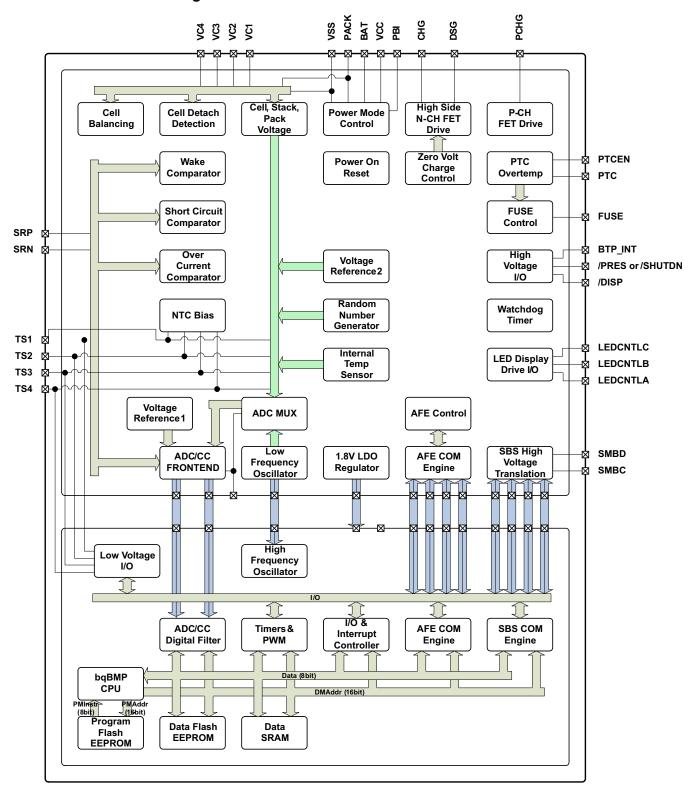
Figure 15. Short Circuit Charge Current Delay Time vs.
Temperature



Threshold setting is 400 µs (including internal delay).

Figure 16. Short Circuit Discharge 1 Delay Time vs. Temperature

Typical Characteristics (continued)


7 Detailed Description

7.1 Overview

The bq4050 device, incorporating Compensated End-of-Discharge Voltage (CEDV) technology, provides cell balancing while charging or at rest. This fully integrated, single-chip, pack-based solution provides a rich array of features for gas gauging, protection, and authentication for 1-series, 2-series, 3-series, and 4-series cell Li-lon and Li-Polymer battery packs, including a diagnostic lifetime data monitor and black box recorder.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Primary (1st Level) Safety Features

The bq4050 supports a wide range of battery and system protection features that can easily be configured. See the bq4050 Technical Reference Manual (SLUUAQ3) for detailed descriptions of each protection function.

The primary safety features include:

- Cell Overvoltage Protection
- · Cell Undervoltage Protection
- Overcurrent in Charge Protection
- Overcurrent in Discharge Protection
- Overload in Discharge Protection
- Short Circuit in Charge Protection
- Short Circuit in Discharge Protection
- · Overtemperature in Charge Protection
- Overtemperature in Discharge Protection
- Undertemperature in Charge Protection
- Undertemperature in Discharge Protection
- Overtemperature FET protection
- Precharge Timeout Protection
- · Host Watchdog Timeout Protection
- Overcharge Protection
- Overcharging Voltage Protection
- Overcharging Current Protection
- Over Precharge Current Protection

7.3.2 Secondary (2nd Level) Safety Features

The secondary safety features of the bq4050 can be used to indicate more serious faults via the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. See the bq4050 Technical Reference Manual (SLUUAQ3) for detailed descriptions of each protection function.

The secondary safety features provide protection against:

- Safety Overvoltage Permanent Failure
- Safety Undervoltage Permanent Failure
- Safety Overtemperature Permanent Failure
- Safety FET Overtemperature Permanent Failure
- Fuse Failure Permanent Failure
- PTC Permanent Failure
- Voltage Imbalance at Rest (VIMR) Permanent Failure
- Voltage Imbalance Active (VIMA) Permanent Failure
- Charge FET Permanent Failure
- Discharge FET Permanent Failure
- AFE Register Permanent Failure
- AFE Communication Permanent Failure
- Second Level Protector Permanent Failure
- Instruction Flash Checksum Permanent Failure
- Open Cell Connection Permanent Failure
- Data Flash Permanent Failure
- Open Thermistor Permanent Failure

24

Feature Description (continued)

7.3.3 Charge Control Features

The bq4050 charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a
 voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to
 be active. This prevents fully charged cells from overcharging and causing excessive degradation and also
 increases the usable pack energy by preventing premature charge termination.
- Supports pre-charging/zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicates charge status via charge and discharge alarms

7.3.4 Gas Gauging

The bq4050 uses the Compensated End of Discharge Voltage (CEDV) algorithm to measure and calculate the available capacity in battery cells. The bq4050 accumulates a measure of charge and discharge currents, estimates self-discharge of the battery, and adjusts the self-discharge estimation based on temperature. See the bq4050 Technical Reference Manual (SLUUAQ3) for further details.

7.3.5 Configuration

7.3.5.1 Oscillator Function

The bq4050 fully integrates the system oscillators and does not require any external components to support this feature.

7.3.5.2 System Present Operation

The bq4050 checks the $\overline{\text{PRES}}$ pin periodically (1 s). If $\overline{\text{PRES}}$ input is pulled to ground by the external system, the bq4050 detects this as system present.

7.3.5.3 Emergency Shutdown

<u>For battery</u> maintenance, the emergency shutdown feature enables a push button action connecting the <u>SHUTDN</u> pin to <u>shutdown</u> an embedded battery pack system before removing the battery. A high-to-low transition of the <u>SHUTDN</u> pin signals the bq4050 to turn off the CHG and DSG FETs, disconnecting the power from the system to safely remove the <u>battery pack</u>. The CHG and DSG FETs can be turned on again by another high-to-low transition detected by the <u>SHUTDN</u> pin or when a data flash configurable timeout is reached.

7.3.5.4 1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration

In a 1-series cell configuration, VC4 is shorted to VC, VC2, and VC1. In a 2-series cell configuration, VC4 is shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.

7.3.5.5 Cell Balancing

The device reduces the charge difference of the battery cells in a fully charged state of the battery pack by gradually using a voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to be active. This prevents fully charged cells from overcharging and causing excessive degradation and increases the usable pack energy by preventing premature charge termination.

Feature Description (continued)

7.3.6 Battery Parameter Measurements

7.3.6.1 Charge and Discharge Counting

The bq4050 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures bipolar signals from -0.1~V to 0.1~V. The bq4050 detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq4050 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.26~nVh.

7.3.7 Battery Trip Point (BTP)

Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has depleted to a certain value set in a DF register. This feature allows a host to program two capacity-based thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the OperationStatus[BTP_INT] on the basis of RemainingCapacity().

An internal weak pull-up is applied when the BTP feature is active. Depending on the <u>system</u> design, an <u>external</u> pull-up may be required to put on the BTP_INT pin. See <u>Electrical Characteristics</u>: <u>PRES</u>, <u>BTP_INT</u>, <u>DISP</u> for details.

7.3.8 Lifetime Data Logging Features

The bq4050 offers lifetime data logging for several critical battery parameters. The following parameters are updated every 10 hours if a difference is detected between values in RAM and data flash:

- · Maximum and Minimum Cell Voltages
- Maximum Delta Cell Voltage
- Maximum Charge Current
- Maximum Discharge Current
- Maximum Average Discharge Current
- Maximum Average Discharge Power
- Maximum and Minimum Cell Temperature
- Maximum Delta Cell Temperature
- · Maximum and Minimum Internal Sensor Temperature
- Maximum FET Temperature
- Number of Safety Events Occurrences and the Last Cycle of the Occurrence
- Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination
- Number of Shutdown Events
- Cell Balancing Time for Each Cell

Submit Documentation Feedback

- (This data is updated every 2 hours if a difference is detected.)
- Total FW Runtime and Time Spent in Each Temperature Range (This data is updated every 2 hours if a difference is detected.)

7.3.9 Authentication

The bq4050 supports authentication by the host using SHA-1.

7.3.10 LED Display

The bq4050 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a permanent fail (PF) error code indication.

Feature Description (continued)

7.3.11 Voltage

The bq4050 updates the individual series cell voltages at 0.25-second intervals. The internal ADC of the bq4050 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the CEDV gas gauging.

7.3.12 Current

The bq4050 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 1-m Ω to 3-m Ω typ. sense resistor.

7.3.13 Temperature

The bq4050 has an internal temperature sensor and inputs for four external temperature sensors. All five temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which use a different thermistor profile.

7.3.14 Communications

The bq4050 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS specification.

7.3.14.1 SMBus On and Off State

The bq4050 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within 1 ms.

7.3.14.2 SBS Commands

See the bq4050 Technical Reference Manual (SLUUAQ3) for further details.

7.4 Device Functional Modes

The bq4050 supports three power modes to reduce power consumption:

- In NORMAL mode, the bq4050 performs measurements, calculations, protection decisions, and data updates in 250-ms intervals. Between these intervals, the bq4050 is in a reduced power stage.
- In SLEEP mode, the bq4050 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq4050 is in a reduced power stage. The bq4050 has a wake function that enables exit from SLEEP mode when current flow or failure is detected.

Product Folder Links: bq4050

In SHUTDOWN mode, the bq4050 is completely disabled.

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The bq4050 gas gauge has primary protection support to be used with a 1-series to 4-series Li-lon/Li Polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, users need the Battery Management Studio (bqStudio) graphical user-interface tool installed on a PC during development. The firmware installed on the bqStudio tool has default values for this product, which are summarized in the bq4050 Technical Reference Manual (SLUUAQ3). Using the bqStudio tool, these default values can be changed to cater to specific application requirements during development once the system parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation, configuration of cells, chemistry that best matches the cell used, and more are known. This data is referred to as the "golden image."

