

Order

Now

SN74LVC1G126-Q1

SCES467C - JULY 2003-REVISED OCTOBER 2019

SN74LVC1G126-Q1 Single Bus Buffer Gate With 3-State Output

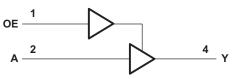
Features 1

- Available in the Texas Instruments NanoFree[™] package
- Supports 5-V V_{CC} operation
- Inputs accept voltages to 5.5 V .
- Provides down translation to V_{CC}
- Max t_{pd} of 3.7 ns at 3.3 V
- Low power consumption, 10-µA Max I_{CC} .
- ±24-mA Output drive at 3.3 V
- Ioff Supports live insertion, partial-power-down mode, and back drive protection
- Latch-up performance exceeds 100 mA Per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 2000-V Human-body model
 - 200-V Machine model
 - 1000-V Charged-device model

2 Applications

- Cable modem termination systems
- High-speed data acquisition and generation ٠
- Motor controls: high-voltage •
- Power line communication modems •
- SSDs: Internal or external .
- Video broadcasting and infrastructure: scalable platforms
- Video broadcasting: IP-based multi-format transcoders
- Video communication systems

3 Description


This single buffer is designed for 1.65-V to 5-V V_{CC} operation. The LVC1G126-Q1 device is a single line driver with 3-state output. The output is disabled when the output-enable input is low.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE
SN74LVC1G126-Q1	SOT-23 (5)	2.90 mm × 1.60 mm
SIN74LVC1G126-Q1	SON (6)	1.00 mm × 1.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Feat	ures	1
2	Арр	lications	1
3	Des	cription	1
4	Revi	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	4
	6.1	Absolute Maximum Ratings	4
	6.2	ESD Ratings	4
	6.3	Recommended Operating Conditions	5
	6.4	Thermal Information	5
	6.5	Electrical Characteristics	6
	6.6	Switching Characteristics, $C_L = 15 \text{ pF}$	6
	6.7	Switching Characteristics, -40°C to 85°C	6
	6.8	Switching Characteristics, -40°C to 125°C	
	6.9	Operating Characteristics	
	6.10	Typical Characteristics	7
7		ameter Measurement Information	
8	Deta	ailed Description 1	0

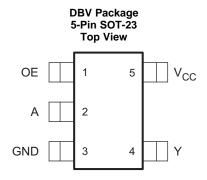
Changes from Revision B (April 2008) to Revision C

 9.2 Typical Application		8.2	Functional Block Diagram 10
 9 Application and Implementation 9.1 Application Information 9.2 Typical Application 10 Power Supply Recommendations 11 Layout 11.1 Layout Guidelines 11.2 Layout Example 12 Device and Documentation Support 12.1 Receiving Notification of Documentation Updates 12.2 Community Resources 12.3 Trademarks 12.4 Electrostatic Discharge Caution 12.5 Glossary 13 Mechanical, Packaging, and Orderable 		8.3	Feature Description 10
 9.1 Application Information		8.4	Device Functional Modes 10
 9.2 Typical Application	9	App	lication and Implementation 11
 Power Supply Recommendations Layout 11. Layout Guidelines 11.1 Layout Guidelines 11.2 Layout Example Device and Documentation Support 12.1 Receiving Notification of Documentation Updates 12.2 Community Resources 12.3 Trademarks 12.4 Electrostatic Discharge Caution 12.5 Glossary Mechanical, Packaging, and Orderable 		9.1	Application Information 11
 Layout		9.2	Typical Application 11
 11.1 Layout Guidelines	10	Pow	ver Supply Recommendations 12
 11.2 Layout Example 12 Device and Documentation Support	11	Lay	out 12
 12 Device and Documentation Support 12.1 Receiving Notification of Documentation Updates 12.2 Community Resources 12.3 Trademarks 12.4 Electrostatic Discharge Caution 12.5 Glossary 13 Mechanical, Packaging, and Orderable 		11.1	Layout Guidelines 12
 12.1 Receiving Notification of Documentation Updates 12.2 Community Resources		11.2	Layout Example 12
 12.2 Community Resources	12	Dev	ice and Documentation Support 13
 12.3 Trademarks 12.4 Electrostatic Discharge Caution 12.5 Glossary 13 Mechanical, Packaging, and Orderable 		12.1	Receiving Notification of Documentation Updates 13
12.4 Electrostatic Discharge Caution12.5 Glossary13 Mechanical, Packaging, and Orderable		12.2	Community Resources 13
12.5 Glossary 13 Mechanical, Packaging, and Orderable		12.3	Trademarks 13
13 Mechanical, Packaging, and Orderable		12.4	
		12.5	Glossary 13
Information	13		
		Info	mation 13

Copyright © 2003–2019, Texas Instruments Incorporated

4 Revision History

Updated document to new TI data sheet format. Removed Ordering Information table. Added Applications list, Device Information table. Added Applications list, Device Information table. Changed 1.65-V to 3.6-V V_{CC} to 1.65-V to 5-V V_{CC} operation. Added DRY package Added ESD Ratings table. Added ESD Ratings table. Changed MAX operating temperature to 125°C in Recommended Operating Conditions table. Added Thermal Information table Added Thermal Information table Added Device Functional Modes section Added Application and Implementation section, Added Power Supply Recommendations section Added Layout section Added Device and Documentation Support section and Mechanical, Packaging, and Orderable Information section



www.ti.com


Page

5 Pin Configuration and Functions

N.C. is no connection

See all mechanical drawings at the end of this data sheet for package dimensions.

Pin Functions

	PIN								
NAME	DBV (SOT-23)	DRY (SON)	TYPE	DESCRIPTION					
А	2	2	I	A Input					
GND	3	3	_	Ground Pin					
NC	_	5	_	No connection					
OE	1	1	I	OE Enable/Input					
V _{CC}	5	6	_	Power Pin					
Y	4	4	0	Y Output					

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			М	N MAX	UNIT
V_{CC}	Supply voltage range		-0	.5 6.5	V
VI	Input voltage range ⁽²⁾		-0	.5 6.5	V
Vo	Voltage range applied to any output in the high-imp	edance or power-off state ⁽²⁾	-0	.5 6.5	V
Vo	Voltage range applied to any output in the high or le	-0	.5 V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Ι _Ο	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND		±100	mA	
T _{stg}	Storage temperature range		-6	5 150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the table.

6.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	V
V _(ESD)	discharge	1000	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V	Supply voltogo	Operating	1.65	5.5	V	
V _{CC}	Supply voltage	Data retention only	1.5		v	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}			
V	Lligh lovel input veltage	V_{CC} = 2.3 V to 2.7 V	1.7		V	
V _{IH}	High-level input voltage	$V_{CC} = 3 V$ to 3.6 V	2		v	
		V_{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$			
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
		V_{CC} = 2.3 V to 2.7 V		0.7	V	
V _{IL}	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	v	
		V_{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		
		$V_{CC} = 2.3 V$		-8		
I _{OH}	High-level output current	level output current		-16	mA	
	Supply voltageData retention onlyHigh-level input voltage $V_{CC} = 1.65 \vee to 1.95 \vee$ High-level input voltage $V_{CC} = 2.3 \vee to 2.7 \vee$ Low-level input voltage $V_{CC} = 1.65 \vee to 1.95 \vee$ Low-level input voltage $V_{CC} = 3.0 \vee to 2.7 \vee$ Output voltage $V_{CC} = 3.0 \vee to 2.7 \vee$ Output voltage $V_{CC} = 3.0 \vee to 2.7 \vee$ Number of the second secon		-24			
		hput voltage $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 4.5 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 4.5 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 4.5 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 3 \text{ V}$ $V_{CC} = 3 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 3 \text{ V}$ $V_{CC} = 3.3 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.3 \text{ V}$		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
I _{OL}	Low-level output current			16	mA	
		$v_{CC} = 3 v$		24		
		$V_{CC} = 4.5 V$		32		
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20		
$\Delta t / \Delta v$	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V	
		$V_{CC} = 5 V \pm 0.5 V$		5]	
T _A	Operating free-air temperature		-40	125	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

6.4 Thermal Information

		SN74LVC1G126-Q1					
	THERMAL METRIC ⁽¹⁾	DBV	DRY	UNIT			
		5 PINS	6 PINS				
$R_{ ext{ heta}JA}$	Junction-to-ambient thermal resistance	240.9	279.0	°C/W			
R _{0JC(top)}	Junction-to-case (top) thermal resistance	165.8	182.7	°C/W			
$R_{\theta J B}$	Junction-to-board thermal resistance	143.2	154.5	°C/W			
ΨJT	Junction-to-top characterization parameter	84.4	31.3	°C/W			
Ψјв	Junction-to-board characterization parameter	142.5	153.8	°C/W			
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	°C/W			

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN74LVC1G126-Q1

SCES467C - JULY 2003-REVISED OCTOBER 2019

www.ti.com

TRUMENTS

XAS

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				–40°0	C to 85°C		-40 °	C to 125°C		
F	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 5.5 V	$V_{CC} - 0.1$			V _{CC} – 0.1			
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			1.2			
V _{он}		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.9			V
		I _{OH} = -16 mA	3 V	2.4			2.4			
	I _{OH} = -24 mA	3 V	2.3			2.3				
		I _{OH} = -32 mA	4.5 V	3.8			3.8			
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1			0.1	
		I _{OL} = 4 mA	1.65 V			0.45			0.45	
		L 0 m 1	1.8 V			0.45				
V _{OL}		$I_{OL} = 8 \text{ mA}$	2.3 V			0.3			0.3	V
		I _{OL} = 16 mA	3 V			0.4			0.4	
		I _{OL} = 24 mA	3 V			0.55			0.55	
		I _{OL} = 32 mA	4.5 V			0.55			0.55	
I _I	A or OE inputs	$V_1 = 5.5 V \text{ or GND}$	0 to 5.5 V			±5			±5	μA
I _{off}		$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0			±10			±10	μA
l _{oz}		V _O = 0 to 5.5 V	3.6 V			10			10	μA
I _{CC}		$V_{I} = 5.5 \text{ V or GND}$ $I_{O} = 0$	1.65 V to 5.5 V			10			10	μΑ
ΔI_{CC}		One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	3 V to 5.5 V			500			500	μA
Ci		$V_1 = V_{CC}$ or GND	3.3 V		4			4		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

6.6 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3)

						–40°C to	85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1.7	6.9	0.6	4.6	0.6	3.7	0.5	3.4	ns

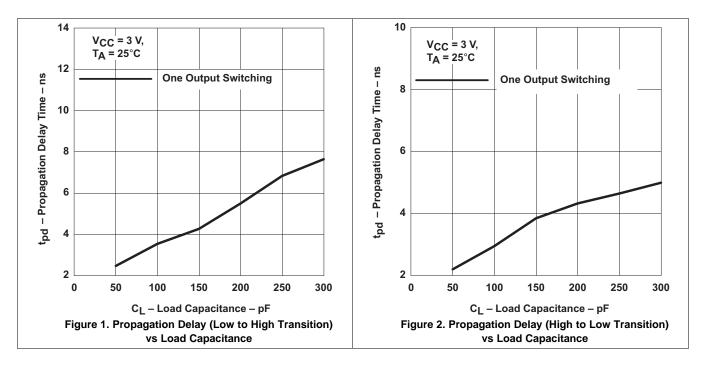
6.7 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4)

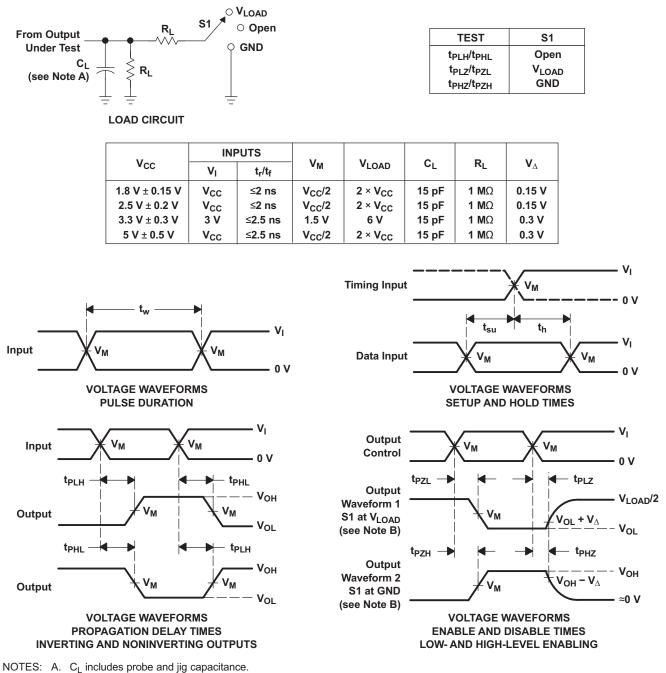
						–40°C t	to 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2.6	8	1.1	5.5	1	4.5	1	4	ns
t _{en}	OE	Y	2.8	9.4	1.3	6.6	1.2	5.3	1	5	ns
t _{dis}	OE	Y	1.6	9.8	1	5.5	1	5.5	1	4.2	ns

6.8 Switching Characteristics, -40°C to 125°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)


						-40°C to	o 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2.6	9	1.1	5.7	1	4.7	1	4.2	ns
t _{en}	OE	Y	2.8	9.6	1.3	6.8	1.2	5.5	1	5.2	ns
t _{dis}	OE	Y	1.6	10	1	5.7	1	5.7	1	4.4	ns

6.9 Operating Characteristics


 $T_A = 25^{\circ}C$

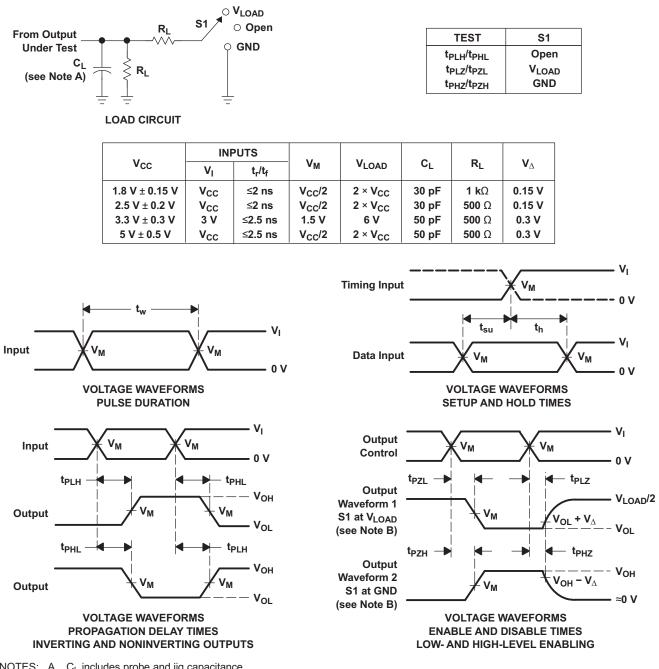
PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT	
~	Power dissipation	Outputs enabled	f 10 MU	19	19	19	21	pF	
C _{pd}	capacitance	Outputs disabled	f = 10 MHz	2	2	3	4		

6.10 Typical Characteristics

7 Parameter Measurement Information

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 3. Load Circuit and Voltage Waveforms

SN74LVC1G126-Q1 SCES467C-JULY 2003-REVISED OCTOBER 2019

www.ti.com

Parameter Measurement Information (continued)

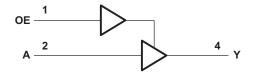
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{od} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS

8 Detailed Description


8.1 Overview

The SN74LVC1G126-Q1 device contains a dual buffer gate with output enable control and performs the Boolean function Y = A.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

8.2 Functional Block Diagram

8.3 Feature Description

- 1.65 V to 5.5 V operating voltage range
- Allows down voltage translation
 - 5 V to 3.3 V
 - 5 V or 3.3 V to 1.8 V
 - Inputs accept voltages to 5.5 V
 - 5.5-V tolerance on input pin when $V_{CC} = 0 V$
- I_{off} feature
 - Allows voltage on the inputs and outputs when V_{CC} is 0 V
 - Able to reduce leakage when V_{CC} is 0 V

8.4 Device Functional Modes

Table 1. Function Table

INP	JTS	OUTPUT
OE	Α	Y
Н	Н	Н
Н	L	L
L	Х	Z

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G126-Q1 device is a high-drive CMOS device that can be used as an output enabled buffer with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V, making it ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} .

9.2 Typical Application

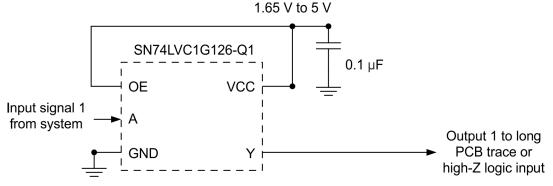
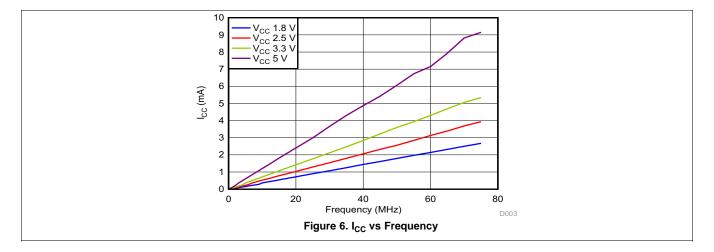


Figure 5. Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads, so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure


1. Recommended Input Conditions:

- For rise time and fall time specifications, see $\Delta t/\Delta V$ in the table.
- For specified high and low levels, see V_{IH} and V_{IL} in the table.
- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple V_{CC} terminals, then 0.01- μ F or 0.022- μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

11.2 Layout Example

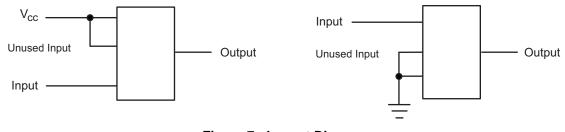


Figure 7. Layout Diagram

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Oct-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
1P1G126QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C26O	Samples
1P1G126QDRYRQ1	PREVIEW	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	HN	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

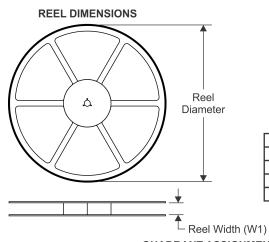
24-Oct-2019

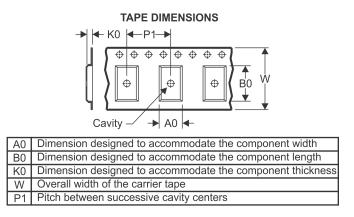
OTHER QUALIFIED VERSIONS OF SN74LVC1G126-Q1 :

Catalog: SN74LVC1G126

Enhanced Product: SN74LVC1G126-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

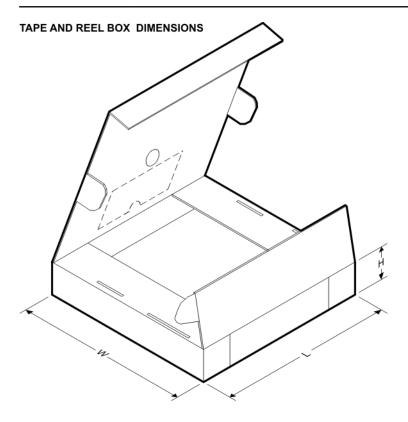

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
1P1G126QDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

TEXAS INSTRUMENTS

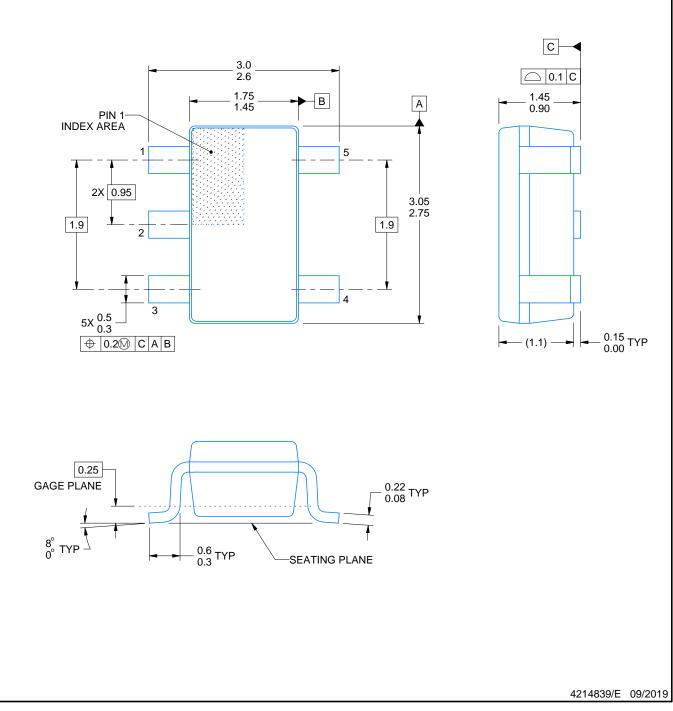
www.ti.com

PACKAGE MATERIALS INFORMATION

5-Apr-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
1P1G126QDBVRQ1	SOT-23	DBV	5	3000	203.0	203.0	35.0


DBV0005A

PACKAGE OUTLINE

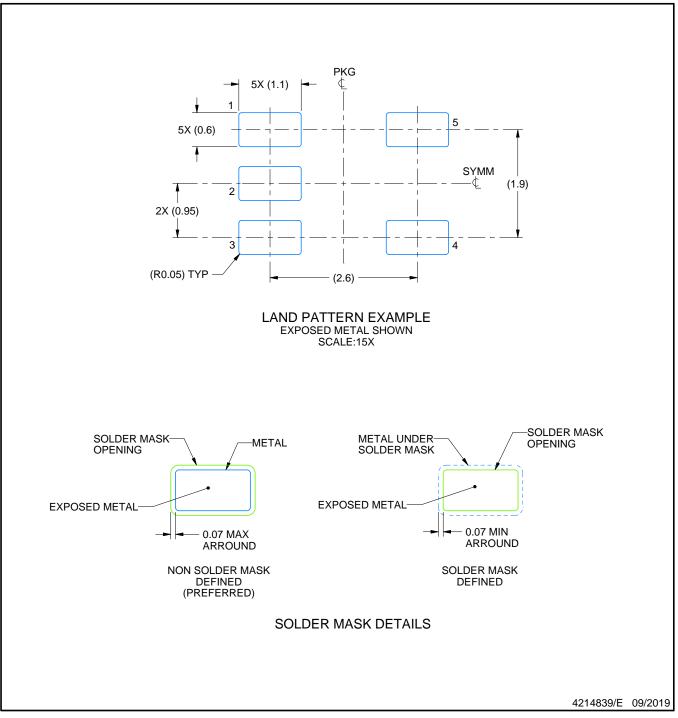
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.



DBV0005A

EXAMPLE BOARD LAYOUT

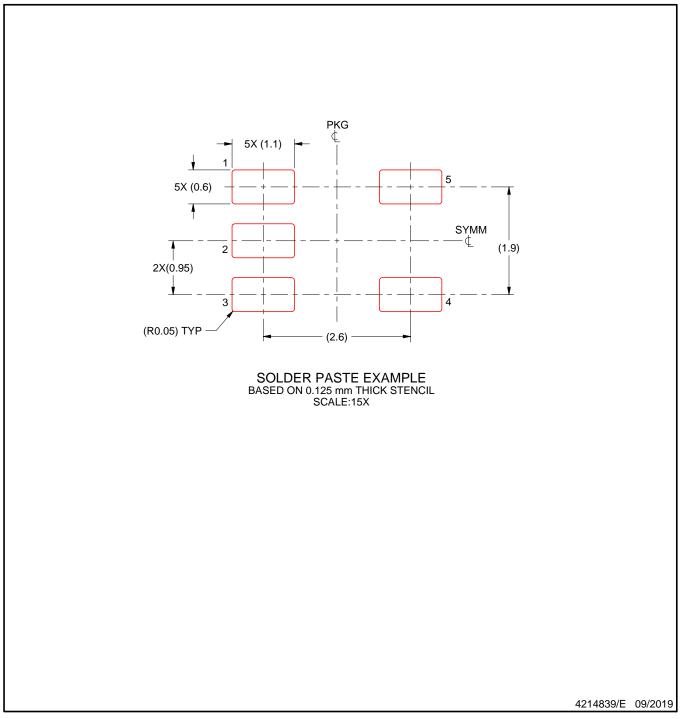
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated