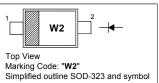
SILICON EPITAXIAL PLANAR DIODE

Features


- · Small package
- · Low forward voltage
- Fast reverse recovery time
- · Small total capacitance

Applications

· Ultra high speed switching

PINNING

PIN	DESCRIPTION
1	Cathode
2	Anode

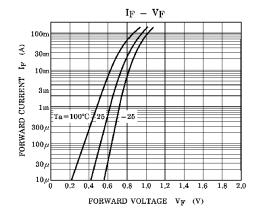
Absolute Maximum Ratings (T_a = 25 °C)

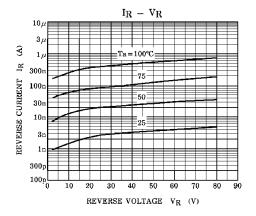
Parameter	Symbol	Value	Unit
Maximum (Peak) Reverse Voltage	V_{RM}	85	V
Reverse Voltage	V_R	80	V
Average Forward Current	Io	100	mA
Maximum (Peak) Forward Current	I _{FM}	200	mA
Surge Current (10 ms)	I _{FSM}	1	Α
Power Dissipation	P _{tot}	150 ¹⁾	mW
Junction Temperature	T _j	125	°C
Storage Temperature Range	T _{stg}	- 55 to + 125	°C

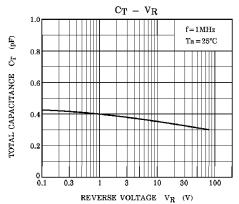
¹⁾ Mounted on a glass epoxy circuit board of 20 X 20 mm, pad dimension of 4 X 4 mm

Characteristics at T_a = 25 °C

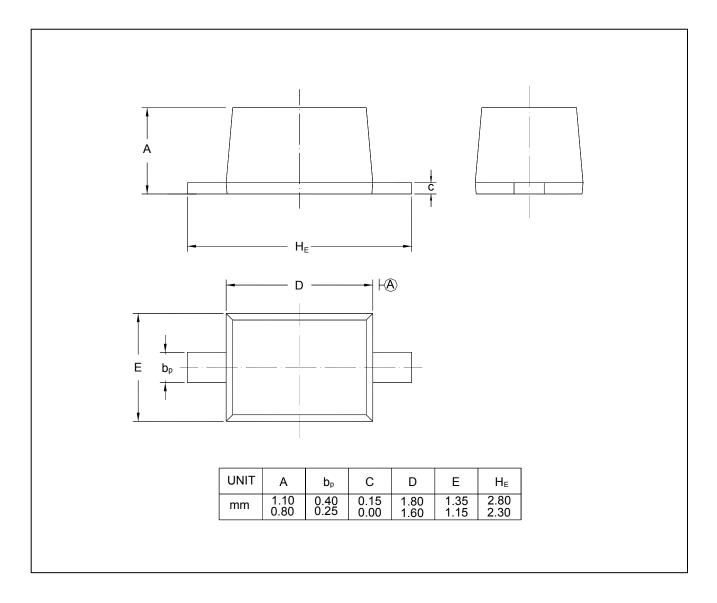
Parameter	Symbol	Max.	Unit
Forward Voltage at I _F = 100 mA	V _F	1.2	V
Reverse Current at $V_R = 30 \text{ V}$ at $V_R = 80 \text{ V}$	I _R	0.1 0.5	μΑ
Total Capacitance at f = 1 MHz	Ст	3	pF
Reverse Recovery Time at $I_F = I_R = 10$ mA, $I_{rr} = 0.1$ X I_R , $R_L = 100$ Ω	t _{rr}	4	ns

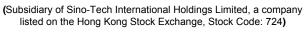






Dated: 07/04/2009




PACKAGE OUTLINE

Plastic surface mounted package; 2 leads

SOD-323