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

8.2 Typical Applications

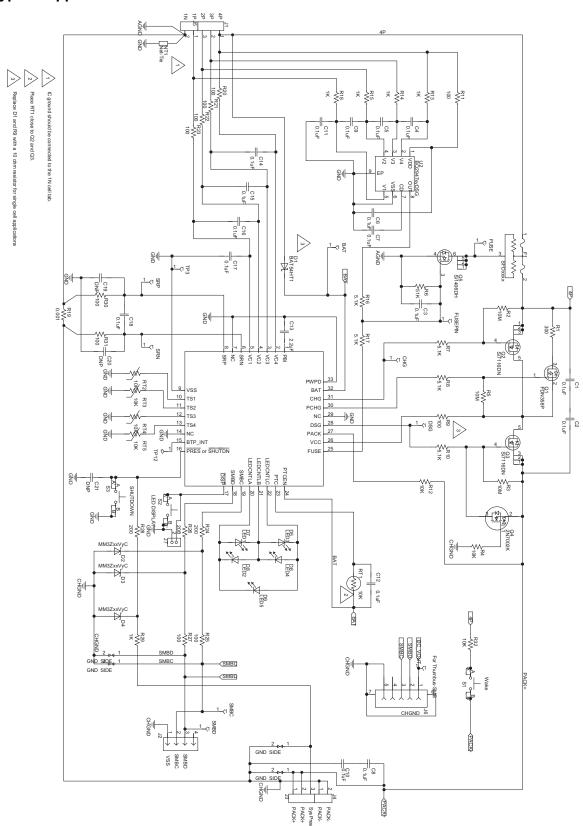


Figure 21. Application Schematic

Typical Applications (continued)

8.2.1 Design Requirements

Table 1 shows the default settings for the main parameters. Use the bqStudio tool to update the settings to meet the specific application or battery pack configuration requirements.

The device should be calibrated before any gauging test. Follow the information in the bqStudio **Calibration** page to calibrate the device, and use the bqStudio **Chemistry** page to update the match chemistry profile to the device.

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE		
Cell Configuration	3s1p (3-series with 1 Parallel) (1)		
Design Capacity	4400 mAh		
Device Chemistry	1210 (LiCoO2/graphitized carbon)		
Cell Overvoltage at Standard Temperature	4300 mV		
Cell Undervoltage	2500 mV		
Shutdown Voltage	2300 mV		
Overcurrent in CHARGE Mode	6000 mA		
Overcurrent in DISCHARGE Mode	-6000 mA		
Short Circuit in CHARGE Mode	0.1 V/Rsense across SRP, SRN		
Short Circuit in DISCHARGE Mode	0.1 V/Rsense across SRP, SRN		
Safety Overvoltage	4500 mV		
Cell Balancing	Disabled		
Internal and External Temperature Sensor	External Temperature Sensors are used.		
Undertemperature Charging	0°C		
Undertemperature Discharging	0°C		
BROADCAST Mode	Disabled		
Battery Trip Point (BTP) with active high interrupt	Disabled		

⁽¹⁾ When using the device the first time, if the a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to the PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the bq4050 Technical Reference Manual (SLUUAQ3) for details) before removing the charger connection.

8.2.2 Detailed Design Procedure

Submit Documentation Feedback

8.2.2.1 High-Current Path

The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the sense resistor, and then returns to the PACK- terminal (see Figure 22). In addition, some components are placed across the PACK+ and PACK- terminals to reduce effects from electrostatic discharge.

8.2.2.1.1 Protection FETs

Select the N-CH charge and discharge FETs for a given application. Most portable battery applications are a good match for the CSD17308Q3. The TI CSD17308Q3 is a 47A, 30-V device with Rds(on) of 8.2 m Ω when the gate drive voltage is 8 V.

If a precharge FET is used, R1 is calculated to limit the precharge current to the desired rate. Be sure to account for the power dissipation of the series resistor. The precharge current is limited to $(V_{CHARGER} - V_{BAT})/R1$ and maximum power dissipation is $(V_{CHARGER} - V_{bat})^2/R1$.

The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive is open.

Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide as possible. Ensure that the voltage rating of C1 and C2 are adequate to hold off the applied voltage if one of the capacitors becomes shorted.

Figure 22. bq4050 Protection FETs

8.2.2.1.2 Chemical Fuse

The chemical fuse (Dexerials, Uchihashi, and so forth) is ignited under command from either the bq294700 secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive voltage to the gate of Q5, shown in Figure 23, which then sinks current from the third terminal of the fuse, causing it to ignite and open permanently.

It is important to carefully review the fuse specifications and match the required ignition current to that available from the N-CH FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device. The fuse control circuit is discussed in detail in *FUSE Circuitry*.

Copyright © 2016, Texas Instruments Incorporated Submit Documentation Feedback

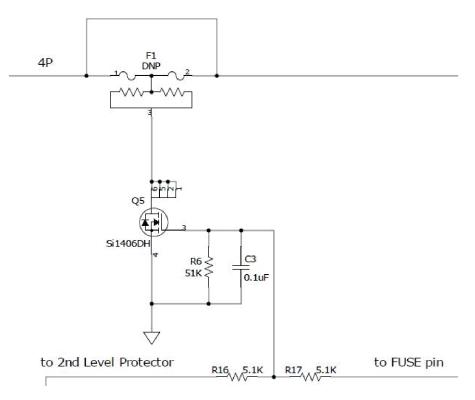


Figure 23. FUSE Circuit

8.2.2.1.3 Lithium-Ion Cell Connections

The important part to remember about the cell connections is that high current flows through the top and bottom connections; therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid any errors due to a drop in the high-current copper trace. The location marked 4P in Figure 24 indicates the Kelvin connection of the most positive battery node. The connection marked 1N is equally important. The VC5 pin (a ground reference for cell voltage measurement), which is in the older generation devices, is not in the bq4050 device. Therefore, the single-point connection at 1N to the low-current ground is needed to avoid an undesired voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.

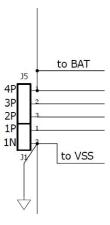


Figure 24. Lithium-Ion Cell Connections

8.2.2.1.4 Sense Resistor

As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit ranges of the bq4050. Select the smallest value possible to minimize the negative voltage generated on the bq4050 V_{SS} node(s) during a short circuit. This pin has an absolute minimum of -0.3 V. Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to support a $1-m\Omega$ to $3-m\Omega$ sense resistor.

The ground scheme of bq4050 is different from the older generation devices. In previous devices, the device ground (or low current ground) is connected to the SRN side of the Rsense resistor pad. The bq4050, however, connects the low-current ground on the SRP side of the Rsense resistor pad, close to the battery 1N terminal (see *Lithium-lon Cell Connections*). This is because the bq4050 has one less VC pin (a ground reference pin VC5) compared to the previous devices. The pin was removed and was internally combined to SRP.

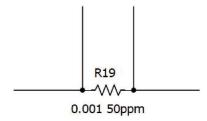


Figure 25. Sense Resistor

8.2.2.1.5 ESD Mitigation

A pair of series 0.1-µF ceramic capacitors is placed across the PACK+ and PACK- terminals to help in the mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack if one of the capacitors becomes shorted.

Optionally, a tranzorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.

8.2.2.2 Gas Gauge Circuit

The gas gauge circuit includes the bq4050 and its peripheral components. These components are divided into the following groups: Differential Low-Pass Filter, PBI, System Present, SMBus Communication, FUSE circuit, and LED.

8.2.2.2.1 Coulomb-Counting Interface

The bq4050 uses an integrating delta-sigma ADC for current measurements. Add a $100-\Omega$ resistor from the sense resistor to the SRP and SRN inputs of the device. Place a $0.1-\mu F$ (C18) filter capacitor across the SRP and SRN inputs. Optional $0.1-\mu F$ filter capacitors (C19 and C20) can be added for additional noise filtering if required for a circuit.

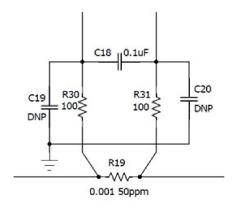


Figure 26. Differential Filter

8.2.2.2.2 Power Supply Decoupling and PBI

The bq4050 has an internal LDO that is internally compensated and does not require an external decoupling capacitor.

The PBI pin is used as a power supply backup input pin providing power during brief transient power outages. A standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground as shown in Figure 27.

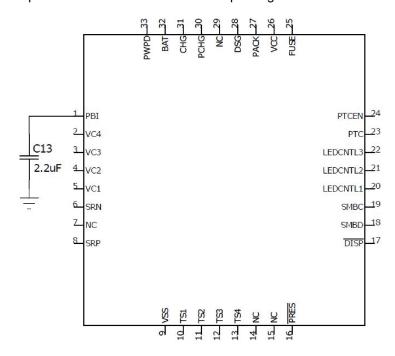


Figure 27. Power Supply Decoupling

8.2.2.2.3 System Present

The System Present signal is used to inform the gas gauge whether the pack is installed into or removed from the system. In the host system, this pin is grounded. The \overline{PRES} pin of the bq4050 is occasionally sampled to test for system present. To save power, an internal pullup is provided by the gas gauge during a brief 4-µs sampling pulse once per second. A resistor can be used to pull the signal low and the resistance must be 20 k Ω or lower to insure that the test pulse is lower than the VIL limit. The pull-up current source is typically 10 µA to 20 µA.

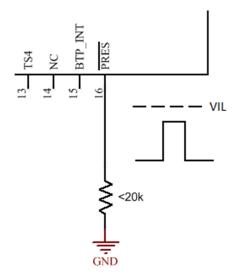


Figure 28. System Present Pull-Down Resistor

Because the System Present signal is part of the pack connector interface to the outside <u>world</u>, it must be protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin reduces the external protection requirement to just R29 for an 8-kV ESD contact rating. However, if it is possible that the System Present signal may short to PACK+, then R28 and D4 must be included for high-voltage protection.

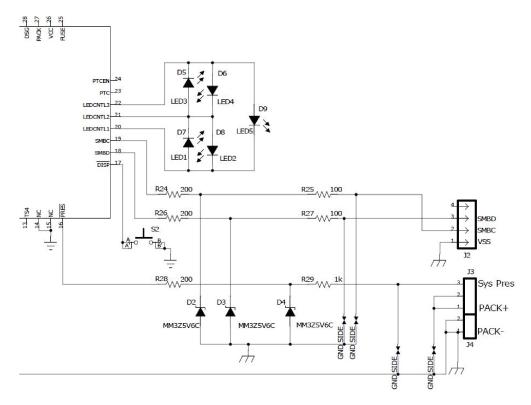


Figure 29. System Present ESD and Short Protection

8.2.2.2.4 SMBus Communication

The SMBus clock and data pins have integrated high-voltage ESD protection circuits, however, adding a Zener diode (D2 and D3) and series resistor (R24 and R26) provides more robust ESD performance.

The SMBus clock and data lines have internal pulldown. When the gas gauge senses that both lines are low (such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP mode to conserve power.

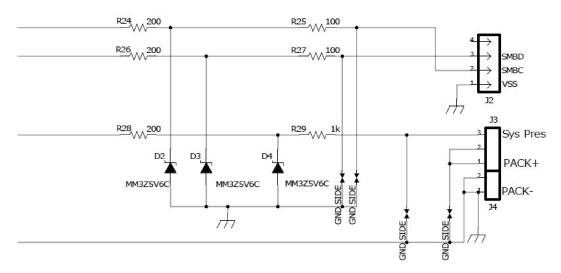


Figure 30. ESD Protection for SMB Communication

8.2.2.2.5 FUSE Circuitry

The FUSE pin of the bq4050 is designed to ignite the chemical fuse if one of the various safety criteria is violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q5 ignites the chemical fuse when its gate is high. The 7-V output of the bq294700 is divided by R16 and R6, which provides adequate gate drive for Q5 while guarding against excessive back current into the bq294700 if the FUSE signal is high.

Using C3 is generally a good practice, especially for RFI immunity. C3 may be removed, if desired, because the chemical fuse is a comparatively slow device and is not affected by any sub-microsecond glitches that come from the FUSE output during the cell connection process.

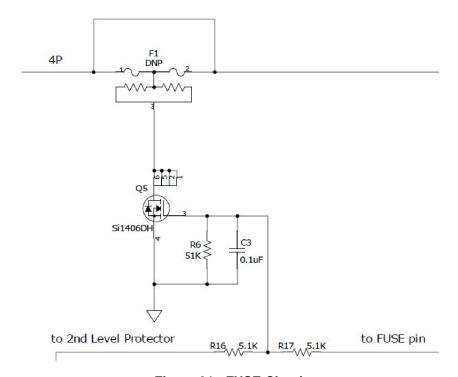


Figure 31. FUSE Circuit

When the bq4050 is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V output. The new design makes it possible to use a higher Vgs FET for Q5. This improves the robustness of the system, as well as widens the choices for Q5.

8.2.2.3 Secondary-Current Protection

The bq4050 provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage multiplexing, and voltage translation. The following discussion examines Cell and Battery Inputs, Pack and FET Control, Temperature Output, and Cell Balancing.

8.2.2.3.1 Cell and Battery Inputs

Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety protection.

The integrated cell balancing FETs allow the AFE to bypass cell current around a given cell or numerous cells, effectively balancing the entire battery stack. External series resistors placed between the cell connections and the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200- Ω resistance (2 V < VDS < 4 V). Series input resistors between 100 Ω and 1 k Ω are recommended for effective cell balancing.

The BAT input uses a diode (D1) to isolate and decouple it from the cells in the event of a transient dip in voltage caused by a short-circuit event.

Also, as described in *High-Current Path*, the top and bottom nodes of the cells must be sensed at the battery connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB copper.

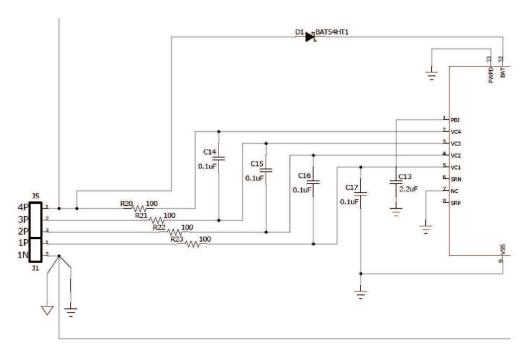


Figure 32. Cell and BAT Inputs

8.2.2.3.2 External Cell Balancing

Internal cell balancing can only support up to 10 mA. External cell balancing provide as another option for faster cell balancing. For details, refer to the application note, Fast Cell Balancing Using External MOSFET (SLUA420).

Product Folder Links: bq4050

8.2.2.3.3 PACK and FET Control

The PACK and V_{CC} inputs provide power to the bq4050 from the charger. The PACK input also provides a method to measure and detect the presence of a charger. The PACK input uses a 100- Ω resistor; whereas, the V_{CC} input uses a diode to guard against input transients and prevents mis-operation of the date driver during short-circuit events.

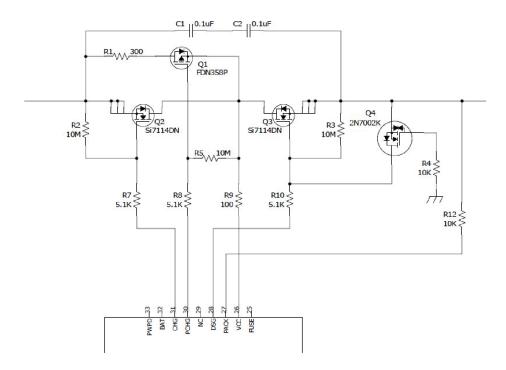


Figure 33. bq4050 PACK and FET Control

The N-CH charge and discharge FETs are controlled with 5.1-k Ω series gate resistors, which provide a switching time constant of a few microseconds. The 10-M Ω resistors ensure that the FETs are off in the event of an open connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a reverse-connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the PACK+input becomes slightly negative.

Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the FET must have a low gate turn-on threshold. If it is desired to use a more standard device, such as the 2N7002 as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The bq4050 device has the capability to provide a current-limited charging path typically used for low battery voltage or low temperature charging. The bq4050 device uses an external P-channel, pre-charge FET controlled by PCHG.

8.2.2.3.4 Temperature Output

For the bq4050 device, TS1, TS2, TS3, and TS4 provide thermistor drive-under program control. Each pin can be enabled with an integrated 18-k Ω (typical) linearization pullup resistor to support the use of a 10-k Ω at 25°C (103) NTC external thermistor such as a Mitsubishi BN35-3H103. The reference design includes four 10-k Ω thermistors: RT1, RT2, RT3, and RT4. The bq4050 device supports up to four external thermistors. Connect unused thermistor pins to V_{SS}.

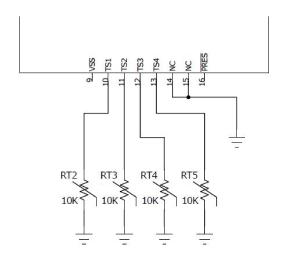


Figure 34. Thermistor Drive

8.2.2.3.5 LEDs

Three LED control outputs provide constant current sinks for the driving external LEDs. These outputs are configured to provide voltage and control for up to 5 LEDs. No external bias voltage is required. Unused LEDCNTL pins can remain open or they can be connected to V_{SS} . The DISP pin should be connected to V_{SS} , if the LED feature is not used.

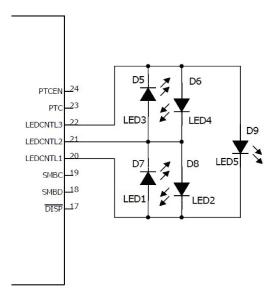


Figure 35. LEDs

8.2.2.3.6 Safety PTC Thermistor

The bq4050 device provides support for a safety PTC thermistor. The PTC thermistor is connected between PTC and PTCEN, and PTCEN is connected to BAT. It can be placed close to the CHG/DSG FETs to monitor the temperature. A PTC fault is one of the permanent failure modes. It can only be cleared by a POR.

To disable, connect PTC and PTCEN to V_{SS}.

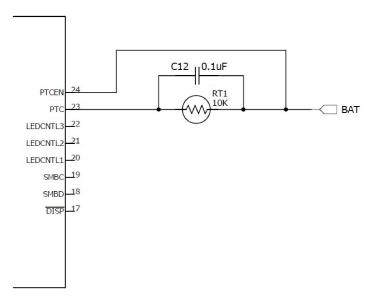


Figure 36. PTC Thermistor

8.2.3 Application Curves

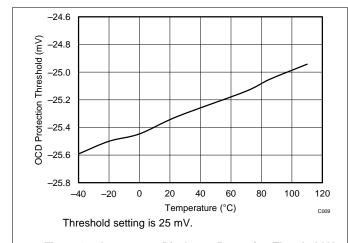


Figure 37. Overcurrent Discharge Protection Threshold Vs. Temperature

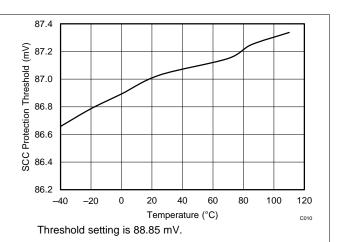


Figure 38. Short Circuit Charge Protection Threshold Vs.
Temperature

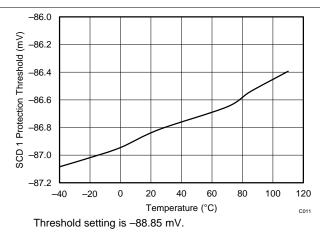


Figure 39. Short Circuit Discharge 1 Protection Threshold Vs. Temperature

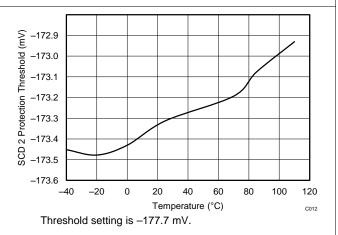


Figure 40. Short Circuit Discharge 2 Protection Threshold Vs. Temperature

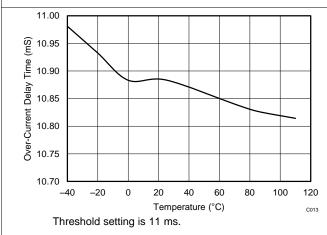


Figure 41. Overcurrent Delay Time Vs. Temperature

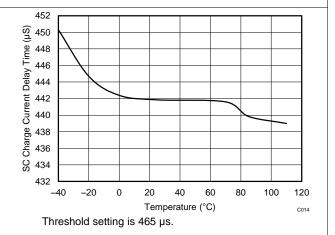


Figure 42. Short Circuit Charge Current Delay Time Vs.
Temperature

Copyright © 2016, Texas Instruments Incorporated

9 Power Supply Recommendations

The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT input is the primary power source to the device. The BAT pin should be connected to the positive termination of the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 26 V.

The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum Vcc. This allows the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the PACK pin.

10 Layout

10.1 Layout Guidelines

A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-trace coupling is with a component placement, such as that shown in Figure 43, where the high-current section is on the opposite side of the board from the electronic devices. Clearly this is not possible in many situations due to mechanical constraints. Still, every attempt should be made to route high-current traces away from signal traces, which enter the bq4050 directly. IC references and registers can be disturbed and in rare cases damaged due to magnetic and capacitive coupling from the high-current path. Note that during surge current and ESD events, the high-current traces appear inductive and can couple unwanted noise into sensitive nodes of the gas gauge electronics, as illustrated in Figure 44.

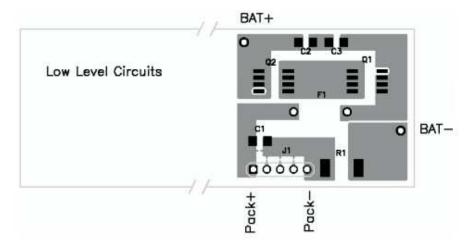


Figure 43. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity

42

Submit Documentation Feedback

Product Folder Links: bq4050

Layout Guidelines (continued)

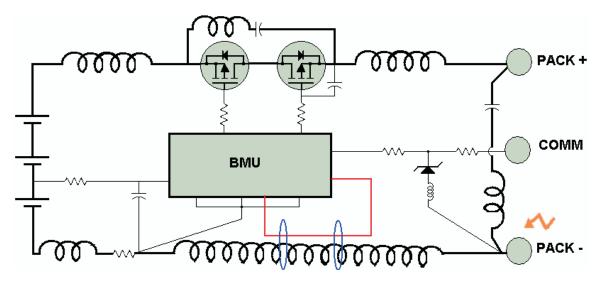


Figure 44. Avoid Close Spacing Between High-Current and Low-Level Signal Lines

Kelvin voltage sensing is extremely important in order to accurately measure current and top and bottom cell voltages. Place all filter components as close as possible to the device. Route the traces from the sense resistor in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity. Figure 45 and Figure 46 demonstrates correct kelvin current sensing.

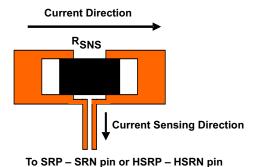


Figure 45. Sensing Resistor PCB Layout

Layout Guidelines (continued)

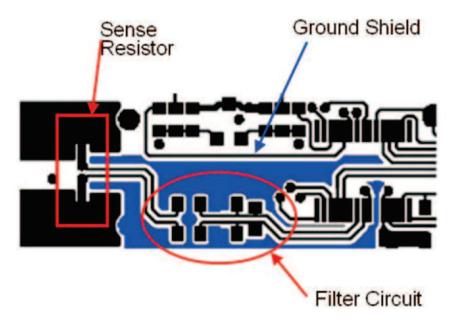


Figure 46. Sense Resistor, Ground Shield, and Filter Circuit Layout

10.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors

The general principle is to use wide copper traces to lower the inductance of the bypass capacitor circuit. In Figure 47, an example layout demonstrates this technique.

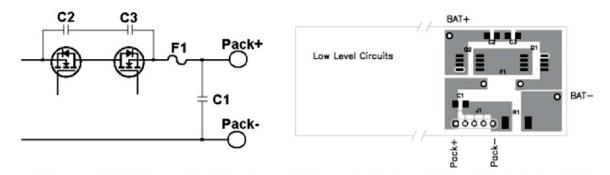


Figure 47. Use Wide Copper Traces to Lower the Inductance of Bypass Capacitors C1, C2, and C3

10.1.2 ESD Spark Gap

Protect SMBus Clock, Data, and other communication lines from ESD with a spark gap at the connector. The pattern in Figure 48 recommended, with 0.2-mm spacing between the points.

Layout Guidelines (continued)

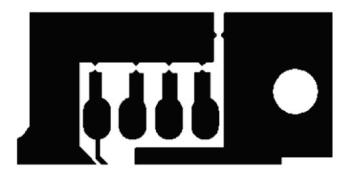


Figure 48. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD

10.2 Layout Example

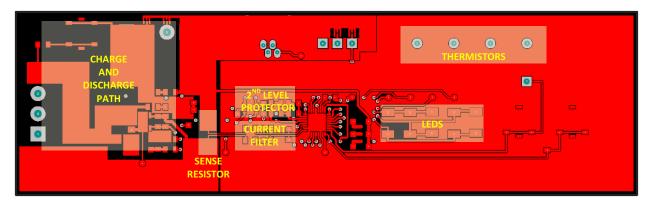


Figure 49. Top Layer

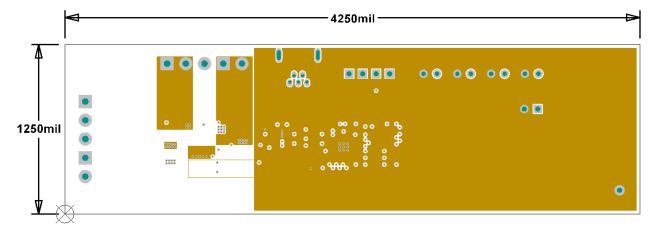


Figure 50. Internal Layer 1

Copyright © 2016, Texas Instruments Incorporated

Layout Example (continued)

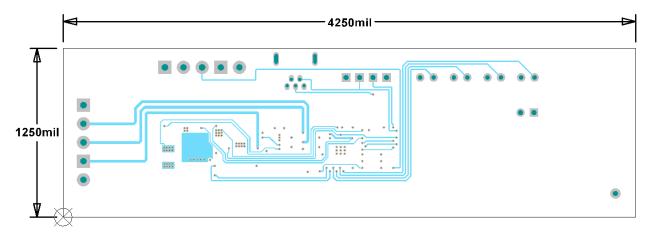


Figure 51. Internal Layer 2

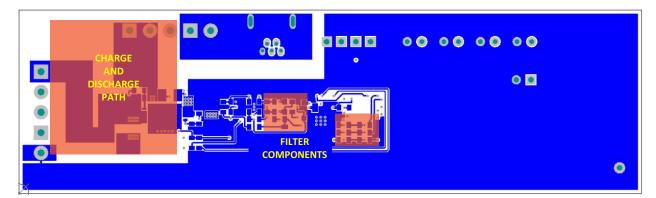


Figure 52. Bottom Layer

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation, see the bg4050 Technical Reference Manual (SLUUAQ3).

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

Windows is a registered trademark of Microsoft.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: bq4050

PACKAGE OPTION ADDENDUM

24-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ4050RSMR	PREVIEW	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ4050	
BQ4050RSMT	PREVIEW	VQFN	RSM	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ4050	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

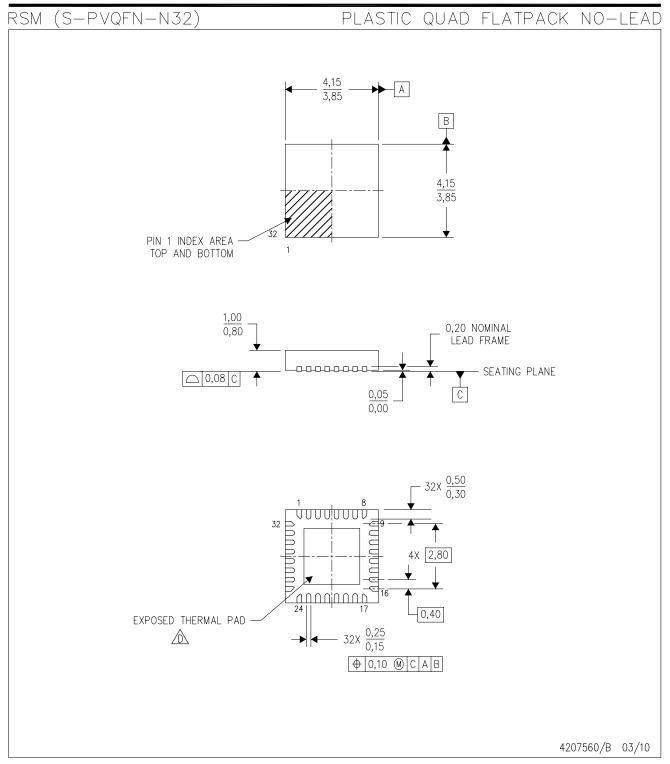
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

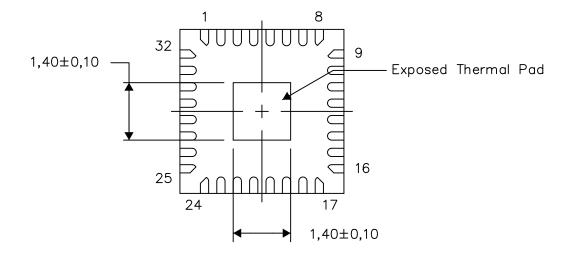
24-Mar-2016

n no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on	an annual basis.

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

RSM (S-PVQFN-N32)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

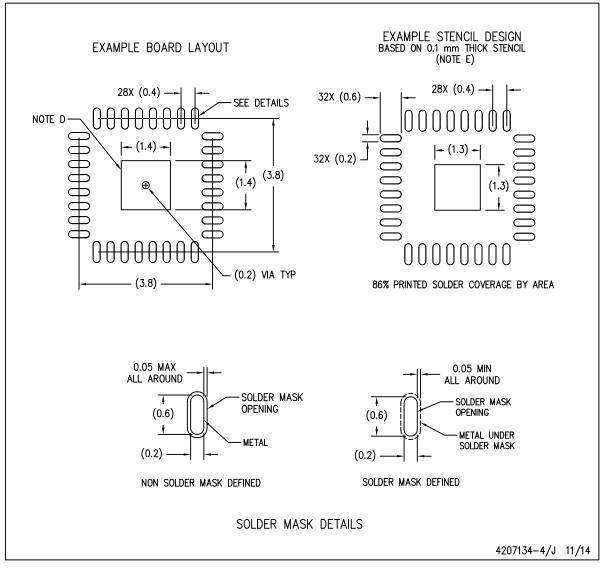
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4207868-3/I 07/14

NOTE: All linear dimensions are in millimeters

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity